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Arithmetical properties of value sets of polynomials

by
M. FrmEDp (Princeton, N. J.)

Introduction. The extent to which the value sets of a polynomial
determine the polynomial depends on many things. Most important of
these are the domain and range of the polynomial. Little can be discovered
about & polynomial in Z[2] by knowing its value set mod p for only one
rational prime p. The object of this paper is to show that if we let p run
over almost all rational primes p (i.e. for all but a finite number of primes
p — henceforth abbreviated a.a.p.), the value sets mod p of a polynomial
yield significant information about the nature of the polynomial. For
h(w)eZ[x] let V,(h) denote those cosets mod p taken on by k(z). Prima-
rily we devote our attention to:

THE POLYNO]\/{IAL CONJECTURE. Let h(w), gi(%), ..., () eZ[2], and

assume Vy(h) = (UVp(g:) for a.a.p. Then there ewists an index i, and
=1

a polynomial r(x)<Q[z] (where Q is the algebraic closure of Q) such that
h(z) = gi(r(@)).

Section I is the technical key to the results relating to the polynomial
conjecture, which are found in Section II. In Section I we assume that
h(®), g1(®), ..., g1(«) eZ[2] are all irreducible, and that the set of primes p
for which (z) = 0 mod p has a solution is (with finitely many excep-
tions) contained in the set of primes p for which there exists an index iy
such that gip(w) = 0mod p has a solution. We dignify this statement
with the title, local polynomial hypothesis so that we may refer to it in
Section I. We now describe those instances in which we have been able
to-resolve the polynomial conjecture,

CAsE A. Tf, in the polynomial conjecture, we assume % is linear,
then the hypothesis is reduced to the condition

l
UVe(g) ={0,1,...,p—1} for a.a.p.
1

The conclusion that there exists an index ¢ such that g;(#) is linear is
an immediate consequence of Corollary 2, which states, under the hypo-
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thesis of the polynomial conjecture, that there exists an index 4 such
that degg; divides degh.

CAase B. For the purpose of this work a polynomial A(z)eQ[x] will
be called eyclic if h(z) = a(z—b)"+ ¢ for some a, b, ceQ. The terminology
"is suggested by the fact that the galois group of the splitting field of
h(x)— A (the group of monodromy) over Q (1) (where 1 is an indeterminate)
is cyclic. We show in Theorem 3 that the polynomial conjecture is true
if the polynomials ¢:(x),7 =1, ...,1, are all cyclic.

Case C. In Theorem 4 we show that the polynomial conjecture is
true in the case where I = 1 and g,(2) == g() is of prime degree, or if the
group of monodromy of g(®)—A1 over Q(4) is the symmetric group or
alternating group (as a permutation group acting on the zeros of g(x)— 1),
or if g(x) is a composite of polynomials of this type.

We say that g(z) = s,(s;:(...(8:(2)) 18 a prime decomposition of ¢(x)
if each of the s;’s cannot be written as a composite of polynomials of
strictly smaller degree. Even if we specialize the hypothesis of the poly-
nomial conjecture to assume V,(h) = V,(g) for a.a.p., we are not able
to show the expected conclusion (i.e. that r(x) is linear). However, we
are able to conclude (Theorem 5) that each prime decomposition of k()
corresponds to a prime decomposition of g(x) where the degrees of the
prime components of () are the same, in the given order, as the degrees
of the prime components in the respective decomposition of g(w).

