et que les d_k sont déterminées par le fait que l'on a pour tout $0 < R < \infty$

\[
\sum_{a \in \mathbb{Z}} d_k \exp\left(i \sum_{j=1}^{k} g_j(a) \right) = \prod_{p} \left(1 - \frac{1}{p} \right) \left[1 + \sum_{r=1}^{R} \frac{g_r(p)}{p^r} \right].
\]

Comme dans le cas d'une seule fonction, cette égalité peut aussi être établie par la méthode utilisée ici.

Rouge par la Réduction le 14. 2. 1969

A statistical density theorem for L-functions
with applications
by
MATTI JUTILA (Turku)

§ 1. Introduction

1. In the last years many interesting results in the analytical theory of numbers have been obtained by the so-called "large sieve" method, e.g. new statistical density theorems for L-functions [2], [1] and the mean value theorem of Bombieri [2] (1.6 below) concerning the distribution of primes in arithmetical progressions.

We shall in this paper combine the large sieve with the method of Radoeski [9] and prove two statistical density results (Theorem 1) for L-functions. The estimate (1.4) is most effective for "high" rectangles and seems to be of a new type. As an arithmetical application of this we shall prove an analogue of Bombieri's theorem, concerning the primes in a "short" interval (Theorem 2). Finally we call attention to the consequences of Theorem 2 to some prime number problems.

2. Let $X \geq 1$, $T \geq 2$, $a \geq \frac{1}{2}$, and let χ be a character (mod q). Denote by $N(a, T, q, \chi)$ the number of zeros of the function $L(s, \chi)$ in the rectangle

\[
1 - \sigma \leq \sigma \leq 1, \quad |\tau| \leq T.
\]

In the statistical theory of L-functions the main problem is to find an estimate for the sum

\[
\sum_{\sigma \leq \chi} \sum_{\chi \equiv q, \chi} N(a, T, q, \chi)
\]

where the asterisk denotes summation over primitive characters only. Bombieri has in [2] proved that the sum (1.2) is

\[
\ll (X^{1 + \varepsilon} + XT)^{\frac{1}{2} - \varepsilon} T,
\]

(1.3)

We use the following notation: c_1, c_2, \ldots denote positive absolute constants; ε and Δ stand for positive constants, the former arbitrarily small and the latter arbitrarily large, which need not be always the same. Further, as usual, we write $c(\sigma) = e^{\sigma \varepsilon}$, $c_0(\sigma) = e^{\sigma \log q}$.

\[
(1.4)
\]
and Barban [1] has given other estimates of about the same type. But all these are inconvenient for large values of \(T \). We shall eliminate the factor \(T \) in the first of the following estimates:

Theorem 1. For the sum (1.2) we have the estimates

\[
(1.4) \quad (X^2 T^{1 - \varepsilon})^{-1} \log a(X + T),
\]

\[
(1.5) \quad (X^2 T^{1 - \varepsilon})^{-1} T \log a(X + T).
\]

3. As an application of his density theorem, slightly stronger than (1.3), Bombieri proved a result concerning prime numbers which (in a little rough form) runs as follows:

\[
(1.6) \quad \sum_{\alpha \in \mathbb{C}} \max_{\sigma, \theta} \left| \psi(x, \alpha, a) - \frac{e^{\sigma x}}{\phi(q)} \right| = \ll x \log^{-A} x.
\]

To formulate our theorem, let \(c \) be a constant such that

\[
\zeta(1 + it, \sigma) = \ll e^{c t}
\]

for \(t \to \infty \) and \(0 < \sigma < 1 \). It can be proved that \(c < \frac{1}{4} \), the best result heretofore obtained being \(c = \frac{1}{6} \) (see [6]).

Theorem 2. Let \(x \geq 2 \), \(y \geq 2 \), \(y = x^2 \) where \(0 \) is a fixed number from the interval \(0 < \theta < 1 \). Then

\[
(1.7) \quad \sum_{\alpha \in \mathbb{C}} \max_{\sigma, \theta} \left| \psi(x + \alpha, \alpha, a) - \frac{e^{\sigma x}}{\phi(q)} \right| = \ll y \log^{-A} x,
\]

where

\[
(1.8) \quad \beta = \frac{4c^2 + 2\theta - 1 - 4c}{6 + 4c} - \varepsilon.
\]

Recently Gallagher [5] has proved (1.6) without using zeros of \(L \)-functions. It seems to us that it is more difficult to prove Theorem 2 by some similar method.

