Corrigendum to the papers
"On two theorems of Gelfond and some of their applications"
and "On primitive prime factors of Lehmer numbers III"

by

A. SCHINZEL (Warszawa)

vol. 13: p. 197. Lemma 8. The assumption should be added that \(\eta_0/\eta \) is real,

- p. 216 line -5 for \(\sigma \neq 0 \) read \(\sigma \geq 0 \);
- vol. 15: p. 56 line 7 for \(\chi(1) \) read \(\chi(-1) \);
- p. 61 line -10 for \(\Phi^{(a+\eta)}(\chi\zeta_1, \sqrt{a}, V\beta) \)
 read \(\Phi^{(a+\eta)}(\chi\zeta_1; \sqrt{a}, V\beta) \);
- line -9 for \((\sqrt{a} \pm \zeta_\lambda \sqrt{\beta}) \) read \((\sqrt{a} \pm \zeta_\lambda \sqrt{\beta})^2 \);
- line -6 for \((\sqrt{a} - \zeta_\lambda \sqrt{\beta}) \) read \((\sqrt{a} - \zeta_\lambda \sqrt{\beta})^2 \);
- p. 63 line 4 for \(\tau(\chi^\lambda) \) read \(\tau(\chi^\lambda)^2 \);
- line 9 for \(\tau(\chi_0^\lambda) \) read \(\tau(\chi_0^\lambda)^2 \);
- line 13 for \(\tau(\chi_0^\lambda) \) read \(\tau(\chi_0^\lambda)^2 \).
Corrigendum to the paper
"On ratio sets of sets of natural numbers"
by
T. Šalát (Bratislava)

Page 278, lines 5–8 read as follows:

Let $A = \bigcup_{k=1}^{\infty} A_k$, where

$$A_k = \{2^{k+1} + 1, 2^{k+1} + 2, \ldots, 2^k + 2^{k-1}\} \quad (k = 1, 2, \ldots).$$

It is easy to see that $\delta_1(A) = \frac{1}{3}$, $\delta_2(A) = \frac{1}{2}$ and it can easily be proved that $(\frac{1}{3}, \frac{1}{2}) \cap R(A) = \emptyset$.