We include in Section ITI an application to the Hilbert irredueibility
theorem. There we give a condition on a polynomial in two variables
insuring that there exists an arithmetic progression of integers with
prime modulus such that specialization of one of the variables from the
integers of this set leaves the polynomial irreducible in one variable

Additional comments. The hypothesis V,(h) = V,(¢g) for a.a.p. is
seen to imply that either g is linear, or else the polynomial & (w)— g(y)
is reducible in Z[wz,y]. We outline this. By Gauss’ lemama a factorization
of k(z)— g(y) may be assumed to be in Z [z, y]. T h(z)— g (y) is irreducible,
the Hilbert irreduncibility theorem would imply that there exists an
integer 2,eZ such that k(z,)—g(y) is irreducible (and non-linear by
assumption). From algebraic number theory we know that a non-linear
polynomial which is irreducible over the rationals has no zero mod P
for infinitely many primes p. This contradicts Vp(h) < V,(g) for a.a.p.
In light of this we make a definition. 3

Let h(z), g(2) be elements of L[x] where L is any field. If there exist
polynomials F,hy,g, in L[2] such that degF >1, and IF(hy) = h,
F(g,) =g, we say that h, g are a composite pair over L. If L = C, we
say that k,g are a composite pair. For a time it was conjectured that
h(w)—g(y) reducible in C[z, y] implies that %, g are a composite pair.

i=m®
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The truth of this would obviously give some information toward the
further resolution of the polynomial conjecture. In fact though, A(x)—g(y)
reducible in Z[x, y] does not imply that %, g are a composite pair over C,
as the following example shows:

(@ -+ 22y + 27 + 1) (2" — 2ay + 27 + 1) = o + 2+ 4y + 497 +-1.

This example is obtained by a linear change of homogeneous variables
in an example from Davenport, Lewis, and Schinzel [2]. For further
information on % (z)—g(y) see this last cited paper and Fried and MacRae
[4] where it is shown in particular that if &, (z)— g, (y) divides h(z)— q9(y),
then there exists F(w) such that h(x)—g(y) = F(hy(2)—F(g:(y)). It
is pertinent to notice that the last cited reference inadvertently has some
lemmas and an example similar to those appearing in a paper by Schinzel
(12]. Here Schinzel has shown that if the degree of % is a prime, h(z)— g(y)
factorizable in Z[z,y] does indeed imply %,g a composite pair. This
fact will be used in Theorem 4 (Section II) where a large list of polynomials
h(z) is displayed for which the polynomial conjecture is true in the case
when ! =1. The analog over Z of our polynomial conjecture may be
established in a straightforward manner using the Hilbert irreducibility
theorem. For completeness we record it here.

THEOREM. Let h(x), g,(®), ..., g1(x)eZ [x]. Let
1
X = {-’”oez| h(-’l’o)leJ Vz(gi)}

where V,(g:) denotes the set of values of g; at the integers. If X has positive
lower density, then there exists a polynomial v(z)eQ[z] and an indew i such
that gi{r(#)) = hiz).

Note that the polynomial #(z) in this last theorem is shown to be
an element of Q[«], while the polynomial conjecture asserts only that
7(x) EE [#]. A simple example will illustrate the need for this. Suppose
h(z) = 2-3-52%, g,(x) = 222, ¢,(®) = 322, g3(x) = 5x®. Then we have

3

Vo(h) « U Vy(gs) for all p.
1
However, no g:(z) and A(x) form a composite pair over Q. In con-
nection with this, see Proposition 3 and its use in Theorem 4 (comments).
If h(®), g:(x), ..., g2(x) are cyclic polynomials all of the same prime
degree, it is possible to give necessary and sufficient conditions in terms
of the arithmetic pr(l)perties of the coefficients of these polynomials in

order that V,(h) < U V,(g:) for a.a.p. We do this in the ecase that all
1

the polynomials are quadratic in Seetion III. Thus, in this case we have
a finite process for determining whether or not the hypothesis of the poly-
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nomial conjecture is satisfied. Ax, in a paper that will appear in Annals
of Mathematics [1], has given a very general theorem which has as
a particular consequence the existence of a decision procedure for the
hypothesis of the polynomial conjecture, given a fixed set of polynomials
h(z), g1(), ..., gi{x). There is obviously a very simple decision procedure
for the conclusion of the polynomial conjecture to be true.

Since the polynomial conjecture in its entirety is not known to be
true, we have inserted several counterexamples to plausible conjectures
that would have partially resolved the polynomial conjecture had they
been correct. These have been placed at the end of Section III.