4. Estimations of the type (1.6) and (1.7) are important e.g. in the application of Selberg's sieve method to prime number problems such as the twin-prime problem and Goldbach's problem. By the method [7] it can be deduced from (1.6) e.g. that there is an infinity of primes \(k \) such that \(k + 2 \) has at most 3 prime factors. One may ask how the primes of this kind are distributed. Now Theorem 2 offers a possibility for obtaining such results. It can be proved e.g.

Theorem 3. For every positive integer \(r \geq 8 \) there exists a real number \(\theta(r) \) with \(0 < \theta(r) < 1 \) such that for \(x \) sufficiently large in any interval \([x, x + x^{r\theta(r)}] \) there exists a pair \((p, p + 2)\) such that \(p + 2 \) has at most \(r \) prime factors. We have

\[
\theta(r) < \frac{1 + 4c}{2 + 4c} + \varepsilon
\]

if \(r \gg r(\varepsilon) \).

The question about \(\theta(r) \) remains open for \(r \leq 7 \).

§ 2. Preliminary lemmas

5. We state first a lemma which follows easily from the considerations carried out in [9].

Lemma 1. Let \(X > 1 \), \(y > 1 \), \(\frac{1}{2} < a < 1 \), \(T \geq 2 \),

\[
(2.1) \quad z^2 = c_2 y T X^{1 - \varepsilon} \log X,
\]

\[
(2.2) \quad a_n = \sum_{d \leq x} \mu(d).
\]

Let further \(\lambda = [\log z] + 1 \),

\[
(2.3) \quad I(r, M) = \sum_{n \leq X} \sum_{\alpha \in \mathbb{C}} \frac{1}{T} \int_{-T}^{T} \sum_{M \leq n < M + 1} a_n \log^r \gamma(n) n^{-s} n^{-s} \left| \frac{\sigma}{d \alpha} \right| d\sigma d\alpha.
\]

Then for the sum (1.2) we have the estimate

\[
(2.4) \quad \ll \log^2 z \max_{1 \leq \alpha \leq x} \max_{M \leq n < M + 1} \log^{-A} M I(r, M).
\]

We shall also need some facts about the divisor function \(\tau(n) \).

Lemma 2. We have \(\tau(n) \ll n^\varepsilon \); further,

\[
(2.5) \quad \sum_{n \leq x} \frac{\tau(n)}{n} \ll \log^2 z,
\]

\[
(2.6) \quad \sum_{n \leq x} \tau^2(n) \ll x \log^2 x,
\]

(2.7)

\[
\sum_{n \leq x} \tau(n) \ll x^\varepsilon \log x.
\]

Three first properties are well-known, and (2.7) can be proved by the method of [10].
6. The large sieve method we shall apply is in the form of

Lemma 3. Let \(d_n, n = H+1, \ldots, H+K \) be arbitrary complex numbers,
and let

\[
S(a) = \sum_{n=H+1}^{H+K} d_n \chi(n), \quad S'(a) = \sum_{n=H+1}^{H+K} d_n \chi(n), \quad Z = \sum_{n=H+1}^{H+K} |d_n|^2.
\]

Then

\[
\sum_{a \mod q} \sum_{n=1}^{\phi(q)} \left| S(a) \right|^2 \leq (X^2+K) Z, \quad \sum_{a \mod q} \sum_{n=1}^{\phi(q)} \left| S'(a) \right|^2 \leq (X^2+K) Z.
\]

For a simple proof, see [4].

\section*{3. Proof of Theorem 1}

7. We show first that (1.5) follows immediately from Lemmas 1, 2, and 3. For by (2.2) we have \(|\alpha| \leq \tau(n) \), and using Lemma 3 in (2.3) we find that

\[
I(\nu, M) \leq T(X^2+M) M^{-\nu} \log^M M \sum_{n=M}^{2M} \tau(n).
\]

Choosing \(y = X^2 \) and using (2.6), we establish (1.5) by Lemma 1.

