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§ 1. The present paper is in close connection with [8], the notation
of that paper is used and extended (for a resulé which requires little
notation see Corollary to Theorem 2). Reducibility means redueibility
over the rational field Q. Constants are considered neither reducible nor
irreducible. I f(#y, ..., 3) ¥ 0 i3 2 polynomial, then

&
can
Ty, .., ¥z} = const I lf,,(ml, ceeg W)
=]

means that polynomials f; arve irreducible and relatively prime in pairs.
It D(x,, ..., ) = flo, ..A,mk)ﬁm‘;i where f 18 a polynomial,
(floory ey @)y @y i) =1 and q l;rle integers then
D&y «ovy Zx) = F(B1, -0y @)

{this definition is equivalent to omne given in [9]). Let

JD (L, .-y o) = constf]fg(ml, ey )%
a=1

‘We sef

KOy, ..., ) = const [ [, fole, ..o, ma),

- L&(wy, ..., m) = const [Ty ooy a::k)eﬂ?-
where I7, is extended over these f, which do not divide J(a3! ... afk—1)
for any [8y,..., 6] # 0,11, is extended over all f, such that
(*) I el 25') # £ folBrs ooy T

The leading coefficients of K@ and LD are assumed equal to that of JO.
Tn particular for % == 1, KD(x) equals J&(z) deprived of all its eyclotomic
factors and I®(x) equals JP(w) deprived of all its monic irreducible
reciprocal factors (a polynomial f(x) is reciprocal if J(a™!) = £f(=)).
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J0 — K0 = L0 = 0. Note that (¥) implies Jf,(#% ..., @%") # const X
xfu(wlr"'?mfﬂ)' l . . T .

The operations J, K, L are distributive with respect to multiplication,
hesides for k=1, J and X are commutative with the substitution
# > " (n > 0), L does not share this property and is always performed
after the substitution. We have EKJ =JK = K, IJ = JIL = L, LK
— KL = L; the first two formulae follow directly from the definitions,
the last one requires a proof (ree Lemma 11).

The paper has emerged from umsuccessful cfforts to prove the eon-
jecture formulated in [9] concerning the factorization of KF (™, ..., a™)
for given F. The operation I hag turned out more treatable and the analo-
gne of the conjecture for LF (™, ..., ™) appears helow as Lemma 12.

For a polynomial F{wzy, ..., ) [|[F|| is the sum of squares of the
‘absolute values of the coefficients of ¥y if I 0, |F] i3 the maximum
of the degrees of F with respect to o (1< k),

F* = Vmax {.T[}, 2}+2,

exp, & = eXP®, eXpy® = eXp(eXps_, ).

From this point onwards all the polynomials considered have in-
tegral coefficients unless stated to the contrary. The highest common
factor of two polynomials is defined only up to a constant; the formulae
involving it should be suitably interpreted; we set (0, 0) == 0.
~ TmEEOREM 1. For any polynomial F # 0 and any inleger n + 0 there
exist integers v and u such thai

(i) 0 < v << exp (10 || log|F|* log |]))?,
{ii) N = Uy,
8 -8
(i) KF(z') = const] [ F,@)’s implies KT (a™)= const] [ Fo(a") .
Tl d=l

This it a quantitative formulation of Corollary to Theorem 1 [9]
and a generalization of that theorem.

THEOREM 2, For any polynomial F (2, ..., 4x) and eny integral vector

N o= [Ny, ..o, ] £ 0 such that F(a™, ..., ™) 5£ 0 there ewist an iniegral
matrio N = [vylic, of ranlk v and an infegral veclor © == [0y, ..., 0] such
tha't jé’ﬂ .

(i) S max I"’e’.ﬂ = Gr(F)r
(ii) _ n = oN,
r r 4
) Zr([ Ty, [] %) E const [] Fulys, ..., yo)% implies
d=1 i=1 =l

]
LE(™, ..., @) = const [ [ LF, (e, ..., a)'s.

Gam]

icm
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Moreover
exp 92WI-5 if re=1kF,
o (F) =1 exp(5-27"1.4 2||Fl|log | B") if  rtk=3,

XDt ry e srny (S5 | BT og || FY)  otherwise.

CoROLLARY. For any polynomial f(w) 520 the number of its irre-
ducible non-reciprocal factors except & cownted with their multiplicities does
not exceed

eXPye—s7 (114 2)

(¢ bound independent of |fl).

Theorem 2 is the main result of the paper. An essential role in the
proof is played by a result of Straus {11]. It is an open question equiv-
alent to the conjecture from [9] whether a similar theorem, possibly
with greater constants ¢.(F}, holds for the operation K instead of L.

The cage k == 1 ig gettled by Theorem 1, for & = 2 a partial result
is given by

TawoREM 3. For any polynomial #(x,, ®,) sueh that HF(xy, %)
= LF (@, ®.) and any integral vector n == [n,, 1] = 0 such that F{a™, 2™
# 0 there ewist an integral matric N = [v;licr of vank v and an integral
vector © = [v,, ¥,] such that =2

exp -2 if r=2,

(i) A [yl = lexp (BOO T (2 | By gf

r=1,

1i) n = oN
*
* » F]
iy EP([ue, []vi) = const [ ] Folys, g% implies
i=i i=1 =1
]
FF{g", o) Z const n EF (2", o).
o=l

This theorem ig closely related to Theorem 2 of [9] but is both
quantitative and more general, since it does not assume the irreduei-
bility of F.

TEEOREM 4. If k=2 2,4y £ 0,0; £ 0 and ny (1 <j<< k) are indegers
then either ;

E
ot 3w
i=1
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is irreducible ov there is an infogral vector [y, ..., vu] such that

2,
uf -5

bt 1o

’L.
2 J=0

2
IOg 2 (L? ‘L:f k e 2 ;
F=0

0 << max|y| < k
i 2. a?.;.z &
EXPor_y (7c2“ =" log Z aﬁ) i k>2
f=0

and

i
Ewm == (),
g1

ToeoREM &. If @, b, ¢,n, m are inlegers, n > m > 0, abe £ 0 then
either K (aa™+ba™" -+ ¢) is drreducible or

%/(ﬂ,, ,m) < 24'(“2~f'b2'i'“2)+510g(a,2~|w bz _1__ 62)
and there exist integers v and p such thot mju = nfv is integral,

0<p<v<exp(a®+b* L 02)224(“24"‘2“2)"“11
and

8
K (@8 + ba¥ -+ ¢) = congt n T (z)%

Fam]

implies

4
K(aa"+ ba" - ¢) == comst [ | B, ("),
a=1

This is a quantitative formulation of Theorem 3 of [9].

The proofs of Theorems 1,2, 3,4, 5 are given in §§ 2, 3,4, 5,5 res-
pectively. Some of the proofs eould be simplitied at the cost of increasiog
the order of ¢.(F) and of other similar constants. Since howover simpli-
fications would not be great and the constants already are, I did a3 much
as I could not to increase their order. On the other hand T have refrained
from making generalizations to algebraic wumber felds. The method
of proof of Theorem 1 works in any algebraic nunber field, while the method
of proof of Theorems 2 and 3 works only in totally real fields and their
tofally complex quadratic extensions. The fields of these two types share
the prqurty that the trace of a square of the ahsolute value of any non-zero
element is positive. In the eage of totally complex fields, the definition
](;f L& {x,, ..., @) must be moditied, namely condition (*) i3 to be replaced

¥ : ‘

If@5 oy @) o coustf, (@, ..., m).

icm
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{There is an error in this respect in [9], see Corrigenda at the end of the
paper). A generalization to function fields over totally real fields iz also
possible.

The following notation is nsed through the paper in addition to that
introduced already.

1. |2} is the degree of a field £.

2. {y iz a primitive root of unity of degree g.

3. If 2 is a field and we®, a += 0 then

(e, 2) 0 if o = {4 for some g,
efu, 8) =
' maximal e such that a = {,5° with some ¢ and f 2, otherwise.

4. k(M) is the maximum of the absolute values of the elements of
a mafrix M (the height of M.

M” and M? are matrices transposed and adjoint to M, respectively.
The same notation applies to veetors {reated as matrices with one row.
The elements of a vector denoted by a Dbold face letter ave designated

by the same ordinary letter with indices. Bold face capital letters re-
present matrices except @ and £ that are fields.

§2. Levma 1. Let 2 be an algebroic number field and a %0 an
element of 2 satisfying an equation f(a) = 0, where f is o polynominl. Then

20 |2|*log [ log | ]

(1} ela, 2) << { ;12| log|fl
(210g2)™" |2]10g]Ifl

always,
if « is not conjugate to o,

if a i8 not an integer.
Besides, for any algebraic number field 2, o 2

2
(2) e(a,ﬂl)s;%e(a,ﬂ).