Slightly more sophisticated techniques (using Riemann surfaces)
than those used in Section IT may be used on the polynomial conjecture.
These are capable of resolving quite a bit more of the case where I =1,
and with some additional hypotheses the case where g¢,,..., g; are all
composites of cyclic polynomials. It seems best to put these results into
% separate paper because of their extreme technical nature. However,
we do include one computation of a geometrical nature in Theorem 4
(comments).

Professor Lewis has suggested the following modification of the
hypothesis of the polynomial conjecture in order that it and the hypothesis
of Theorem 2 will be equivalent.

MODIFIED POLYNOMIAL CONJECTURE HYPOTHESIS. Let h(z), g, (%), ...
ooy i(@)eZ[z]. Let

Vp(h) = {cosets mod p assumed by h with multiplicity one}.
Assume

1
Va(h) = U Va(g:)-

This is one of many ways in which we could weaken the hypothesis
of the polynomial conjecture without changing the conclusion of The-
orem 2. Most such changes call for trivial modifications of the arguments
presented in the text and cumbersome rewordings of the theorems. There-
fore it has been felt best not to alter the hypothesis of the polynomial
conjecture for this greater generality.

Nevertheless, we would like to insert here a conjecture which has
as @ particular consequence the equivalence of the hypothesis of the poly-
nomial conjecture and the conclusion of Theorem 2.

CoNJECTURE. Let f(x)eZ[x], Py the polynomials of Z[z] of degree k,
and | a positive integer. Then there exists an integer N = N (I, k) such that
if p is any rational prime with p >N, the following is true; if gePy
satisfies [V, (f) = Vp(9) <1, (i.e. the symmetric difference of the value
sets of f and g has order < 1), then V,(f) = Vplg) (i.e. the value sets are
actually the same).

i=m®
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Note. The equivalence described above results from replacing the
set Pr by a single polynomial g(z).

We are able to prove this-conjecture only in the case where f(x)
is & cyclic polynomial, and we give now a quick outline of the case where
f(z) is linear. When f(x) is linear the hypothesis is reduced to showing
that if p > N and g(2) of degree & takes on all but ! values mod p, then
g(z) takes on all values mod p.

MacCluer [9] has shown that a polynomial g(x) is one-one mod p
(equivalent to g(x) taking on all values mod p) where degg < p if and
only if _g_(jv;_z(_y_) as a polynomial in two variables has no absolutely
irreducible factors over Z/(p).

Let n(a) be the number of times ¢ is taken on by ¢ (without multi-
plicity). Then

P—1

D nia) =p;

a=0p
.S
thus if

n(a)—1 for wn(a)>=1,
0 otherwise,

then }7(a) >1+1 implies that g excludes at least 141 values mod p.
Assume p > k. From MacCluer’s result we need only show that

9@ —g()
z—y

h(z,y) =

has no absolutely irreducible factors mod p. So assume (2, y) is such
an absolutely irreducible factor of (z,y). X @(x, y) has distinct zeros
8 ={(z,y)| i =1,...,141} where = # y;, and (y:y ®;) i3 not in the
set, then we see that g excludes at least [+ 1 values mod p. Bach zero
of g(2, y) appears with multiplicity at most %. Also, since (z—y)* 1 g (x)—g ()
(just take the partial derivative with respect to z and use the assump-
tion & < p) by Bezout’s p(z, y) has no more than % zeros (9, %) Where
%, = ¥,. By Weil’s Riemann Hypothesis for curves [14], since p(z,y) is
absolutely irreducible, ¢ (x, y) has p+ O (p*?) zeros mod p, and the constant
in the O relation is dependent only on the degree of ¢ and therefore
on k. Thus, if p+0(p'*) = 2k(1-+-1)+k, we get a set § of zeros of »(z, ¥)
as described above, and a contradiction to our assumption on g.

