On sets characterizing number-theoretical functions (II)

(The set of "prime plus one" is a set of quasi-uniqueness)

by

I. KÁTAI (Budapest)

1. In [2] it was proved that the set \(P = \{ p+1 \} \), \(p \) runs over the primes, is a set of quasi-uniqueness, under the assumption of the validity of the Riemann–Piltz conjecture. Here we prove this assertion without any improved hypothesis.

\textbf{Theorem.} There is a numerical constant \(K \) with the following property:

If \(f(n) \) is a completely additive number-theoretical function such that \(f(p) = 0 \) for \(p \leq K \) and \(f(p+1) = 0 \) for all primes \(p \) then \(f(n) = 0 \) identically.

The proof is based on Bombieri's result in the theory of the large sieve.

2. Notation and lemmas. The letters \(p, p_1, p_2, \ldots; q, q_1, q_2, \ldots; q' \) stand for prime numbers. Let \(c, c_1, \ldots \) denote numerical positive constants, \(e, e_1, \ldots, e', \delta, \delta' \) sufficiently small positive constants, not necessarily the same at every occurrence. \(C(...) \) denote constants which depend only on the values stated in the bracket.

Let

\[\pi(x, k, l) = \sum_{p \leq x, k \mid p} 1. \]

For the proof we need some lemmas.

\textbf{Lemma 1.} Let \(N(x, k) \) denote the number of the couples of primes satisfying the conditions \(p+1 = kq, p \leq x \). Then

\[(1) \quad N(x, k) < c \frac{x}{\varphi(h) \log^2 x} \quad (2 \leq k < x). \]

For the proof see [3], p. 51, Theorem 4.6.

\textbf{Lemma 2 [3].} Let \(\delta > 0 \). Then for \(k \leq n^{-4} \), \(l, k = 1 \)

\[(2) \quad \pi(x, k, l) < C(\delta) \frac{x}{\varphi(k) \log^2 x}. \]
Lemma 3. Let \(x = Q^2 (\log Q)^2, B \geq 4A + 40, A, B \) be arbitrary positive constants. Then

\[
\sum_{q \leq Q} \pi(x, q, -1) \frac{\ln x}{q - 1} \leq C(A, B) \frac{x}{(\log Q)^2} \quad (Q \to \infty).
\]

This is an immediate consequence of Bombieri's theorem ([1], Theorem 2).

3. The proof of the Theorem. Let \(Q_0 \) be a large constant, \(Q_1 = Q_0, Q_i, I_i = [Q_{i-1}, Q_i] \) \((i \geq 1)\). Let \(J_i \) be a set of prime numbers in the interval \(I_i \) defined by induction as follows. \(J_0 \) is the empty set. Assume that \(J_0, \ldots, J_{m-1} \) are defined. Then \(J_m \) is the set of those primes \(q \in I_m \) for which there exist no \(k \) and \(p \) satisfying the following condition:

(A) \(p + 1 = kq \), the prime factors of \(k \) are all smaller than \(Q_{m-1} \) and do not belong to the set \(\bigcup_{i=0}^{m-1} J_i \).

Let \(B_l \) be the number of elements of \(J_l \).

First we prove the following

Lemma 4. For sufficiently large \(Q_0 \) we have

\[
B_l < \frac{Q_l}{(\log Q_l)^3} \quad (l = 0, 1, \ldots).
\]

Proof. Since \(J_0 \) is an empty set, (4) holds for \(l = 0 \). Suppose that (4) holds for \(l = 0, \ldots, m-1 \). Applying Lemma 3 by choosing \(Q = Q_{m-1}, A = 4, B = 100, x = Q_{m-1}^2 (\log Q_{m-1})^{150} \) we have

\[
\sum_{q \leq Q_{m-1}} \pi(x, q, -1) \frac{\ln x}{q - 1} \leq C \frac{x}{(\log Q_m)^2}.
\]

Hence it follows that

\[
\pi(x, q, -1) > \frac{3x}{4 Q_m}\frac{1}{\log x}
\]

for all \(q \in I_m \) except at most \(Q_m^3 (\log Q_m)^2 \).