8. Next we turn to the proof of (1.4). Choosing \(M \) in Lemma 1

\[
y = X^2 T, \quad z = (c_1 X^{1/2} T^2 \log X)^{1/2},
\]

we consider one particular \(I(\nu, M) \) with integral \(M \). Let first \(\sigma \) be a fixed number from the interval \(\alpha \leq \sigma \leq 1 \). Obviously

\[
J_2 \equiv \int_{-T}^{T} \left| \sum_{n=M}^{2M} a_n \log^2 \nu \chi(n) n^{-\nu-\nu^2} dt \right|^2 dt
= \sum_{n_1=M}^{2M} \sum_{n_2=M}^{2M} d_{n_1} d_{n_2} b_{n_1 n_2} \overline{\chi(n_1) \chi(n_2)},
\]

where

\[
b_{n_1 n_2} = \int_{-T}^{T} (n_1 / n_2)^\nu dt \equiv \left\{ \begin{array}{ll} T & \text{for } n_1 = n_2, \\ \min \left(T, \frac{M}{|n_1-n_2|} \right) & \text{for } n_1 \neq n_2, \end{array} \right.
\]

and assert the crucial

Let \(\tau(\nu) = \sum_{|a|=1} \chi(a) \nu \alpha(a) \) be a Gaussian sum. The first of the following identities is well-known, and the second is a consequence of it:

\[
\tau(\nu) \overline{\nu} (n_1) = \sum_{|a|=1} \chi(a_1) \nu \alpha(a_1 n_1), \quad \overline{\tau(\nu) \overline{\nu} (n_2)} = \sum_{|a|=1} \chi(a_2) \nu \alpha(-a_2 n_2).
\]

On multiplying these, multiplying the resulting identity by \(d_{n_1} d_{n_2} b_{n_1 n_2} \) and finally summing over \(n_1 \) and \(n_2 \), we obtain (3.2)

\[
|\tau(\nu)|^2 J_2 = \sum_{n_1} \sum_{n_2} d_{n_1} d_{n_2} b_{n_1 n_2} \sum_{n_1} \sum_{n_2} \chi(a_1) \chi(a_2) \nu \alpha(a_1 n_1 - a_2 n_2).
\]

Further, summing over all characters \(\nu \), and taking into account that \(J_2 \geq 0 \) and that for a primitive character \(|\tau(\nu)|^2 = q \), we get

\[
\sum_{n \mod q} \gamma^q (\nu) J_2 \leq \sum_{n_1} \sum_{n_2} d_{n_1} d_{n_2} b_{n_1 n_2} \sum_{n_1} \sum_{n_2} \alpha(a_1 n_1 - a_2 n_2).
\]

9. Now we set out to estimate the sum on the right of (3.5). Let

\[
Y = X^2, \quad M_1 = M - Y, \quad M_2 = M + Y, \quad M_3 = M + 2Y,
\]

and define the intervals

\[
H_v: v \leq n < v + Y, \quad v = M_1, M_1 + 1, \ldots, 2M.
\]

Lemma 4. Let \(n_1 \) and \(n_2 \) lie in the intervals \(H_n \), and \(H_n \), respectively. Then

\[
|b_{n_1 n_2}| \leq T Y A^{-1}.
\]

Proof. By (3.3) the lemma is trivial for \(|n_1 - n_2| \leq 2Y \), say. Let now

\[
|n_1 - n_2| \geq A > 2Y.\]

Then we have to prove that

\[
|b_{n_1 n_2}| \leq T Y A^{-1}.
\]

To see this, we remark that

\[
|b_{n_1 n_2}| \leq T Y A^{-1} = v_1 / v_2 - v_1 / v_2 - v_1 / v_2 = T Y M^{-1}.
\]

whence, by (3.5), the estimate (3.9) follows.