Proof. If « is a root of unity, the lemma follows from the definition

of ¢(a, 2). Assume that « is not a root of unity and let

(3) a = é-qﬁea

fe2, 6 = e(u, 2).

If ¢ is an integer, § is also. It follows that

(4) logm = elogm,

where m is the maximal absolute value of the conjugates of e. Now by
a recent result of Blanksby and Mongomery [1] and by a slight
refinement of a theorem of Cassels [37] (see p. 159 of the present



128 A. Behinzel
paper)
— 40 (2% log (2]% —1)!
(8]2]~1)"' if e is not conjugate to o=,

Hence

1 40|22 10g |2*
(5) < [#] .gl 1"

loglg| ~[51% i ais not conjugate to o=,

On the other hand m does not exceed the maximal absolute value of the
zerog of f and by the inequality of Carmichacl-Masson {8ee [B], p. 125)

W < [IfIF,
hence
(6) log|a| < logl|ff.

The first part of the lemma follows now from (4), (8) and (8). Assume
that « is not an integer and let a, be the leading coefficient of f. Since
f(a) =0, aya is an integer. Therefore there existe a prime ideal p of 2
such that

—ord, & < ord, o << 0.
It follows from. (3) that

ord, « = gord,
and

e —ordya < ord, a,.

On the other hand, taking norms N from # to Q we get

_N-(p)orﬂbau |a“|119£’

whenece
log || log|ifil &
& = ord, < |82 __N_._D._-( R
po < |2 Tog2 | !210g2.< 5 12| Tog I fli

which proves (1).
In order to prove (2), assume that
o ={, ily !‘915‘917 6y = e(a, 2;}
and take norms N, from 2, to 2. Wa get
o = N1 () (B

where ¢ = |2,|/[%|. Since by Lerma 1 of 9]

e, < (o, a2,

e(ad, 2) = de(a, 2)
(2) follows. '

icm
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Levya 2. If &(x) 15 any drreducible polynomisl not dividing o’ —a
(8 1), ais any of iis zeros, 2 = Qa), n 13 an integer 0,

» = (n, 2" o, B)1),
then
Do) = Dy(2) ... Du(z)
implies
JO(2") Z TP (a™) ... JDp(2'").
Proof tor » > 0 does not differ from. the proof of Theorem 1 of [9]
The case n << 0 can be reduced to the former in view of the identity
JO(a™ = P(z™"), where P(z) — J@(z™).
Proof of Theorem 1. Let

14
KF(m)oiu const” & (z)E.
f=1

For each &; we denole by «;, 2, »; the relevant parameters from Lemma 2

and set

1

v = (n, max 220 tery 2, w=m"".

10t

We may ageume that either |F)| = b or |F| = 3, IF| > 3 because other-
wize § = (.
Sinee 2™ 'm! < W™ and 2] < |F| (¢ =1, ..., ¢) We get by Lemma 1

» < exp(20 | F[*log | F[*log | Fi(log20 | P[>+ log, | F}* 4 log, | F1)
< exp(10|F|log | F|*log||F))?,

which proves (i). (ii) is clear. In order to prove (iii) we notice that
2™ Iy 119M i, for my < msy, thus wley for ¢ <o By Lemma 2

&y(") = [ ] duy(a)
7=1
implies .
Bi(a') = [ @uta™,
jozl
7 o
Tbi(a") = [[ I,
i=1
whence

g T '
EF() % const n n By (w70),

i=1 f=1
e i

HF (@™ %= const H ” J @y (™57,
i=1 7=1

Acta Arithmetica XVI2
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Denoting the polynomials @y(2"%) (1<l g, Ll =im) by Iy, .., 0y
we obtain (iii).

§ 3. Tmuma 3. Let P(y, ..., @) # 0, Q(0yy ooy Bpga) 55 0 De poly-
nomials with complex coefficients, (P, Q) = @ and P =@QT,Q = GU, The
resultant of T, U with vespect to x; divides a cerloin nonvanishing minor
of Sylvesier’s matriz R of P, formed with respect 1o x; (|R] boing the
resultant of P, @).

Proof. Consider polynomials A(x), B(x), ¢{#) of degrecs [4] = 0,
|B| > 0, |C| with indeterminate coefficients g, ..., 8y, ..., ¢, ..., tho
resultant D of A, B and any minor § of degree |A[-|-|B]-} [C] of Sylvester’s
matrix R of AC, BC. Since D is absolntely irreducible and prime to a,b,
(see [6], Satz 120), we have either § = DV, where V' iy a polynomial
in the coefficients of 4, B, 0 or there exist complex values of the coeffi-
eients sueh that D = 0 and a,b,0,8 # 0 (ef. [6], Batz 136). Af{x) and
B(z) with thege coefficients have a commeon factor of positive degree,
hence AC and BC have a common factor of degree > |€J] and by a well
known theorem. ([6], Satz 114) the rank of R is less than |4 |- |B|+{- |0].
The contradiction obtained with § # 0 proves that

(7} 8 = DV

for any minor § of degree |A|+ |B|-+|C] of R.

Now, if neither 7' nor U is constant with respect to w; we set A (&)
=Tz, ..., 93’;,:_‘_1), B(z)) = Ulay, ..., mﬁ:+1): Clay) = &y, -, wm.l)'

Since (A€, BC) = ¢, it follows from the quoted theorem that at
least one of the minors of degree |Aj-4|B[--|C] of B does not vanish.
By (7) this minor has the property asserted in the lemrna.

If T, say, is constant with respect to @, and the relevant degree of
U i8 u, the diagonal minor § of degree % has the said property (if v = 0
we take 8 =1).

Lumwa 4. Let T(x,, 3,), Uy, 25) be polynomials with complew coeffi-
cients, (T', U) = 1. The number of pairs {n, &) such that T (x, ¥) = Uiy, )
=0 does not exceed the degree of the resultawt of T, U with respect to w;
{1 =1,2).

Remark, The lemma must be notorious but it is not readily found
in the literature,

. Proof. It suffices to consider i = 2. Let ¢, u be the dogrees of 7', [/
with respect to 2z, and for a given » let ¢, u, be the degrees of T(n, ),

Uy, ®,). Let R{z;) be Sylvester’s matrix of T, U formed with roﬁpod.
to @y, R(x)) its determinant and R, Sylvestcl 5 matrix of Z'(w, ),
Uln, z,). ’

If t, =1, w, = u then R, = R(#), otherwise R, can be obtained from
R(5) by crossing out step by step row ¢, column ¢ (1 < i< u—w,), row
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a4, column 4 (24—t < &= (w—ity) -+ (t— ;). At each glep all non-zero

clements crossed out are in @ row, thus the rank diminighes by at most one.

We get
rank of R, > rank of R(n)—(t—8)— (%-—1ty).

Now if there are k, different 9 such that T{y, #) == Uln, #) = 0, Ty @),
U(n, ;) have a common factor of degree ab least k,, thus {{6], Satz 114)

rank of R, < b, u,—k,.

Tt follows that the rank of R(y) does not exeeed i4u—Hk,, whence by
differentiation
iy, N
(y=1) "R {ay).

Giving 5 all the possible values, we obtain

27.-:,7 < |Rl, q.ed.

Tnma b, Let Play, .., @) # 0, Q(rg, ooy @qa) 5= 0 be polynomials
and 8 #0 a minor of theu Sthstm g wmatrie formed with respect lo wy
(LS i< k1), The following idnequalities hold

18] = 21P1Q),
181 < P QT

Proof. We assume withont loss of generality 4 == k-1 and set

My "
. — e f
P o= M Piwy, . m) @ = X' Qi(wyy .oy m)aRT]
=T F=eb)
Since m < [P|, n < |@¢| and Sylvéster’s matrix of P, ¢ is
Pn -Pl -Pm
........... 71 times
Py Py Py
Go @i
........... dn HIMes
Qo Qo Qu

it follows that
18] < mmax | Py +mmax @] < 2P|

In order to estimate |S]| we note that

4

27
I8 = 2m) ™ [ [ o) s s .. dp
13
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of Chapter VIIL), hence

max [8(é, ..., ¢
ppan

(ef. [2], Lemma 6
(8) 8] <

On the other hand, for any polynomial B with integral coefficients

(9) max |R(€", ..., ) < ||BIF.

g2

Using (8), Hadamard’s inequality and (9) we ohtain

18] < max(i"u’f(eﬁ’l’,,., 1% )(ZEQ uﬁl yens

Jep=s2m = f=x[l

(Z max |P;(¢ “‘“’ﬂ)[) (Z max |Q; (6%

o Osesan j=0 O

(E i) (Z " < [ X1 Sl < e
f=0 F=0

LEMMA 6. If an m-dimensional sublattice of the n-dimensional inlegral
lattice contains m Unearly independent veclors vy, ..., Oy then @ has a basis

ol

dppy 2}
,...,e"’k)l)

of the form
m m
Zalivﬁ <y Zcmf”h
iz i=1
whers

0oy <oy <L (8 5]), oy=0{(i<j).

icm

Prootf iz obtained by a standard method (see [2], Appendix A).