Now we prove that the validity of (6) implies that \(q \notin J_m \). Indeed, let \(\Pi(x, q) \) denote the number of those \(p \leq x \) for which (A) holds. Then

\[
\Pi(x, q) \geq \pi(x, q, -1) - \Sigma_1 - \Sigma_2,
\]

where \(\Sigma_1 \) denote the number of those primes \(p \leq x \) for which \(p + 1 = kq \) and \(k \) has at least one prime factor not exceeding \(Q_{m-1}^2 \), which belongs to \(\bigcup_{i=0}^{m-1} J_i \). \(\Sigma_2 \) denotes the number of those \(p \leq x \) for which, in \(p + 1 = kq \), \(k \) has a prime factor greater than \(Q_{m-1}^2 \).

If \(p \) occurs in \(\Sigma_2 \), then \(p + 1 \) has the form \(p + 1 = jq \), where \(j \leq \varphi(q) \leq \varphi(Q_{m-1}^2) \leq A^2 \), say. Consequently by (1) we have

\[
\sum_{q \leq Q_{m-1}} \frac{1}{q \log q} \leq C(A, B) \frac{x}{(\log Q_{m-1})^2} \sum_{q \leq Q_{m-1}} \frac{1}{q \log q} \leq C(A, B) \frac{x}{(\log Q_{m-1})^2} < \frac{\varphi(Q_{m-1}^2)}{\varphi(Q_{m-1}^2) - 1} < \frac{1}{\log Q_{m-1}}.
\]

Choosing \(\delta < s/\varphi(Q_{m-1}^2) \) we obtain

\[
\Sigma_2 < e^{-\frac{x}{\log x}}.
\]

Furthermore we have

\[
\Sigma_1 \leq \sum_{q \leq Q_{m-1}} \pi(x, q, -1).
\]

By Lemma 2 we deduce

\[
\Sigma_1 \leq 2C(B) \frac{x}{\log x} \sum_{q \leq Q_{m-1}} \frac{1}{(\log Q_{m-1} + 1)^2} < e^{-\frac{x}{\log x}}.
\]

Consequently choosing a small \(\delta \) and after this a large \(Q_0 \), we have

\[
\Sigma_1 + \Sigma_2 < \frac{1}{4} \frac{x}{\log x}.
\]

Hence we infer that (6) implies \(\Pi(x, q, -1) > 0 \), i.e. that \(q \notin J_m \).

Thus (4) holds for \(l = m \). This completes the proof of Lemma 4.

Now we begin the proof of the Theorem. Let \(f(x) \) be a completely additive function satisfying the conditions stated in the Theorem with \(K > Q_0 \), where \(Q_0 \) is such a large constant as is implied by Lemma 4.

First we prove that \(f(q) = 0 \) for all \(q \notin \bigcup_{m=0}^{\infty} J_m \). Indeed, this holds for \(q \notin J_0 \). Assume that

\[
f(q) = 0 \quad \text{for all } q \notin J_l, q \notin J_i \quad \text{for } j \leq m-1.
\]

Let \(q \in I_m, q \notin J_m \). Then there exists a \(p \) such that \(p + 1 = kq \) for which \(k = p_1^{a_1} \cdots p_r^{a_r}, p_1 \leq Q_{m-1}, p_i \in J_i \) \((i = 1, \ldots, r)\). Hence \(f(k) = 0 \) and thus \(0 = f(p + 1) = f(k) + f(q) = f(q) \) follows. This proves (11) for \(j = m \).
Finally we prove that \(f(q) = 0 \) for all \(q \in \mathcal{S}_1 \) if \(Q_q \) is sufficiently large.

