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1. Introduction. Tt was known to Lagrange [3] that the sequence
of Fibonacel numbers, ie., ty=0, 2%, =1, Uy g = Up 1+ %, TOT
n=0,1,2,..., ig periodic modulo m for every infeger m > 1. Let M
be the set of integers greater than one and for me M, let m({m) denote
the period of the Fibonacci sequence modulo m. Also, let m(w(m)} = x*(m)
and #{ax"(m)) = o™ {m} for » = 2,3, ... The two main results of this
paper are:

Frxep PomwT TuROREM. For me M, m(m) =m if ond only if
m = (24)5*' for some positive integer A.

IterATION THREOREM. For cach me M, there ewisis a least inleger
w such that a°t*(m) = 7°(m).

These theorems imply the existence of two new arithmetical functions,
namely i and . The three related funetions =, 4, and « are called the
Pisano period, the Leonardo logarithm, and the Fibonacci frequency,
respectively, where n®(m) = 24(5)".

2. Known results. Robinson [4] hag summarized the known results
concerning the periodicity of the Fibonacel numbers modulo # and has
employed elementary matrix algebra to give new proofs of most of them.
Also, he offers an extensive bibliography. Following his terminology, we
need the following:

DerINITION 2.1. For me M, the least integer n such that (uu, #n 1)
= (0, 1) (modm) is denoted by =(m) and is called the (Pisano} period
of m.

* Research spomsored in part by the Ouk Ridge National Laboratory operated
by the Union Carbide Corporation under contract with the U.S. Atomic Energy
Commission. : ’

*% Pregented January 23, 1968, to the American Mathematical Society meeting
in San Francisco, California, under the title: The Pisanoe period, Fibonaeci frequency
and Leonarde legarithm -of the positive integers.
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DEFINITION 2.2. For me M, the least integer n such that (¥, y.,.,)
= ¢(0, 1) {modm) for some positive integer o is denoted by «(m) and iy
called the restricted period of m.

DEFINITION 2.3, If (%), Yapmr) = olm) (0, 1) (mod ), then o(m)
is called the multiplier of m.

DeriviTION 2.4, For meM, the order of o(m) in Z,,, the ring of
integers modulo m, is denoted by #(m) and is called the exzponent of o{m).

For a,bed, [a, b] denotes the least common multiple, {a,b) the
greatest common divisor, and (e/b) the Legendre symbol of ¢ and b.
That portion of Robingon’s sumrnary which is applicable here are the
following fundamental theorems.

" THROREM 2.1. (1) m|u, if end only if a{m)|n.
(ii} m|u, and 0 |(p o —1) if and only if m(m)|n.
TarorEM 2.2. If 9 is a prime,

(i) a(p)|(p—(8/p)

(ii) if p = =1(modB), then w(p)|(p—1),
(ili) if p = +2(mod5), then =(p)|2(p-+1).
TeroreEM 2.3. (i) If m > 2, then

m(m) = a(m)p(m) = (2, B(m))[(2, a{m)].
(il) For each m, neM,
a([m, n]) = [a(m), a(n)].
(i) For each m, ne M,
a([m, n]) = [n(m), m(n)].

THEOREM 2.4. If p is an odd prime, then there ewists a positive integer
2 such that for amy k>1, a(p*) = a(p)p” and n(p") = n(p)p", where
v = max (0, k—e).

An analysis involving the so-called Fibonacci matrix I = (0 1)

11
is central to Robinson’s development. Notice that

o (unwl U, )
Ui Ung1

The matrix ¥ along with some general theorems by Bollman [1] are
employed here fo provide new proofs of Theorems 2.2 and 2.4.

3. Some new proofs. The following is a new proof of parts (ii) and
- (ifi} of Theorem 2.2.
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(ii) The minimal polynomial of the Fibonacci matrix F is m(x)
= g?—ax-1, and the discriminant of m(#) is 5. It is kunown that p
= 4-1(modp) implies 5 is a square and thus

m () = (6—2 " (1+VB)){s—27" (1—V5)),

where each of the zeros of m(z) has order a divisor of p—1 in the ranltipli-
cative group of GF(p). Hence, Bollman’s Theorem 4.1 [1] requires F'
to have order a divisor of p—1 in GF(p) if p = L1 (mod5).