For a more precise result see [T]. °

Ievwa 7, Lel ki (0<Ke<< 1) be an increasing sequence of inlegers.
Let k;?mkip (L<p < py) be all the numbers which appeésr only once in
the doudle sequence fy—k; (0 <X 4 < J <1). Buppose that for each p

Te
ki, = Z OpgTig,

Pusl

where op, are indegers, |cpyl << ¢. Then either there exist integral matrices

K = [glpcr ond A = [Ay)c
i<l bk

and an integral vector w such thot

(10) y—tgy ooy l—Tp] = uB, m=[n,...,m]=ud,
h(K) < k(max{c?, 2} 4 2),
(11) 0 << ig <270 (g #1), Ju=0 (g<1)
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or there exists an integral veclor y such that

m=0 and O0< hiy) < {max {ke?, 2} + 2)E+VE-D2,

Proof. By the assnmption for each pair {i,j> where 0 i <j=<{{

and {&,5y 5= (p, Joy (1< p < p,) there exists a pair {gy, by 7= &, 5>
guch that

ey s = Ty

g;ij °

Let us consider the system ‘of linear homogeneous egquations

wn - 0,
(12} mﬂ'_mﬁmmhij+mﬂij =0, <Q’5.7> 7+ <":17j1>1 teey <"’:iJo!j:Dg>!
k
Py, — Z: Cpglq = 0 (1=<p <P
g=
satisfied by @ = ki—k, (0<i <), vy =1, (1K g<E).

Let A be the matrix of the system obtained from (12) by cancelling
the first equation and substituting #, = 0 in the others, B be the matrix
of the coefficients of the x's, —I" the matrix of the cocfficients of the 4’3
g0 that A = B|—F in the sense of juxtaposition (the vertical line is
added in order to avoid a confusion with the subtraction).

We asgert that {12) has at most % 1ineaw1y independent solutions.
Indeed, if we had %41 such solutions @, ..., &, then taking as El, ceny Epa

+1

real numbers rationally independent we should find a set of reals Z Amiém

=1
(0 < 4 < 1), where all the differences would span over the rationals & space -

of dimension k-+1, while the differences ocecurring only once

k4 k41 [ ES
Z (‘fbﬂwﬁJ am’bp Vém = Z Em 2 Cpq Om lrg = Zcpq ( 2 O 1.1 g §m)
=1 g=1 d=1 M=l -

would gpan a space of dimension at most % contrary to the theorem of
Straus [11].

Tt follows that the rank of A is I+ g, where 0 < ¢ < k. If the rank
of B is 1 then since one row of B (corresponding to (Z,jy == {0,1>) is
[0,...,0,1] there exists a nonsingular submatrix 4 of B of degree !
containing this row. Solving the system by means of Cramer formulae
we find 2 system of % linearly independent integral solutions which can
be written (horizontally) in the form K'|4', where elements of K' are
determingnts obtained from 4 by replacing one column by a column
of I' and A’ = DI, D = |4|, I} is the identity matrix of degree k.

By Hadamard’s inequality

Dl <2, h(K) < (max{e?, 2}+2)".
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From K'|A' we obtain by Lemma 6 a fundamental system of integral
solutions K4 satistying (11). Sinee the system is fundamental there
exigts an integral veetor w satisfying (10).

If the rank of B is less than I, we find a system. of k— p linearly in-
dependent integral solutions in the form IK'|4’, where clements of 4
are up to a sign minors of A of degree I-}-p. The rank of 4" is less than &,
otherwige the equality BK'™ = ra'" would imply

r=BE"(4%", A4=B|—r=BI|—K"4"%")

and the rank of A4 would be less than [, which is impossible. By Hada-
mard’s inequality
h(A4) < (2 + max {fe?, 21O

By a well known lemma ([2], Lemma 8 of Chapter VI) there exists
an integral vector v = 0 such that A'y" = 0 and

k~max{g, 1} (2 +Dh—13

h(r) < [B(4) 6] "0 < 1N max Jhe?, 2)+2)
Since n = w'A’' {u' not necessarily integral) we got
. Tn = ’W,‘J'T = 'u’_ti’g‘T == 0 .

Remark. The proof of Straus can be transformed info a proof thud
(12) has at most k linearly independent solutions, which does not use
any irrationalities and is in this respect nearer to the proof of FLemmna 4
in [9].

Suppose that a,,...,a,, are solutions,

Gy = [0, Ginyy -+ oy By, o Tty -» vy G 2tk ] -

There exist integers by, ..., bpy, N0t all zero such that
1
2 bntmirg =0 (LKg<<h).

m=1
k+1
Consider the vector & = ' by, = [0,a,,..., 4, 0,...,0]. It is also
a solution of (12). Set ™=!
i' = the least ¢ such that a; = min a; Or mMax ay,
07T (LB
j° = the greatest ¢ gsuch that ¢; = min (g - TOLAK. Gy = (hye
. : (et ol
The equality ay—ay = a,—a, implies a. = a,, a; = G, ¥ g, 0 =h
and either ', §'> = (g, h> or &y—k > kp—%y. It follows that &, 7>
is identical with some (ip, > (1<p < p,) and we get
. k
Qje—— Bje = ZG‘D!}&H‘Q = 0.

=1
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Hence a; =0 (0 <i<<l+k) and
k+1

2 Dy, = 0,

=1
Lmvma 8 (L&), Let P(2y,...,a) #0,Q(x., ..., &) <0 be poly-
nomtals and (P, Q) = @. For any integral vector n = [n,, very Hin] WE hawve
either

(LP(a™, ..., &™), L™, ..., o) = L& (2™, ..., o)
or |PQ > 0 and there exisis an infegral vector g such thai
(13) =0,
51P|1Q|log | PP if k=2,
exXPas (2P QI log 51 PIIQ -+ logTh) 4 k> 2.

LEMMA 9 (L9;). For any polynomial F(my, ..., x:) # 0, any integral
vector ® = [ny, ..., n;] and any irreducidle factor f(z) of LF (2™, ..., 5"%)
oither there ewist an integral matriz A = [l,] of degree k, an integral vector
U = [y, ..., U] and o polynomial Tizq, ..., =) such that

(15) 0 Ay <Ay 27072 (g 528y, Au=0 (g<1t),
(16) n =4,

k k
A A,
Tl oy e 7 ([ [, .., [0,
g=1 =1

f{z) = const LT (2™, ..., a™)

(14) 0 <h(g) <

or | B = 3 and there ewists an integral vecior v such that

(17) m=20,
120(2 |F*y¥H-1og | £ if k=2,
0<h(r)< *I“T\H-l . '
OX oo Tl [F["HN log|l#) o k>2.

We prove these lemmata by induction showing first L8, and then
the implications L8, — L9 (k=1), L9 — L84y, (2> 1). Since L8,
is obvious this argumentation is sutficient.

Proof of L8, I P=GT,@ =6GGU and

(LP (o™, o), LQ (5™, 2™)) # LG (o™, 5™)
then for some & mot conjugate to & %: T(&M, £) =0 = U (&M, £2). Let
X, be the regultant of T(x,, »,), U(z, 2,) with respect to 2; and §; & non-
vanighing minor of Sylvester’s matrix of P, @, divisible by R;, whose
existence iz asserted in Lemma 3. Seb

(18) . . ay == Eni, 2 = (Q(ay, o).
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(2| does not exceed the number of distinet pairs (», 9> satisfying T'(y, 9)
= [(n,?) =0 thus by Lemma 4

|2l < R < 8] (8 =1,2).
Sinee M it follows

1Q ()] < {ny, no) |2].