With pleasure we would now like to thank Professor Lewis for his
many helpful comments, and Professors Lewis and LeVeque for their
contributions toward the preparation of this manuseript.
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1. We reproduce below, without separate references, some notation
and theorems all of which ean be found in Hasse [5].
Assume L < M are two number fields; Oy and Oy their respective
7
rings of integers. If 3 is a prime ideal of Oz, Ox-3 = [, we say that
=1

3 has ¢ primes over it in J with ramification indices e; = e(p:/3) and de-
grees fi = f(pif3) = [Onfpi: Ozf3]. The symbol [3] designates the norm of 3,
which is the cardinality of the residue class field Opf3.

Now assume M /L is galois with group G(M/L). For a prime p,
unramified over L, [Mp/ L is an element of G(M /L) called the Frobenius
symbol of p over L. It is uniquely determined by the congruence condition
[M /L

0 ]m =g¥ modp for each wcOy.

If U is a subset of G(M /L) which is closed under conjugation (ie.
M
a class of G(M[L)), then the set of primes 3 of L such that [p ] eU for

card U

ol This is the

pl3 has a Dirichlet density and that density is

content of the Cebotarev density theorem.

Let K be any number field containing L, M the galois closure of X,
and G = G(M|L). It L(a) = K, the group & can be considered as a tran-
sitive permutation group acting on the conjugates of « over L. Let p

be a prime of M, o = [“MJ L]. Then ¢ can be written as n; ... =, where m;

are disjoint cycles formed by representing o as a permutation on the
7

conjugates of a. If 3 = O ~ p, then 3 factors into 3-Ox = [Ta: where
1

the ¢; (i=1,...,7) are distinct prime ideals of degree f; = f(q:/3)
= length of =;. This theorem is due to Artin.

As usnal, if Z,/T and L,/L are two galois extensions we look upon
G(L, L,/L) as a subgroup of G(L,/L)xG(Ly/L).

Preparation for Theorem 1. Let L be a number field. We will
use the following mnotation:

p = primes (finite of Q),

P'(L) = {p<P| p has a prime factor of degree one in L}.

If A, B are two sets of primés, we let A = B denote the fact that
card(4A—B) < 0.

Kummer’s theorem implies that a polynomial h(z)eZ[x] has a zero
mod p for a prime p not dividing the discriminant of h(z), if and only

i=m®
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if p has a prime ideal factor of degree one in Q(6), where 0, is a zero
of h(x). This allows us to translate the local polynomial hypothesis (see
the introduction) to the relation

]
P (Q(Gh)) < LiJ PI(Q(ﬂzr,i))~

k]
Let £ be the composite of the fields £, &y, ..., 2, which are
respectively the splitting fields of the polynomials %, ¢,,..., g over Q.

ToeoreEM 1. Let h,g,,...,q be irreducible polynomials of Z[x].
Then
1

1) P'(Q(0h) = LIJP’(Q(%))
holds if and only if

1
2) %}JG(Q/Q(%)) =y %JG(Q/Q(%))-

Remark. One can easily deduce from this theorem a theorem of
Schinzel [11].

Proof. Let a be a prime of 2 over p,p a prime of 2, over peP,
and assume e(a/p) = 1. Since h(x) is irreducible, Artin’s theorem implies

that p has a prime ideal factor of degree one in Q(6,) if and only if [“O"]
p
s - 27 (o
is in %) G(2,/Q (63)). Since [‘1]" = [pl]’ we conclude that peP’(Q(0,))
13 2p

if and only if [f]s[ﬁj G{2/Q(6).

Similarly, peP'(él (6,;)) for some 4, is equivalent to

[Q]Ll) U 6(2/0(6,,)..
a 1 6a; o

From (1) and the Cebotarev density theorem if oe %)G(Q/Q(O,,)),
then ¢ == [f] for infinitely many primes a of 2 and 50 oe L‘]j Uh G(L]0(8,,)).