Let \(P(y, q) \) denote the number of those \(p \leq y \) for which \(p + 1 = kq \) and the prime factors of \(k \) do not belong to \(\mathcal{S} \). We prove that \(P(y, q) > 0 \) if \(y \) is large, whence \(f(q) = 0 \) follows.

Indeed,

\[
P(y, q) \gg \pi(y, q, -1) - \sum_{q' < q} \pi(y, q', -1).
\]

For large \(y \) we have

\[
\pi(y, q, -1) > \frac{1}{2} \frac{y}{q \log y}.
\]

Furthermore by Lemma 2

\[
\sum_{q \in \mathcal{S}} \pi(y, q, -1) \ll \frac{C y}{q \log y} \sum_{q < y} \frac{1}{q} + \frac{y}{q} \sum_{q' < q} \frac{1}{q'}.
\]

Since \(\sum 1/q' < \varepsilon \) with large \(Q_q \) and

\[
\sum_{q' \in \mathcal{S}} \frac{1}{q'} \ll \log y \max_{q \in \mathcal{S}} \sum_{q' < q} \frac{1}{q'} \ll \frac{1}{\log^2 y},
\]

we have

\[
\sum_{q' \in \mathcal{S}} \frac{1}{q' y} \ll \frac{y}{q \log y},
\]

Hence, by (12), (13), \(P(y, q) > 0 \) follows. This completes the proof of the Theorem.

4. The constant \(K \) in the Theorem is non-effective since \(C(A, B) \) in Lemma 3 is non-effective. It would be very interesting to prove the Theorem with effective \(K \) since this would give a possibility to decide with numerical calculation whether \(\mathcal{S}_1 \) is a set of uniqueness or not.

References

Résumé par la Réduction le 15. 7. 1968

A method in diophantine approximation (III)

by

CHARLES F. OSGOOD (Washington, D. C.)

Introduction. We begin by giving the hypotheses and statement of a result, called Proposition I below, which was stated and proved in [2] using slightly different notation.

Let \(D \) denote differentiation with respect to the complex variable \(z \); let \(l \) be an integer greater than one; let each \(g_l(z) \) for \(1 \leq j \leq l \) be a polynomial of degree less than \(j \) with coefficients in the Gaussian field. Suppose that we are in a simply connected region \(\tilde{D} \) where \(a(z) \) is analytic and that \(m_1(z), \ldots, m_n(z) \) are \(n \geq 1 \) solutions of

\[
m(z) = \sum_{j=1}^{l} g_l(z) D^{j} m(z) + a(z)
\]

which are analytic in some open disk \(N \subset \tilde{D} \) about \(z_0 \) on which \(g_l(z) \) does not vanish. Suppose \(z_1 \) belongs to \(N \) and \(z_1 \) is a Gaussian rational. Let \(\mathscr{G} \) be a differentiable path in \(\tilde{D} \) with endpoints at \(z_0 \) which does not pass through any of the zeros of \(g_l(z) \). Suppose that \(\tilde{m}_1(z) \neq m_1(z), \ldots, \tilde{m}_n(z) \neq m_n(z) \) are the function elements, analytic on \(N \), obtained by extending \(m_1(z), \ldots, m_n(z) \), respectively, along \(\mathscr{G} \) and back to \(z_0 \) and that \(\tilde{m}_1(z) - m_1(z), \ldots, \tilde{m}_n(z) - m_n(z) \) are linearly independent over the complex numbers. Let

\[
d = \max_{j} \left\{ \frac{\deg g_j(z)}{\deg g_l(z)} \right\}.
\]

Let \(\|a\| \), for any complex number \(a \), denote the distance from \(a \) to the nearest Gaussian integer. Let \((A_1, \ldots, A_n) \) denote any nonzero element of the Cartesian product of the Gaussian integers with themselves \(n \) times.

This paper was written while the author was on a postdoctoral Research Associateship at the National Bureau of Standards, Washington, D. C. (This award is given by the National Bureau of Standards in association with the National Academy of Sciences and the National Research Council.)