Moreover By ;(ag) = 0, 83_;(a;) = 0 and if ¢; is not an integer or n; = 0
we gebt from (18) and Lemmsg 1 .
(19) i} < e(e, Q(8)) < (210g2)77|Q () log || 8yq]
< (210g2) " (g, 1) |8:|1og (854l
I o is an integer and n; £ 0, £%°™ iy also an integer. Tt is

not conjugate to &™™, thus by the already quoted refinement of
Theorem 1 of [3]

|§Bgnni| >1__|_

1 1
; <5 _

On the other hand, by the inequality of Carmichael-Magson

Ja] < ISsd;  log[as] < $log|Sysll.

It follows from (18) that

_ logm

5 b
log| £ <5 1Q(&)log[i_i < 5 (P a) |83l log 118,..q]].

In view of Lemma 5 this inequality together with (19) implies L8, on
taking @ -4[ e ™ ]
{ny, na)’ (g, Mp)
Proof of the implication L8, - L9,. Let

z
Floy, ..., ¢) = me'{fl 75

Aesl)
where a; are integers 0 and the veators a; are all different. Let further
F(a™, ..., d%) = f(a)g(v),

where f and g have integral coefficients (if necessary we may change
f(®) by a constant factor without impairing the assertion of the lemma.).
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‘We set

i .
f@)g@) = Maa' (o integers £ 0, ky< by < ... < Ty)
i=0 . . .

and consider two expressions for F(a™, ..., ") F(z ™, vy &Y
I

P, ..., ™) P@™, .., 07 = 3 &+ D aame

i=0 0=, <
. 7 ]
{feg@)f@g™) = Y d+ Y agdr,
1=0 Dg’i;ji'gl

If *for any pair {&,7)
(20) t#j and ne;—ne; =0
we have (17) with A{y) < [F|.
If no pair (4, j) satisties (20), it follows that Fla™, ..,d%) £ 0

I

3
(21) Q2 = Da =P, 1< |1,

i=0
each nuwmber k;—%; which appears only once in the double sequence
k
Bi—k (0<e<j<l) has o value Y m,d, with |d, < |F|.
Qon 1

Applying Temma 7 with ¢ = |¥| we find either integral matrices
K == [yq], A = [Ay] and an i.uteg'_ral vector # satisfying (15), (16) and
k .
Fimlby = Y gty () < K|

F=1
or an integral vector ; satisfying (17) with
120 (2 | F|M =100 17 if k=2,

A % (T | B2y Hce—1)2
)< BEETT < cxpuaey (R 0wy 3 B2,

We notice that |F||>3 since otherwise LF(a™, ..., s™) = const.
Set

k
I X .
Wl tflzqta“
P(zl,...,zk)=z ainzg 3
LT =1
T ke
Qoy, -y ) = D)o [ [ i,
i=0 g=1 .

Clearly
P} << K || 2V 1) < o B
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whenece
(22) 1P| +1Q1 < 3BIFMA, PlIQ] < BT I,

The vectors [y, ..., ) (0 < 4 1) are all different since such are

n n

the numbers k;— k,. Similarly, by (16) the vectors [Zilgaﬂ, Zlmaﬁ]
(0 < i<1) are all different since such are the numbels Z“Wt Thcr(,
fore, by (21) b=
(23) 12l = 1Ql = |1

We get from L8; that either

(LP(m”l,...,m“k) o, .. "f)) = LG (2", ..., o'%)

or pu = 0 with g satisfying (14).
In the former case

Ly(a) = const(LF(a™, ..., a™), If(e™")g(a))
= const(LP(a™, ..., &), LQ(a™, .. @)

= const LGz, ..., 2"},
LP™, ..., &% LP{z™, ..., &%
fl@) = @y @) @2, &F) = congt LT (4", ..., a™),

Lg ()  const LG («™, ..., &™)
where T — PG .
In the latter case we have k= 2,

m==0  with 5 =pga?
h(r) < kR (B)h (A7) < T(l— 1) 25,4 B ()
and we estimate h{r) sep&rately for E =2 and for % > 2, wing (14},
(15), (22), (23) and |F|* = 2, || =
For k = 2 we obtain
h(r) < 2h(4)-51P] IQIIOgllPHZ‘Q'HQHQ'P'
<5 gl[Fll—l . QUFI+1 |F1*\IFII L \P\*“F””llognﬁ’“
<120 (2 | BT o0g Y.
For k> 2 we use the inequality’
(k= 1 IPRLAYT < BP0 < e (6 LTI og )
and obtain ‘ .
A(r) < B{—1)EDR (4)F 3 ¢
X 6XPy_4 (6% | BTV og | 7|+ loglog 54221711 | |4 4 log 3)
< expi o (B T log || P+ logE & 4 | F|log 2 | P|* +log 3 — 1)
< eXPar_,(7k |F[*HF"—IIOg £}
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Proof of the implication L9 — L8k, (k>1). Let P =@GT,
@ = @GU, let B; be the resultant of T, U with respect to z; and let 8; be
a nonva.mcshmw minor of Sylvester’s mafrix of P, @ divisible by B,
whose exigtence is asserted in Lemma 3.

If

(LP(a™, ..., a"+), LQ(a™, ..., a"e+1)) s LG (@™, ..., o™+ ‘
then |P|[@| > 0 and there exists an irreducible polynomial f{z) such that
F@) (LT (@™, ..., a+), LU @™, ..., "),

Clearly for each j< k41
F(@) | By(a™, ..., @*e+1) | 8, (2™, ..., 4%+,

where #™ does not ocenr among the arguments of R; and &;. By L9
either there exist an integral nonsingnlar triangular mabrix 4; with
nonnegative entries, an integral vector u; and a polynomial 7 such thas

(24) hd;) < 2Wii-2
{25) [1y crny Wity Bypay «oey Mapr] = Ajuy,
I k
(26)  Ty|8; (Hzgal, o T4, f(@) = constTy(an, ..., @)
g=1 ' a=1
or
71, ey M1y Mgy oney nk-;—l] =0
with
120(2 |81/~ og |18 it k=2,
0 < hlr) < #1Sjl-1 it
expoes (TRIS I log i85y if & > 2.

In the latter case we have gn = 0, where

0 < h(@) < max h(y).
Ik

If & =2 we obtain from Lemma 5 -
h{@) < 120(2 8,5 og |18y
< exp(log(1201log 1)} + (18,1 — $)log (16 [PI*|Q--8))
< exp({loglog|\P"![QIFF -+ P[P Q¥ log (16 | P1*I@|*-+ 8) -+ log 5}
< exp (2| PP Q)" " og 5P| @] +log21).
If & >2 we have similarly
h{B) < expar_y (THIS; ¥ og |18,1))
< eXPy-a(3 S log (4 |P|21Q|2+ 2)-} loglog 8]+ log Tk}
< expyes(1PIP QI log 8P 1Q|+1og k).
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In the former case Wwe 88t Upyy = © = [0y, ...,

and
(a7)
Let

where ¢; 3= 0 (0 <

0,
(28)

(29)

A. Behinzel

], find
flw) = eonst LTy (™, ..., a”%),

Jf(z™") = const LTy (27", .00, &7 7k)
Jf@™) Ll (@™ ..., o) _ JToq (8%, ..., &%)
f@)  Llea(e™, ..., o) ‘JTfﬂ-H(mvl? ceey @)
Tropr(Rey oy 22) = Z%zlﬂzz‘z
i=0

i < I) and the vectors «; are all different. Since 8,
Mml #0 we get by (26)

Blog) < b 1Semal h(dps)

Let eu takes its minimum for ; = m, maximuom for ¢ = M. We bave
) I

I Tpsa (@™ ..., @) = g=omo 2

i=0

0<i<I).

o =i y

I

2%y = m“M”Zam"“i".
Ll

: —v
JTk+1(w 1, EERT]

Since Jf(2™') 5 constf(x) we get from (27)

(@) = and Topr (8™, ..y @ %) — apr T Ty (87, ..., 2%%) £ 0,

By (29) the lowest term in d(z) is of the form as’™, where y = a;—a,,
OT epr-—a; 80 that

(30)
~and
(31)

a#0; >0

by (28)

h(r) < B 18kl B{dp).

It follows that

(32}

By (20) pplre

(83)

we have for some j < &

(34)

Jf (@) I (@™ ) ay =2 miod @
fl=) S Tpia (8 ..., 27%) Gn  On '

= (lef-i-l) [77’17 [ARY)
7 = 1Ay #0
, 7 # 0. Applying (25) and (26) we find as above

Jfl@™) by
1) ‘_“'*

ny] and gince

3"5 mod md‘mf-’rl

icm
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with
(85) b0, év;>0,
(36) 1(8) < B185 11 (444).