(iii) Tf p = 4-2(mod?5), then 5 is not a square in GF{p). Thus, m(w}
is irreducible in the polynomial ring GF{p;«]. Then the splitting field
of m(z) is GF(p?), which is isomorphic to GF[p; =] flm (@), where {m ()}
is the cyclic ideal generated by m(xz) in G¥[p; #]. Therefore, t and 1—%,
the isomorphie copies in GF (p?) of the cosets -+ (m(a)} and 1—az+(m(z)),
respectively, are roots of m(z) in the splitting field GF (p?). Now #* = 1+

and
P+l

#00 = (Pt = ST = L
0

since GF(p?) has characteristic p. Moreover, it can be shown by induction
that t" = u,t+u,_,. Hence,

£OD = 1t Uyt U -t T Uy

It is shown in [5] that #, = —1 and ¥, = 0(modp) if p = 4.2 (modb).
Hence £#P+Y — 1 in GF(p?). Furthermore, (1—p)XP+D) = (—¢7!)*P+d
= 1 in G¥(p?). Hence, Bollman’s Theorem 4.1 applies and =(p)|2(p+1).

This proof is offered as an algebraic alternative to Robinson’s graph
theoretic proof of Theorem 2.2,

CoROLLARY 3.1. If ¢ 48 a prime and g|=(p), where p > 5, then q << p.

Theorem 2.4 is a corollary to Bollman’s Theorem 5.2. To prove
Theorem 2.4, let T = F*® in Bollman’s Theorem 5.2 and potice that
f exists for each prime p as the exponent of p in the tactorization of .y,
into positive integral powers of distinct primes.

4. The Leonardo logarithm and the Fibonacci frequency. The results
of the previous sections are needed to prove the main results of this paper,
the two theorems stated in the introduction. Parts of these proofs rely
on a knowledge of values of =(m) for specific arguments. These valnes
are to be found in the accompanying table. Also, it is known. [5] that
a(p*) = m(p)p™* for all & > 1 and all primes p < 10000, and this fact
is implicit in gome of the following.

LeMMA 4.1, If m = (24)8"%, where 1 =1,2,3,..., then

w(m) = m.



108 J. D, Pulton and W. L. Morris

Proof. If 1 >1, then

m{(24)5*Y) = [#(2%), (3), w(5*"Y)]
go that
x((24)547Y) = [(3)2% 2%, (295771 = (24)5%1,
Also,
m(24) = 24,

Tevma 4.2, If w(m) = m, then m = (24)5*" for some 7 > 0.

Proof. Let m = 28%5%p0pk | p¥ be the factorization of m
a8 a product of integral powers of distinet primes with the B, 0,
t=1,2,3, with the 8; > 0,7 =1,2,...,r, and with 5 < p, < ... < p,.
As in Theorem 2.4, let y; == max (0, ;&) and m(p") = n(p)p*. If each
fiz1 for ¢=1,2,3, then m =m(m) = [(8)2"77, (2*)37~1, (2%)5hH-1,
m{p1) Pl -y w(p)PY]. Again by Theorem 2.4, 0, >y, if and only il
0, %0 and by Corollary 8.1, p=(p;) for any 7-=1,2,...,r. Thust
b, = 0, and it follows (by an inductive argument) that 0, = 0 for al,
i=1,2,...,7 Hence, m = 273%25% go that §, = 3 and B, = 1. There-
fore, m = (24)5™. Clearly, nfm) = m if some or all §; = 0.

The Fixed Point Theorem follows from Lemmas 4.1 and 4.2.

LuvmA 4.3. For each me M, 24|n” (m) for all ¥ > 5.

Froof. If m > 2, then by Theorem 2.3 (i), 2|=(m), and since
w(2) = 3, 3|=*(m). But =(3) = 2° so that 2°|x*(m). Thus, =(2*) =
= (3)2%|2*(m). Finally, #(24) = 24 so that 24 |n’(m). By the same
argument if 2[m, then 24 |x*(m). The assertion follows by a simple in-
ductive argument.