Conversely, the hypothesis (2) implies that if p is nlotagine of finitely
many primes, then peP’(Q(6y) is equivalent to [f] ¢ %)G(Q/Q (04)).

I3

0
Thus [a] <@(R/0(6,)) for some index 4, and this is equivalent to
PP (Q(0,,)).
The following two lemmas of galois theory will be used several times.

The techniques for proving them are well known and we merely mention

Acta Arithmetica XV, 2 7T


Pem


98 M. Fried

that the first is a simple consequence of the theorem of natural irration-
alities while the second is a corollary of the first.

LemMa 1. Let f(z)eL[x] be an trreducible polynomial, where L is
any perfect field. Let Q = L(x,, ..., x,) be the splitting field of f over L,
and %y, ..., T, the zeros of f. If M is any galois subfield of Q containing L,
then any automorphism of G (M |L) which leaves K = L(wx) ~ M elementwise
fized can be extended to an element of G{Q[L(x,)).

LeMMA 2. With the notation of Lemma 1, suppose L(x,) ~ M = L.
Then

G/ — ) G(QM - L(w))

8 not emply.

We are now in a position to show that Theorem 1 implies a strong
relation between the splitting fields of the polynomials &, ¢y, ..., g1 over Q.
For simplicity we assume [ = 2.

ProOPOSITION 1. Let h, gy, g, be irreducible over Q. If

P(Q(0n) = LIJP’(Q(%))

then either
Q(ogl) n (Quz'Qh) #Q

Q(05,) ~ (2, ) # Q.

Proof. If the conclusion of the proposition is false, then we may
take Q= Q,, M = Q, ~ (£, 2) in Lemma 2 to conclude that there
exists

(3) Ulfe(Qvllg)hg.J G(‘QU]_/Q(Gﬂl))!
such that “ '

or

oy [(,glﬂ(gﬂz.gh) = identity.
Similarly, there exists
(4) ‘72€G(902/Q)—%JG(Q%/Q(GQ))
(4]
such that

oy gy (o) = identity .

Let @ = Q- Q,, -2, as in Theorem 1, so that our hypotheses imply

() %G(Q/Q(ﬂn)) e CJ'JLJG(Q/Q(OM)).

i=m®
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It
(015 02, 1) G (825, [Q) X G (£2,,/Q) X G (2,,/0)

is an element of G(2/Q) we obtain a contradiction as follows. Since
(615 63, 1) |o, is the identity, (oy, 03, 1)e@(L2/Q (6,)) for each .

However, (01, 05,1)|q, = o; for ¢ = 1,2 and this contradicts (5).

In order to show that (o), s, 1)eG(2/Q) we must show
(6) (015 03) }”h"(gﬂl‘”az) = identity.
By the definition of oy and oy, (04, ¢,) is the identity on the field T
equal to

{.le a (Qgg' -Qll)}'{ggz n (le' Qn)}
To show that T contains 2z-(2Q, - 8,), we may without loss assume
that Q) < 901‘902 = &' and from the fundamental theorem of galois
theory we must demonstrate that
(7 G(Q'|T) = G(Q'[2).
Let
A =G2]%), B=62]Q), ©=G(2,)
50 that
B0 =G(2]2, 2, ={1}.

From galois theory we easily see that (7) is reduced to
(8) {B(AnO}~{C-(A~B}c 4.

If b = ¢'b’ where beB, b'ed ~ B, ceAd ~ C, and ¢’ <C, then ¢ ‘¢’
=b(b')""eC ~ B = {1}. Thus cheA and this verifies (8).

In particular, if we take %(z) linear in Proposition 1 we obtain

CoroLLARY 1. Let g,, g, be irreducible polynomials in Q[w]. Then

P= L;)P’ (Q(85,)) implies that either Q (0,,) ~ 2y, # QorQ(6,,) ~ 2, Q.