It follows from (30), (32), (34) and (35) that

T T'U = 5‘0‘1‘,
which gives
Mly gy ooy mg] = [ A1} 8 [Byy ooy gy, Rgyy, ooy Rig1]
with -
(37 & = Al
Hence
i-1

DAl pi— g 8)ms - | 4] iy
1=1 . -
D (A [y 10 )t | Pt = O,

i=f+1
which. is the desired equality (13) with
0 < k(@) < |44 R(r )+]Ak+llh(¢’)

It follows from (24), (31), (33), (36), (37) and Lemma 5 that
h(8) < h(4) ke (k— 1)~ 2R (4, , ) i hr) 4 _
R R (k— 1) D2 R (4

Nh(3)
< K (k1) "‘-W’h(nf PR (A Y (184 18554)) '

; |
< exp ( Togh+ (]| - 8.2 ) Jog 2+ log (|8} + mﬂn)

< exp ( B2 ot 2k PP QIFF Tog2 + log 1P @)

For s =2 we get
1(8) < exp(2|[P|19|Q*log 5 |P| 9 +Log21),
for & > 2 we use the inequality
ke < expap...xz (2 0)
and obtain .
h(R) < exp(2k [P Q!+ klog4 | P| Q] k)

< exPy—s (2 [P QP Tog5 [P| Q] +1og T%).
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LeMMa 100 If @ #0 45 a polynomial,
QY s ¥ # £IQy ooy i) and

then
(38) g =0 wilh

LQ{#", ..., o) = const,

h(g) < 21Q|.
Proof. Let the degree of J¢) with respect to ¥; be ¢; and

JQWry oy Y = Za’myTI - Y7,
where the summation is taken over all integral vectors e satistying
0 < o < gy Clearly
JOWTY, -y = Zaq—ayi’l Y

and there exist integral vectors e; and a_; (1 <{j < k) such that oy = ¢,
O, F 0,a_y5 =20, Gg_, 7 0. '

In view of the condition J@{yi', ..., u¥%") % £JQ(y1, ..., ¥s) we
have for some ay, a_;

(39) ta; F Cy—ay;  Ga_y F - Og—a, ;-

Let the product a» taken over all « for which a, =0, attains its
minimum for ¢ = ey, maximum for « = «,. We have

A —
G Ic) = g &m E ﬂ.aﬂ?a‘”,

ey 7)== m"n"Zwﬂm‘“”.

JQ (2™, ..
JO (w1, .

All the exponents av are different unless (38) holds (even with h(g) < {Q)).
In particular, @ (2™, ..., &%) % 0,
The equality L@ (2™, ..., z*%) = consti implies

JQ (o™, ..., #"%) = constJQ(x™", ..., %)
and by the eompariéon ‘of constant terms
Gag TQ(@™, ..., %) = ag, JQ(&™, ..., 0™ ").

Comparing the lea.'ding coefficients on both sides we got

2 : ] .
a == ==
a = oy L€t = ka, ,

(40) D agam = L afemtane 3 aggav,
In particular, we have for each j < % and a suitable f;

;B = 4 ag, gt an— e

icm
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If oj-+-pfj—eap—e, = 0 we get again (38), otherwise
(41) G T Uy = @5+ By 2 oy = 5.
Similarly we have for each j < k and a suitable 3_;
a,a_ffo‘*—i” = :{:a‘g_ia}("'mﬂ‘n‘ﬁ—ﬂ”;
thus either (38) holds or
@it g = a_gp+ i = By < 4.

The lagt inequality together with (41) implies

Ay Oy = q

qpl Oyt ag)e 2 Qg O = Z Bg—a T,

It follows now from (39) and (40) that with a suitable sign and a suitable
integral « .

and

v =av, a.;ﬁail

which gives (38) again.
Levva 11. For any polynomial F(xy, ..., 1) £ 0

LEF (1, .., a) = ELF (3, ..., @) = LF (5, ..., @)

Proof. In view of the definition of the operations K and L it is
enough to prove that for any integral vector [§,..., 8] #= 0 and any
factor Q(yr, ..., i) of J(yi ... yiF—1)

JQ(yi‘l’ () yk_l) = £JQ (1, ey Yi) -
Supposing the contrary we apply Lemma 10 with
v={4r(0)+1) (L<i<h).

Since the conditions gv = 0, B{a) < 2|Q| < 2k(é) imply g =0, it tollows
from that lemma L@ ("™, ..., 2"%) 5= const. On the other hand

LQ(a™, ..., a"%) | L(z»® 1)

and since all factors of 2@ —1 are reciprocal we get a contradiction.

Lmvya 12. For any polynomial F(xzy,...,s:) and any integral vee-
tor m o= [n,, ..., n;] sueh that F{z™, ..., 2"k) 5= 0 there ewist an integral
matriz M = [uy] of degree kb and an integral vector v = [vy, ..., v;] such
that

(42) 0 py <py <exp9h-2¥IT 08 £4),  py =0 (<)

(43) - n=ovM,
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and either
k k ® s
N [a1:ha§
@)  IF([ ], [T o o [ Jot) = const | [ Potwss ... i
=1 LT t=1 F=1%
implies
8
{45) LF(2", ..., a™) = const [ [ LF, (", ..., a%)%
=1
or |Fl| = 3 and there exists an integral vector v such that
{46) Com=0,
where

(47} 0 < h{y)
max {120 (2 |[F*)*7- og [F), 8 |Flexp9-2Fi%) 4 & =2,
XDy (Th | B[~ 1og | F1)) i k>2.

If & =2 and some LF,(2™, o™
com be replaced by

) in (4D} are mllowed to be constants then (47 )

0 < h(r) < 120(2 |F|*¥~log |LF] .

Proof. If | F|| < 2 then by Lemma 11 ¢ = 0, LF (2%, ..., 4% = const
and it suffices to take M = I (the identity matrix), Therefore we agsume
7] = 3.

Let 8 be the set of all integral matrices 4 = [lqg] of degree &
gatisfying

(48) 0 A< Au < 22 (g 2 ),
(49) )

A =0 (g <),
n=ud with integral u.

Integral vectors m such that for all 4¢8 and a suitable integral
vector v,

form & module M, say. By (48) for any 48, |4] divides
expky (271 = i,

where y is Cebyéev’s function. Clearly vectors [u, 0,..., 0], [0, 4, ..., 0],

. [0 0, u] belong to M. It follows from. Lemma B that Mt has a bagis
Bis ey Py Such that
< <py<p (G £F, =0 E<j).

Since ?)y‘ Theorem. 12 of [8], p(a) < 1,04z < o for all @, the matrix
M satisfies (42), since me I it satisfies also (43)

icm
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In order to prove the alternative (45) or (46) and (47) we set

. : &
(B0)  Plysy.ey) = F (Hy"ﬂ o [[o)

'ﬁlcons‘sﬂy HF(zm- 3 9

t=1 o=1

Hi(@q, ..oy o) 2 Hif mﬂ"“‘“

(note that P # 0 since F (w"l ,w""c) 5= 0). It follows

. & 8 - ..
R EIN ) EO R e e
t=1 =]
and by (43)
(52) P, ..., o) = F(a™, ..., a"),
apP
(53) o e 0 = Hyfa o).
(44) implies
(54) JF, (Y ., 45" = £ F, (W15 -3 Yu)  (0>=8).
Assume now that for some distinet p, v < s,
(B5) D(w) = (LFp(w”l, covy @Ky, LR, (2 pores a") # 1.
We consider two cages:
7, F,
Yy Ay, ’
2. for each i: ﬂﬂ: 0
By, By
1. Here H; = 0 and we set G = (I, Hy). It follows from (50) and
{61), that
(” yha, H m) == eOnsh (P —af—y;) - constPHF Yofay eres )y
=1 ?}
ing y; = a™ (1< i<<%) we obtain from (50), (51)

ap .
D) L ([ gt (LP(m”l, ey ), Lm”iﬁ]j; (2™, ..., o Iﬂ)),
i=1

e l ' m-"ik”i)
=T

Acta Arithmetica XVEz 1t
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which in view of (43), (52) and (53) gives

D(x) TG (™, ..., &™) |[LF (2™, ..., &"F), LH; (@™, ..., 2"},
By (55) and Lemma 8 we have (46) with
5|7 [Hy|log | B! |2y i k=2,
=< hn= expae_s (2 | | H | log5 | F'| |Hy| +log Th) i k> 2.