10. Next we consider the sums

\[
T_q = \sum_{M-q \leq n \leq M} \sum_{|n|=1} d_{n_1} d_{n_2} b_{n_1 n_2} \sum_{n_1 \neq n_2} \alpha(a(n_1 - n_2)),
\]

and assert the crucial
Lemma 5. We have
\[\sum_{q \leq X} T_q \ll Y^2 M^{2(1-\varepsilon)} \log^{2+\varepsilon} M. \]

Proof. Using (3.8) in (3.10), we get first
\[(3.11) \quad \sum_{q \leq X} T_q = \sum_{q \leq X} b_{n_1, n_2} \sum_{q \leq X} \sum_{(a, q) = 1} \sum_{n_1 \equiv a \pmod{q}} d_n q(a n_1) \sum_{n_2 \equiv -a \pmod{q}} d_n q(-a n_2) + R, \]
where
\[(3.12) \quad R \ll M^{-2\varepsilon} \log^{2\varepsilon} M \sum_{M_1 < n_1, n_2 < M} \sum_{n_1 \equiv a \pmod{q}} \sum_{n_2 \equiv b \pmod{q}} \tau(n_1) \tau(n_2) \times \min \left(T, \frac{TY}{|n_1 - n_2|} \right) \sum_{q \leq X} |S_{q, n_1 - n_2}|, \]
and
\[S_{q, n} = \sum_{(a, q) = 1} \epsilon_q(a n) \]
is a Ramanujan sum. It is well-known that
\[S_{q, n} = \sum_{d | (q, n)} \mu \left(\frac{q}{d} \right) d \ll \sum_{d | (q, n)} d, \]
whence
\[(3.13) \quad \sum_{q \leq X} |S_{q, n}| \ll \begin{cases} X^2 & \text{for } n = 0, \\ X \tau(n) & \text{for } n \neq 0. \end{cases} \]
To estimate the term \(R \), we subdivide first the pairs \((n_1, n_2)\) into groups such that \(n_1 - n_2\) is a constant \(\Delta\) for each group. Each pair occurs at most \(Y^2\) times, whence by (3.12) and (3.13) obviously
\[\sum_{q \leq X} |S_{q, n}| \ll \begin{cases} Y^2 M & \text{for } n = 0, \\ Y M \tau(n) & \text{for } n \neq 0. \end{cases} \]
Now the expressions in the brackets are by Lemma 3 and (3.4) (note that \(Y = X^2\))
\[\ll \sum_{n \equiv \mu(q)} |\tau(n)| \ll YM^{-2\varepsilon} \log^{2\varepsilon} M \sum_{n \equiv \mu(q)} \tau(n), \quad i = 1, 2. \]
Hence
\[(3.15) \quad \sum_{q \leq X} T_q \ll Y M^{-2\varepsilon} \log^{2\varepsilon} M \sum_{M_1 < n_1, n_2 < M} |b_{n_1, n_2}| \times \left(\sum_{n_1 \equiv \mu(q)} \tau(n_1) \right)^{1/2} \left(\sum_{n_2 \equiv \mu(q)} \tau(n_2) \right)^{1/2} + R. \]
Writing \(n_2 = n_1 + \Delta\) and using (3.3), we see that (3.15) takes the form
\[\sum_{q \leq X} T_q \ll Y M^{-2\varepsilon} \log^{2\varepsilon} M \sum_{\Delta = -M_2}^{M_2} \min(T, TY |\Delta|^{-1}) \sum_{n_1 \equiv \mu(q)} \tau(n_1) \times \left(\sum_{n_2 \equiv \mu(q)} \tau(n_2) \right)^{1/2} + R. \]
and the proof of Lemma 5 is complete.

11. We can now complete the proof of Theorem 1. We state first

Lemma 6. We have
\[(3.16) \quad Y^3 \sum_{q \leq X} \sum_{z \equiv 0} \zeta_q \ll Y^3 M^{2(1-\varepsilon)} \log^{2+\varepsilon} M. \]