It in the situation of Corollary 1 we let g, = 2*—2, g, = a¥+2+1,
then it is easy to show that one of g, or g, has a zero mod p for each
rational prime p. Thus we see that the hypotheses of Corollary 1 do not
imply that one of g, or g, is linear, or even reducible (compare with the
polynomial conjecture). For other examples see Schinzel [11].

II. We assume that we are given polynomials %, G1y -+, g1 Satisfying
1
Volh) = LIJ Vao(gs)

(i-e. the hypothesis of the polynomial conjecture). Let A be the set of
integers 4, such that &(x)— 2y, g,(%)— g, ..., gi(x)— 4, are all irreducible
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over Q. By Hilbert’s irreducibility theorem /4 has asymptotic density
one.

Consider the two conditions:

1A
GH: P’(Q(ﬁl_zu)) =y P'(0(0,,_5,)) for all Aged.

PCH: V,(h U V,(g;) for a.a.p.

Let 1, be any f1\ed value of A. If peP'(Q(0u_y)) then h— 2, has,
a linear factor mod p and consequently A,¢V, (k). Now, if PCH holds,
then 24¢ 7, (g;) for some j, and so p P’ (Q(0,,_4)). Thus PCH implies GH,

Let Abe an indeterminate, 0,_, a zero of la( p)— A, and £2;the composite
of the splitting fields of 21— 1, g, — 1, ..., ¢, — A over Q(/l). From Theorem 1
an idea due to Hilbert [7] enables us easily to prove

THEOREM 2. Assume h, gy, ...

PH: U G 2)Q(04) = U U G(.QA/O )

71
Proof. F10m Theorem 1 we Lnow that

©) U 6(9,/0(0) < u U G(2,/0(0,4))  for

09~

,glsZ [z]. Condition GH implies

oed.

Let m(z, 2)eQ [z, 2] be an irreducible normal polynomial, integral over
Q[1], whose splitting field over Q(4) is £,. From Kummer’s theorem
we know that, with the exception of finitely many additional values of Aoy
the primes in £; over the prime 4— A, in Q [4] are in one-one correspondence
with the irreducible factors of m(x, 4,). By the Hilbert irreducibility
theorem, m(x, 4,) is irreducible for A, with asymptotic density one.

From standard number theory, letting Ps, be the single unramified
prime above A—4,, then (excluding an addltlonal finite set of 1,) @, [P3,
= £;,. Therefore we obtain

(10) [2,:0]1=[2,:Q(N)] for

where 4’ is a set of integers of asymptotic density one.
The group of mutommphi&ms o of G(Ql 1O (4 ) fixing p,, can be iden-
tified with the automorphisms o of G( (£2,,/Q) by the formula

(11) o(m+p, =o(n+p,) =0o(n) for 5e0,,.
From (10) we see that for Ajed’, G(2:/Q () = G(2;,/Q). From (11) it
follows that o<G(2;/Q(n)) if and only if GG (24 /Q (7)) for ne0y,. Thus
for Ayed ~ A’ (of asymptotic density one) (9) implies PH.

For future reference we quote the following propositions which

can be found in more generality in [3], while Proposition 3 can also be
found in [12].

doed’,

bm©
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ProrosiTiON 2. If h(2)eK[x] and 2, is any zero of h(z)— 2, then
there is a one-one association between subfields of K (@) containing K(l) and
composition factors of h(x). Namely, for K(A)« M < K(x,), M = (u(aal))
where weK[x] and b = »(u(w)).

ProPosITION 3. Suppose f(z), g(x)e K [x] (K « fired algebraic closure
of K), flg(x))eK[2], and the leading and constant coefficients of g(z) are
also in K. Then if char K does not divide degree of f, g(z) and f(x) are in
K[x].