%. Here we have for some 7, j

oF, oF IF.
%, 4 L — 0 ¢ g, X

7 = — = 7
o, ) 7 ’ 0yy ’
thus Hy = 0, H; = 0.
We set G = (H, H;). It follows from (50) and (b1} thab
_61:_% =Fe'F=U, U % 0modl,,
M
(56) ap
ys = FRFE 'V, V # 0modF,,
dy;
hence

[
G ( ” yity ..
i=1

On substituting y; = #™ we obtain from (56)

”mwl) ( 0P

i
which in view of (43) and (b3) gives

H yﬂm) Fo ' l(T, Ty, . o W)

&
D(@) T6([ [aa, . —— (@™ ..., 2", La:"%g;(w"’l
$=i . 7

D(@) LG {a™, ..., 4™) |(LHy (2™, ..., a"%), LH (2™, ..., a:"k)).
By (55) and Lemma 8§ we have {46) with
51 Hy| |Hy|log By 5l |2 En! it &=2
0<h(7)<l [n] | Hy] gllg;!l\ H”;H | it & ’
exXPor—s (2 | HW"159 | B M og B | B | | Hy| +-1og Th) i k>2.

Since for all ¢: |H; < ¥,

k
[H < "Z

it follows in both cases that if % = 2
0 < h{r}) < 20 F|*log 4k (M)? | F|*||F
< 20\F|"log 4 |F|PIF| + 20 |F|2 92712 < 190 (21 7*)2F og 7Y,

or SR (MP\FE|F
Hi vy SER(MY |F] (18],
; .

)

icm
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it k> 2
0 < hir) < eXsz-M\F\logk“’h(M)glFizIIF]]+10g10g5'iFyz+log3)
< exPyio (B | F|1ogk? | Fi2| F| 4 | 7| 9% - 2¥71)
< expye—(Th [ F" " og | 7).
Aggurme, therefore, that for all distinet o, 7 < 5
(57} (LE, (o™, ..., a"%), LF (2™, ..., a")) =1

and let f(#) be any irreducible factor of LF (m“l, ...y @'%), By Lemma 9
either (46)-(47) hold or there exist an integral matrix A4 = [i,] of degree
k, an integral veetor u = [uy, ..., u;] satisfying (48)-(49) apd a poly-
nomial 7 such that

1)

[
(38) ey ooy 20 L ([ [, ..
(59) fl@) == consb LT (2™, ..., &%),

=1
Since 4¢8 and by the cholee of M: p,,...,
integral vectors %, ..., 9, p; = ¥4, thus

1t e we have for some

(60) M = Ml .|
(61) w =06 B "9:1;. .
Set

o ﬁy"“‘)

PR

Hfﬂ

f(#) = const LW (2L, ..., z™).

W (lay oo ) ~JT(H yin .
‘We have by (58) and (60)

W (a5 i) !F(Hw"“
by (59) and (61)

Since f(#) is irreducible, the last two formulae imply in view of (50)
(62) f(#) == const LT (a™, ..., &"F)
and since Jf(z™) ;l;J'f(w) wo have by (54) ¢

( ”LF 2, ...

dsﬂ\l

for some p <8,
< s By (B7)

, )’ ) =1

and bhecause of the arbitrariness of f()
-

(zEm, ..._,'m“k),_ I

FetT

LR, . %) = 1.
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-Since by (50) and (52)
51
LEP(@™, ..., a™) = const H LF, (0™, ..., )%,

o T

it follows that

s
LF(x“I, vy mnk) = const HLFU(mM, - m'ulc)aa_

o=l

Moreover, none of the LF. (2", ..., 2™) (¢ = ¢) is reducible since taking
as f(z) any of its irreducible factors we would obtain from (62) a con-
trpdiction with (57).

It remains to prove that none of LF,(¢™, ..., &™) (¢ < &) is constant
unless (46) holds with

8| F|exp9-2iFi-3 it k=2,
exXDop_s (Th "M Tog || F1)  if & > 9.

This follows from Lemma 10 on taking @ == F,, since (38) implies
(46) with y = gM* and

0 < h(r) < kh(M*)A(8) < B(k— 1" p (M) 2 ||
<Ak 1) PRI LB < 200 (e 1)V T exp O a2 1S,

0 < hiy) <

Remark. A comparison of Lemma 12 with the conjecture from [9]
shows besides the replacement of K by L the two differences:

it is not assumed that I is irreducible,

it is not assumed that », > 0, ..., n; > 0 and it is not asserted that
0,2 0,...,0% >0 (instead it is asserted that M is triangular).

As to the first difference one may note the fact overlooked in [9]
that if ¥ is irreducible all the exponents ¢, in (44) are 1. Indeed, in the
notation of the preceding proof ¢, > 1 implies

i P il
) Fﬁ(ylz'-':yk)l(-P(ylr-"5yl¢=)1 )

0.
dyy 7T O
hence _ .
(JE @y, ..., ), Hy(wy, ..., @), ..., Hye(®yy ...y 1)) 5 1.
Since | M| == 0 it follows by the definition of H; that
or ar
-émw—l, caay .’,U;GM e 1,
whieh for an irreducible F is impossible.

As to thfs second difference it may be noted that the formulation with
the assumption =, =0, «oy 7= 0 and the agsertion o, > 0,...,% =0

(JF(ml, ey Tr), 2y
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(but M not necessarily triangolar and h(M) possibly greater) is also
true its proof however involves the following theorem of Schmidt [10].

If 9 is a sublattice of the integral k-dimensional lattice and M+
consists of all vectors of M with nonnegative coordinates then there exists
a finite subset M, of M™ such that every vector of Wit is & linear combi-
nation of ¥ vectors of MM, with nonuegative integral coefficients.

In the procf of Lemma 5 of [9] the truth of this theorem for & — 2
was established together with a bound for the height of the vectors of 9,
in terms of M. Such a bound in the general case has been found recently
by R. Lee.

Proof of Theorem 2. The theorem is true for & = 1 by Lemma 12.
Aggume that it is troe for polynomials in k—1 variables and congider
F{®y, ..., @). By Lemma 12 either there exist a matrix M and a vector
v with the propertics (42}, (43), (48) or we have ||F|| = 3 and there exists
a vector y satisfying (46), (47). In the former case the theorem holds
with # = &, in the latter case n belongs to the module 9t of integral vec-
tors perpendicular to y. X y=1[0,...,0,%,..., %] With 5 %0,%
containg k—1 linearly independent veectors [1,0,...,0],...,[0,...,1,
Oy ey O, [0y eety Yoty =25 0y ooy 01y oy [0,y 72, 0,000y — 3] and by
Lemma 6 it has a bagis which written in the form of a matrix 4 = [6@-]5_{,]:
satisfies ' =

(63) h(4) < (k—1)h(7),
(64) © rank of 4 =F%—1,
(65) ' n=1d, m integral =0,
Set
Bl 1 k-1

To—
4 3 ih
du [ de, .., { ’gj )

=1 =1 t=1

(66) F' (24, vony 2poy) = JF(
. & -

We have clearly F'(2™, ..., a™%1) £ 0,

(67) )< 2(k—1) | F1*R(4),

and by (8) and (9)

(68) |IF|< max |[F'(6, ..., %2 < max [P, ..., ¥ < ||
Q@ 2T =it

By the inductive assumption there exist an integral matrix N' = [n):

=T
| 2543
and an integral vector © = [vy, ..., o] such that
exp 9 (k— 1) s it k—1=r,
(69) h(N") <] exp(s-27 -4+ 2| Fllog|F'") i hir—1=3,

XD ro1yesr—gy (8 (B— 1) |1 Tog | F')  otherwise;



@
150 A. Bchinzel Im“
{70) rank of N' =r;
{71} | = oN';
- .
LF (n Y, .. ” i1 ) = comt”F Yigoves Yr)@
i=T Ol
implies
S
{72) LEF (a™, ..., a")) = = eonsﬁ”LF,,(w”l, eey ),
o=1
Set
{73) N=Na4a.

It follows from (64) and (70) that A is of rank ». By (65} and (71) n = »N.
By (66) and {73)

7 ([[vm, .
1=1
and by (65) and (66)
JE (2™, L, TR = JB(a™, L 2R,
In view of (72) it remains to estimate A(N). By (69) and (78)
B{N) < (B~ 1)*h(r)h(N").

To proceed further we use the inequalities (47), (67)-(69), |F|
and distingnish four cases:

1.t =2,r =1, Here
MN) < max {1202 | F|")"" og [ F], 8|F|exp9-2"1~ "} expo - 27~
< exp(5-27F 44 2|7 Jog | 21").