Proof. Comparing (3.5) and (3.10) we find that each pair \((n_1, n_2)\), occurring in (3.5), occurs exactly \(Y^3\) times in (3.10). In (3.10) there are also some further terms, corresponding to pairs \((n_1, n_2)\) with at least one of the numbers \(n_1, n_2\) not lying in the interval \([M, 2M]\). Let, for example, \(M - Y \ll n_1 < M\). We estimate the contribution to the sum
\[\sum_{\sigma \in \mathbb{A}_X} T_\sigma \text{ of the pairs with } n_1 \text{ fixed and } n_2 \text{ running over the interval } [M_1^2, M_2^2], \text{ and get by (3.10) the estimate} \]
\[Y^{2} |a_n| \sum_{\sigma \in \mathbb{A}_X} |b_{n_1, n_2}| \sum_{\sigma \in \mathbb{A}_X} |S_{n_1, n_2}|. \]

Writing \(n_2 = n_1 + \Delta \), we see that the above expression is by previous arguments
\[Y^{2} \tau(n_1) M^{-2} \log^{2} X \left\{ X^{2} T \tau(n_1) + \sum_{d \neq \Delta} M \Delta^{-1} \tau(n_1 + \Delta) \tau(\Delta) \right\} \]
\[\ll Y^{2} X^{2} T M^{-2} \tau(n_1) \log^{2} X + Y^{2} X M^{-2} \tau(n_1) \log^{k+4} X. \]

We separate two cases: \(T < X \) and \(T > X \). In the first case we get, summing over \(n_1 \), using (2.7), and noting that \(\tau(n_1) < X, M > TX, Y > X \), the estimate on the right of (3.16). The second case is clear. So Lemma 6 follows by the above remarks from Lemma 5.

Now by (3.16) and (3.1)
\[I(\tau, M) = \sum_{\sigma \in \mathbb{A}_X} \sum_{\text{mod } \Delta} \left\{ J_{\sigma} d \sigma \ll M^{-2} \log^{k+4} X \right\} \]
\[\ll (X^{2} X^{2})^{-\frac{1}{2}} \log^{k+4} (X + T), \]
and Lemma 1 completes the proof of (4.4).

12. We state a corollary of (1.4) which is useful in many problems.

Lemma 7. We have for \(T \ll X^{1/2}, X > X \), and for a constant \(a \) with \(0 < a < 1 \)
\[n \in \mathbb{A}_X \]
\[\sum_{\text{mod } \Delta} \tau(n) = 0 \]
for all intervals \(a < q \ll 2 \), with all intervals \(q \ll X \), and with exception of \(Q \log^{A/4} X \) modules at most.

The proof proceeds in a well-known manner, using (1.4), Siegel's theorem and Satz 6.2, p. 295, of [8]. For the constant \(a \) may be taken e.g. \(\frac{1}{3} \), by [8]. Usually it is essential only that \(a < 1 \).

§ 4. Arithmetical applications

13. We prove a lemma from which Theorem 2 is an immediate consequence.

Lemma 8. For all modules \(q \) from any interval \(Q < q \ll 2Q \) with \(Q < X \), with exception of \(Q \log^{A/4} X \) modules at most, we have
\[\max_{n \in \mathbb{N}} \left| \psi(q, x, q, a) - \frac{x}{q} \right| \ll \frac{y}{\psi(q)} \log^{-A/2} x. \]

Proof. For \(Q \ll \exp(\log^{1/2} x) \), say, the lemma is clear since then (4.1) holds for all modules, with a possible exception of the "exceptional" modules (see [8], p. 321).

Now let us suppose that \(Q > \exp(\log^{1/2} x) \). We start from the well-known estimation
\[\left| \psi(q + x, q, a) - \psi(q, q, a) \right| \ll \frac{y}{\psi(q)} \log^{-A} x, \]
where \(y = \beta + y \) runs over the zeros of \(L(s, \chi) \) (see [8], p. 321). We exclude the same modules as in Lemma 7, and for the remaining ones (3.17) holds. For the non-excluded modules we use the density estimate
\[N(q) = \sum_{\text{mod } \Delta} \tau(q, T, q, \chi) \ll (q^{2} T^{2} + T^{4} \log^{5} (q T)) \]
(see [8], p. 299). By this
\[\sum_{n \in \mathbb{N}} a^{n-1} = \int \sum_{n \in \mathbb{N}} a^{n-1} dN(q, a) \ll \log^{-d} x, \]
if
\[q^{3} T^{2} (T + q)^{2} \ll a^{1-s} \]
We choose
\[T = y^{-1} q^{1+s} \]
so that \(T > q \). Then (4.5) is satisfied if \(q \ll a^{s} \), where \(\beta \) is given in (1.7). By (4.3), (4.4), and (4.6), this completes the proof.