LeMumA 4.4, If m = 2713%5% where 0, > 3,0, =1, and 0,20, then
Jor some N, 7" (m) = (24)5%. ’

Proof. If 6, = 0 then m(m) = [(3)""7%, (9°)8%~'] = 2713%, +where
3<f,< 6, and where 1< B, < 6;. Thus, for some N,z (m) = 24.
If 6 > 0, then a(m) = 213%5% gince =(5%) = 2°5%. Thus, for some ¥
w” (m) = (24)3%, ’ 7

Proof of the Iferation Theorem. By Lemma 4.3, we can
assume, without loss of generality, that m = 213%5%plipl . ph,
where each p; is a prime, where 5 < p, < ... < Pry amd where 0, > 3,
0,21, 0,2 0,6 21 By Theorem 2.4, Theorem 2.3 (iit), and (}olroifla,rwr
8.1, m(m) =287 phplt .. pl, where 0< 5, < p,. Thus, for each
iteration of = the power of the largest prime greater than five which
divides m is strictly decreaging. Hence, for some N, a” (m) = 23”25
where v, 28,9, 1,9, 0. By Lemms 4.4, the Iteration Theorerr;
follows,

Ag 2 final remark, we note that it follows by a very simple argument
that e iz unbounded on M. To see that, let » be a positive integer and
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fet m = 2"*. One can show that @{m) = n-+1. It is clear that 1 is un-

Pbounded on M.

5. A table. The following is a brief table of the funections diseussed
in this paper. A more extensive table is to be found in [2].

TABLE 5.1. Arithmetical funeti

on values for m(m), f{m), a(m), o (m), and i{m),
m=2,3, ..., 40.

e 7 () ] Bm) | “a(m) | {m) { A(m)
2 3 1 3 4 1
3 8 2 4 3 1
4 6 1 6 2 1
5 20 4 5 3 2
6 24 2 12 1 1
7 16 2 8 2 1
8 12 2 6 2 1
9 24 2 12 1 1
10 60 4 15 2 2
11 10 1 10 3 2
12 24 ] 12 1 1
13 28 4 7 3 1
14 48 2 24 - 1
15 40 2 20 3 2
16 24 2 12 1 1
17 36 4 9 2 1
( 18 24 2 12 1 1
‘ 19 18 1 18 2 1
20 60 2 30 2 2
21 18 2 8 2 1
22 30 1 30 2 2
23 48 2 24 2 1
24 24 2 12 1 1
25 100 4 25 3 3
26 84 4 21 3 1
; 27 72 2 36 2 1
) 28 48 2 24 2 1
3 20 14 1 14 3 1
30 120 2 60 1 2
31 30 1 30 2 2
] 32 48 2 24 2 1
33 40 2 20 3 92
34 36 4 9 2 1
35 80 2 40 2 2
36 24 2 12 1 1
37 76 4 19 3 1
38 18 1 18 2 1
39 56 2 28 3 1
40 60 2 30 2 9
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§ 1. Einleitung. BEs bezeichne

tTc(Q) =32 Z’ 1

mk_nk—p

mit nicht-negativen ganzen Zahlen m, n unter der Bedingung m > n = 0.
Die natiirliche Zahl & werde stets als grofler oder gleich 3 voransgesetzt.

" Der Strich am Sommenzeichen bedeute, dad das Glied » = 0 den Faktor
% erhiilt. Untersucht werden soll die Funktion

Tp(zy = Z te(0)

o

auf ihr Verhalten fir groBe ». Ohne Schwierigkeiten kann man

™ (l) .
2 E-1 '];
Ly = ——— e (o)) o
- -
chosi F(E)

beweisen. s soll gezeigh werden, daB man die Abschitzung des Restes
zu O (e %) verbessern kann. Eine weitere Verbesserung der Abschit-
zung ist nieht moglich. Das wird sich als selbstverstindlich erweisen,
da gezeigt wird, daB sich in erster Niherung der Rest durch eine Funktion
mit genau der genannten CGréBenordnung darstellen 14Gt. Hs erhebt sich
damit das Problem nach der GriéBenordnung der zweiten Néherung. Die
PBrgebnisse sind in den Sétzen 1 und 2 dargestellt. Hs soll noch daranf
hingewiesen werden, daB sich unmittelbare Parallelen zu den Ergeb-
nissen iiber

Rialw) =4 D1

nk. L mi s
7m0

(= 0, m = 0 erhalten den Faktor }), dargestellt in [4], anbieten.