¥

» »
-]—[yzg,;a-l) = LF (n v, L., ]'nyi'ilr.)
=1 =1 =1 -

>, (7]

2. k=3,r=1. Here we use the inequality
22 [V log |||+ 5271 + 2 | F|log8 1B < |[F|Pexp (21 | B[~ og | )
and obtain ) |
h(N} < dexp (21 |F" - og||7|) exp (5 2171~ ‘*+2i\1’ [Tog | F'[*)
< exp (22 P og | F)) x
xexp(5- 2741 2 | FPlog8 | P + 2 || F|Pexp (21 |F|*‘”"""llog I71)
< exp (3| Fif*exp (2117 "1~ Nog | F|))) < exp, (24 | TP~ Yog | 7).
8. k—1 =7 >1. Here we use the inequality
(h~1) Zexp® (k— 1)~ < exp 11 (h— 1) < epy, 7202
: < Xy (Th P Tog | BY)

Reducibility of lacunary polynomiols T 151

and obtain
h(N) < (B—1)%expy_o {7k | F|"1" og | F|))- exp 9 (— 1)2H7"S
< expin s (Th [PV log | F} < expy_s (8% B9 log | F]).
4. b—1 > max(r, 2). Here we use the inequality
16%log|| 7| (247 | [* expye..o (Th | F|*F1~ og |70
< (expar o (T | TP og | BT
== 6XDa (€XPyi—g (Th | BV log | 7]}) + log2 | F[7)
< XD (TE | P Yog 171 4 1) |
and obtain
h(N) < (h—1)20xDyre—s (TR E[V IV log | FY]) x
X XD o—r— (a8 (—1) [ ¥ Tog || 7|
< eXPap—q (8% | T og [F]]) x
X @XPe—r—1yghrsy{ 167 10g | T (282 | F[* exp(7h | "™V Log | 7)) #¥)
< eXPgi.s (Th| T og || Fl|+ 1) x
X ©XDge_p_1)(fosr—ay2h—a(TH P Tog |7+ 1)
< eXPfry(tgr—a) (7o | F 1 og | B 4-1)
< XD (e ry(togr—y (8K | T og || )}

Proot of Corollary. Let JF(z) -—ao—l—jafw"f where a; £ 0,
ny; digbinet > 0. Set in Theorem 2

Fy, ooy dy) == auw{wZa,-mf.
i=1
We have
(74) E< |Fl—1 = |fll-1,

By Theorem 2, the number ! of irreducible factors of Lf(s) equals the
number of irreducible factors of

([ ]y, []oie, .., [ v
il feel fra]
{in the notation of the theorer), hence 1 = 0 if ‘Hfli < 2 and I < 27h(N)
otherwise. Thus if & 5 2 we get from (i) and (74)
1 < max {2kexp 9% 2718 ma.x2rexp(k..r)(k+f_s)(3k P Tog | 71)}
< 2expyp_anss{ (1l — 127 og 71}

FP* =2.

< 2eXDpaghy (b 2"FH+2103 ()
<< expyesynr {111+ 2).



152 A. Behinzel

If k=2 we have
1 < max {4exp9-2"% 2exp(5- VP44 9| fiilog2)} < exPyz—syer (1] 42)

except when [f] = 3. However in this case Jf(w) = +o" 2™ 41 hag
at most one irreducible non-reciprocal factor (see [4] or [13]) and the

proot iz complete.
§4. Lenma 13. If EF(x,, @) = LF{x,, %) and [y, n,] =0 then
EF (o™, o)

LF(™, ™) or for each zero & of -

either HKF(x ﬂl 2"y = LW
?

the inequality holds

max {{ |, e[}

— e(£,Q(8) <120 (217" =1log | 7.

Proof. We can assume |F'| =4 since otherwise

KEP(z™, a™) = LF(g™, o')
holds trivially. Set
' I oP
P=F(z,%), @ =JF(@,2), @ = e Gy = (P, ),
1
T; = PG, =67, V = (LF(0y, %), LP(ar, 07)).

By the asgumption KF(xy, 2,) = LF (@, €;), we have

(75)  EKF(xy, @)
T, = Limy, ) V_ly U, = L{xy, m,) v

EF (2™, o)
LEF(z™, 2™)
= Q{1 &) =0, On Ehe other hand, ¢ not being a root
_ . JF (2™, 4™)
of unity ia not a zero of W
I, (8 &) = Ul(f"'l £) =0 or V(& &) = 0.

In the second case (£, £") is a zero of a certain irreducible factor
of V(xy, @), fl2y, ®2) say. Without loss of generality we may a,ssume

df [0@, # 0. By the definition of ¥, it follows that g(e,, #,) = Jf{a7?, v3")
divides ¥ and is prime to f. Set

If & iz a zero of

P(&n, &%)

then ¢ is conjugate to &' thus

and we get from (78) either

P=f¢r, where af>0, fsa)=(fLB)=(g, ) =1

icm
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We have
ar af |9z, oyglozy  Ohjozy
=P
Q=g = B[ p R L 2
P {ak fah
Go=—|—, 1 Iy=——
t foh (aml’ )’ * T (Ohjdoy, by
i) h ohjow
7, —asd 1oL L

00,7 (3hfoay, b) Bwl " (Ghjdm, B) (Oh]omy, B)
Since f(£™, £"1) = g(&™, £™) it follows

Ty(5M, E™) = U,(£™, &%) =0
In any case

(76) T:(&", &%) = Ui(§M, §7)

Let By be the resultant of T;, U; with respect fo 2 and 8y a nonvanishing
minor of Sylvester’s matrix of P, @; divisible by Ry. Sinee

\P| = F], |Q<|F, 1P =0F, Q< 1FF)F
we get from Lemma 5
18l < 217, 185 < (17 |E

Set 2 = Q(&™, £™), By (76) |2| does not exceed the number of distinet
pairs {n, #) satistying T;(n, #) = Ui(#, ) = 0 and by Lemma 4

12 < 1By < 18,

with suitable 4.

(1<4,§<2).

Since ™" e it follows
1Q(&)] < (g, na) | 2].

Moreover By _;(£%) = 0,8, 4(£%) =0 and we get by Lemma 1 with
2, = Q(E)

lngle(&, Q&) < e(€, (&)} < (ny, o) (&, 2)
< (g, 72)20 (2] 10g |2 Log |85
< (1, 12} 20(8;*og 18, 4| Filog (IF| | F)
< (g, M2) 120(2 | TP og || F,

which completes the proof.
Proof of Theorem 3. If |[F|| < 2 then s = 0, KF(2", 2™) = coust
and it suffices to take N = I,. Suppose therefore |[F| 2> 3 and assume first

max {[ny], [#el}

> 120 (2 | BT og | 7).
(15 Np) _
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We apply Lemmata 12 and 13 to polynomial F and vector [n;, n,].
If M = [puy] is the matrix of Lemma 12 then [#y, ny] = [vy, v:] M.

Moreover

8
(77) KR (ymgin, yhegie) 2 const [ [ Fulys, ua)
: =1
implies by Lemma 11 .
IRy g, vioyie) = const [ [ Fo(y, 12),
o=1

where JE(yr%yrh) # (41, Ya) for o<s, exclusively, and by

Lemmas 12

5o

(78) LF(g", 2") = const H

o=1

LR, (2", %),

the polynomials LF,(a™, o) are relatively prime in pairs and either
irreducible or constant.
By Lemma 13, KF(z", ™) = LF (2™, £}, thus
EF, (o™, o) = LF (o™, ©7)  (0<6)

and we get
8

EF (o™, #) = const H KT, (2™, a™)%.
o=1

If noﬁe of LF, (a7, ©*) (o < 8,) i8 constant we set N = M. By (42)
and. (43), (i) and (ii) hold. As to (iii) it remains to prove s, == g, Supposing
contrarywise that

Py, v2) = =JIH(y7% 970)
we obtain

- - — — 11
D2y, ) = JF (2222772, 27"120y1) = £ JF,(2) Hargft, firay ).

On the other hand, by (77), Fy(yy, ys) divides f(yinys?, yi*ys®) where
f(m, @) is 2 certain irreducible factor of K¥(w, %1}, By the asgumption
EF (%, 4,) = LF{w,, z,) we have

(f@r, @), Tflar’, op?) =1 and  (JEEM, M), TP ('™, 7'™) = 1.

On substituting o, = #i225%3, y, = 2722411 we infer that D(zy, Zg)
divides JE(M, My and JF{7'™M, 57™M), thus D(zy, 2s) = const and
gince the substitution is invertible (|M| == 0), Fa{¥yy, ¥,) = const, a con-
tradietion. .