14. Proof of Theorem 3. Let \(\{a_{n}\}, n = 1, \ldots, N \), be a sequence of positive integers, and denote by \(N \) the number of the \(a_{n} \)'s which are divisible by \(m \). Let
\[N \left(f(m) \right) = \frac{N f(m)}{m} + R_{m}, \]
where \(f(m) \) is a multiplicative function. Let \(q \) be such that
\[\sum_{m < N} \left| R_{m} \right| \ll N \log^{-4} N. \]
Let further \(\max_{n \leq N} a_{n} \ll N^{1/2} \), and define \(\tau = ty^{-1} \). Then, by [7], among the numbers \(a_{n} \) there are at least
\[0.05 \frac{N}{y \log N} \int_{1}^{y} \frac{1 - f(p)/p}{1 - 1/p} \]
numbers with at most \(k \) prime factors, where \(k \) depends on \(\tau \), and \(k \to \infty \) when \(\tau \to \infty \). E.g. \(k = 8 \) if \(\tau \leq 7.02 \).

We take now \(\{s_n\} = \{p+2\}, f(m) = m \eta^{-1}(m) \), where \(p \) runs over the primes in the interval \([x, x+y]\). Then \(N < y, \gamma = \theta^{-1}, \) and

\[
\frac{1}{\beta} = \frac{6+4c}{4c^2+2\beta-1-4c} + \epsilon.
\]

When \(\theta \to 1 \), then \(\tau \to 6+4c+\epsilon < 7.02 \). So \(\theta(8) < 1 \). The second assertion of Theorem 3 follows also immediately.

15. We remark finally that Theorem 2 is applicable to several other problems. E.g. it is possible to estimate the differences between "short" gaps between prime numbers, along the lines of the paper of Bombieri-Davenport [3]. Also it can be proved that every large even number is representable as a sum of two almost equal integers, one of which is a prime and the other has a finite number (\(\leq 8 \)) of prime factors.

References

UNIVERSITY OF TURKU
Turku, Finland

Reçu par la Rédaction le 16. 2. 1969

Metrische Theorie einer Klasse zahlentheoretischer Transformationen (Corrigendum)

von

Fritz Schweiger (Wien)

\(0 < m \leq f_0(x) \leq M \text{ auf } B \) verlangt. Da die Eindeutigkeit aus bekannten Sätzen der Ergodentheorie ohnedies folgt, werden wir Teil (b) von p. 7 an, neu beweisen.

Wir zeigen also: Es sei \(f_0(x) \) gegeben mit

\[
f_0(x) = 0 < m \leq f_0(x) \leq M,
\]

so dass

\[
|f_0(x) - f_0(y)| \leq N_1|x-y|.
\]

Definiert man rekursiv

\[
f_{k+1}(x) = \sum_k f_k(V_k x) \Delta_k(x)
\]

so gilt

\[
|f_k(x) - a_k(x)| \leq b_k(x)
\]

wo

\[a = \int f_0(x) \, dx \text{ und } b = b(f_0) \]

eine Konstante ist.

Zunächst folgen wir:

(a) \(f_0(x) = \sum f_k(V_k x) \Delta_k(x) \).

(b) \(|f_k(x) - f_k(y)| \leq N_1|x-y| \) mit einem passenden \(N_1 > N \), unabhängig von \(s \). Der Beweis ist in [2] auf p. 7.

(c) Da \(C^{-1} \leq \rho(x) \leq C \) ist \(0 \leq f_0(x) < \rho_0(x) \) und daher \(0 < m_1 \leq f_0(x) \leq M_1 \) gleichmäßig in \(s \) mit \(m_1 \leq m \leq M \leq M_1 \).

(d) \(\int f_k(x) \, dx = \int f_k(x) \, dx = a \).

(e) Aus (c) folgt nun

\[
g_k(x) < f_{k+1}(x) \leq g_k(x)
\]

mit \(0 < g_0 \leq g_k \) gleichmäßig in \(s \) und \(t \).