If some LF(z", ™) is constant then we have by Lemma 10

max {0y, |05}

(79) (01, va)

L21F| <4[F|R(M).
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In this case we get r =1,

- fet]
. (71, ©3) ! {2y, 5)

so that (ii) is clearly satisfied. By (42}, (43) and {79)

h(N} < 8|F| k(M) < 8|F|exp(9-271-%),
thus (i) holds. Finally by (78)

80
KR (g™, g0y — congt ” EF, (200, gl
Ge1
where the polynomials KF,(a"V("1"2) g%/1")) are relatively prime in
pairs and irreducible or constant simultaneously with KF, (2™, ™).
This proves (iii).
Asgume now that

max {[n, 7|}

o oy < ROV og | = m
and seb

(81) F' (1) = JI (@M, gralruny
Clearly

[ < 21F|m
and by (8) and (9)

7]l < max [F(6){ < max |F(™, ) < |FIF.
Oy V<027

Let & be a zero of B’ (x). ITf &' is not conjugate to £, then by Lemma 1
e(%, Q(&) <31F'|log|#"|| < 10|F|mlog|[F|.
Tf £~ is conjugate to &, then & is a zero of

_KF (w"'ll ("‘1,”2), mﬂ’ﬂ[ (11,m9) )
LB (g™t m) | el (h1,7))

and by Lemma 13

(£, Q&) <m.
In both cases

(82) . 6(&, Q&) < 600(3 | F")*og* |7,
(83) loge(¢, Q(&)) < 3|1F |F*.
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Put
(84) V= ('”'17 ey maxge(é.gtﬁ))—le(g, Q(E))T)a (%, Ng) = WD,

where the maximum is taken over all zeros & of F(x).
Tt follows like in the proof of Theorem 1 that

.
KF' (a) = const [ [ Fy(w)*
F=1 .
implies
8
(85) EF (@)= const [ [ Fo(a")*
. o=1 .

(sinee v > 0, EF,(2°) = JEF (") = F,(2"). Set

N-—[ %y Ty ]y
B ('3’"1:”2), (g, 1a) )

We get from (80), (82), (83) and (84)

h(N) < mmaxe(s, Q(E))e‘m‘e’)
< exp{31|7| [ F|*+ 900 (2 | F*y471+ | Filog® | 7}
< exp {500 (2 | "I+ F|},
thus (i) holds. (i) is clear from (84). Finally by (81)
KT, a2) = KF' (), EF(™, o) = KF (@)
and (iii) follows from (85).

§5. Lmvma 14, If k> 2,0 # 0 (0 <j<k) are complew numbers
ond M = [py] 18 an integral %ansmgulw matriz of degree Tn then

S{ow 3 a ] %)

=1 el
iz absolutely drreducible.

Proof. We may assume withont loss of generality that |M|>0.

Suppose that there is a factorization

I k .
(oot X a [[ ) = T(a1, oy ) Ul - ),
i=1 |

=1

where T == const, U + const.
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Sefting
: —H #%,  whete [up] = |M|-M ™
A=l
we obtain
P
(86) ° ot X Gy = T' Wy ey 92) U Wy ey 2,
. Pt :
where

k
n fy:‘”‘} # const,

ny;, ) =% const.

e
= JT(Hy;’M, cery
h=1
k
v =Ju([]o", ...

h=1
However (86) is impoessible since as follows from Capelli’s theorem already
&g+ aqyllM' + azylei

is absolutely irreducible (cf. [14]).

Remark. The following generalization of the lemma seems plausible,
I a; # 0 (0 < § < k) are complex numbers and the rank of an infegral
matrix [yw]@ exceeds (B-+1 ]2 then

y a. )
IS f]#)
is absolutely irreducible.

Proof of Theorem 4, Set in Lemmsa 12:

VU P ES an‘l"za’fmi
iz1

and let M be the matrix of that lemma. Since by Lemma 14

R
TE([ vt H )
i=1

is irreducible, we conclude that either LF(«™,...,2"%) is irreducible

or constant or yn = 0 with 7 o
: (120(2 1PN og |7 it k=2,
0 < h(T) < , F—1 : N
exPor_s (Th| PP g [P i &> 2.

If however LF (™, .

from Lemma 10. Taking into account that [F1 =2, 1P| =
the theorem.

., &™) is constant we obfain the relatlon m =0

Za.,, we get
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Proof of Theorem 5. It follows from Theorem. 4 that L({ea"™-+
+b2™+¢) is irreducible nnless X

I0AX {0 MY osiate b 5100 (g2 4 B o).
{1, m)

On the other hand, by Lemma 13 (with F(xy, 2,) =.am1—[- by -+ o)

K (ag" -+ ba™ + ¢) = L{aa" - ba™ 4 o)
unless '

: i

max{n, M} g g2t (g7 4 By )

(ny ) S
L 2 g0 (g L BE ).

This proves the first part of the theorem. To obtain the second part we
apply Theorem 3 with F(,, #,) = awxy-+bay+o. In view of Lemma 14
and the reducibility of K ({ax"-ba™--¢), the matrix N is of rank 1 and
we have

BV) < exp (300 (2 1B |17} < exp(2He 1O (62 1 - ).
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Note added in proof. The original result of [1] concerning an algebraie
integer a of degree = is

Jo] = 1+ (40n2logn)—1
This implies the inequality

{n>1).

Ja] > 14 (40ntlogn*—1)-1

used in the proof of Lemma 1 gince 40nlog (n*/m) > 1 for n > 1. For eompleteness
we list below the medifications needed in [3] in order to obfain the inequality

[a] > 14 (Bn—1)-1
used in the same proof.
Inequality {2.4) should he replaced by

1l <pag 1+

n—1

(this is permissible since g = 5n/(5n— 1) satisfies (2.1)). The right hand side of (3.2)
should be replaced by (de'/%)" (this is permissible since i/ < ¢1/¢ for all £ > 0). Ine-
quality (4.4) and the preceeding formula ghonld be replaced by

2 10n—1
5x(1 ) —l =, ljeyn
T Gu—pp <@l
The two inequalities following (4.5) should be replaced by
1 n{n—1)
pMn—1) o (1 + ) < s,
on—1
H;[Hz < (ndelf"'f'zl's)“ <1 (ﬂ > 2) .

For n = 2 the lemma is true because then @ = V2.

Corrigenda to [9}

p- 1 line 9. For “f(m)” read “fiz) s= 0”.

P. 3 lines 12 and 11 should read “and their totally complex quadratic extensions
(in the latter case the condition JF (g, 2) # L JF (L, 2~ 1) should be replaced
by JF(y, z) + constJF (y~1, 2~ 2)",

P. 10 line 13. For “F(z)” tead “F{x) = 07.

P- 11 lines 7-8. For “Gy,2), H{y, )" tead “G(y,2) 0, H{y, 2y 3 07,

p. 23 formula (77). For “EF{z", )" read “KF (a", ™",

Regu par la Rédaction le 30. 1. 1969
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Approximate functional equatimi _
for Hecke’s I-functions of quadratic field

by

E. Focrns (Riga).

Introduction

L. The aim of the present paper is to prove an approximate functional
equation for the Hecke’s L-functions Z(s, ¥) of any quadratic field K.
That equation being merely an auxiliary result(}) we will eonfine our-
selves to proving it merely on the line ¢ = § in the plane of complex
numbers & == o+ it. Having such a very limited purpose in proving the
result, we shall not give here a full account of the existing papers about
approximate funectional equations in general, since none of them would
do just as well for the applications which we have in view(®).

In 1961 Linnik ([10], § 40) proved a shortened funetional equation
for the Diriehlet L-function L(s, ) with a primitive character ymodD
on the line o = {+-4¢ with { <1 and D unbounded(®). Using the incom-
plete I'funetion Lavrik [8] proved the analogous result for all s in the
strip 0 < o< 1. He gave [9] also the corresponding resnlt for Hecke's
L-functions with Grossencharakter of imaginary quadratic field. But
if the functional equation contains a higher power of Ifunction than
the firgt one, his method does not give satisfactory results, since then
the corresponding residue sums do not represent familiar funetions,

In the present paper(*) we shall prove the following

() Which will be used in a later paper for the proof of & sieve theorem of Bom-
bieri’s type (see [1], Theorem 4) but for the et of primes which are representable
by a given quadratic form.

(®) The result of Lavrik [9] (for example) concernz merely the imaginary qua-
dratic field and the simplest case (out of three possible cases) in the real guadratic
field {see further §§ 5 and 6).

(3) With the restriction ¢ = 1/2, % < 1 Linnik’s method is applicable to Hecke's
L-functions of any algebraic field. See further §11.

. (%) A short deseription of the method and results of the present paper has been
given in [4]. ' '
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