As a start to an investigation of the polynomial conjecture, expand
each of 65_;, 6,5, ..., 0;_; at infinity. From the method of indeterminate
coefficients all these expansions are of the form

)I‘/1L+a +a ;-1,‘n+ .
[— a'? Z_‘/'h_\_a(’) a(")l RAC MR
i—

O}L- = q_
i=1,...,1
Let N Dbe the least common multiple of the integers Ry Ny oeey Mgy
and let {x be a primitive Nth root of 1. The power series expansions
for Opzy Ogyny +evy Opys give an embedding of 2, into Ly, the field of all

formal Laurent series in A~ %~
on Ly defined by

with coefficients in Q Let ¢ be an operator

then  o(a(A™"Y)) = a(Cya™ YY),

Since o is a change of variable, it is a field antomorphism of Ly, and we
denote again by o the restriction of this automorphism to Q,i

A Ry gy UV ) for
a.a.p., then there exists an index i such that degree of g; dwzdes degree of h.

Proof. From Theorem 2 our hypothesis implies PH. If aely , then
o*{a () equals a(¢% A YN). Let m be the least integer such that «
is expressible as a = a(27") = a((A""N)¥™). Then (£%)M™ =1 if and
only if m|n. 8o ¢"(a) = a if and only i m|n. Bach 6,_, is of the form
Onz = (A7) = (A=) ™). Thus o"(6_,) = 0)_,, and therefore o
must fix §,_; for some index 4. For this integer i, n;|n.

The polynomial conjecture iy trivially true if one of the gi(z) is
linear, and from now on we will assume that this is not the cage.

Let Qﬂ,, =8 _5... Qg_;. From Proposition 2 there exist polyno-
mials 7" (z) eQ[m] such tha,t

h :h (v) Q(6h_z) ~ 29,4 =Q( (O ))

From Lemma 1, ¢(Q;,/Q(0w_,)) is the restriction of G(2,/Q(f_, )
to £,;. Therefore the relation PH y1elds

ae L_v ]

COROLLARY 2 s qieZz] and if V,(k)

and

(12) U 6(24/Q(002) =

Op* -2

UoU G('QG,Z/Q(G(/,:»A))~
T 0y
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If we knew that (12) implied the existence of an index ¢ and a poly-
nomial #(x)eQ[«] such that gi(r(#)) = B*(z), then

h* (v() = g;(r(v(m))) = h(x).

Therefore we would know that the polynomial conjecture is true. Since
all further attempts to solve the polynomial conjecture will be based
on (12) alone, we are free to assume A" (z) = h(x).

Denote the field Q,,-Q by Z,,, and the field 2,_,-Q by Z,_,.
From (12) we deduce

1

(13) U 6(2,1/0(02-0) = U U 6(2,4/Q(0,1),
Op—2

1 Og;—a
by considering only those elements in relation (12) which are fixed on
the algebraic closure of Q in 2,,.

LeMMA 3. If h(2)eQ[z] and G(Z,_;/Q(2) is abelian, then h(z) is
a cyclic polynomial. .

Proof. Since 2j_; is the splitting field of A(x)—A over Q(4), our
assumption that G(Z‘,L_;_/Q(Z)) is abelian implies that Zj_, = Q(6_.).
Thus, G(Z}l_x/é(l)) is of order nm = degh and consists of powers of o,
the automorphism at infinity.

A cyclic group has exactly one subgroup of each order & dividing
the order of the group. Using Proposition 2 we decompose %(x) into
by (ha(. . .(he(2)) where hy(hy(...(Rs(z)) corresponds to the subfield of
é(ﬂh_l) of degree I; over §(l), where ;. ;/l; is a prime for ¢ =1, ..., n—1.
Thus, G(Zhi_ 2 /@(l)) is cyclic of prime order the degree of h;. Bub, Zy,_;
has at least one finite ramified prime over E(l). Since the inertial group
of this prime is a subgroup of G(Zy, _, /E(Z)), this prime must be totally
ramified. Therefore, %;(x) is a cyclic polynomial, and h(w) is a composite
of eyclic polynomials.

From the fact that G(Z_ l/ﬁ(l)) is cyclic of order n = degh we
shall deduce that h(x) is actually cyclic.

Let f(z) = (g(w))k—I—d where g(2) = (—b)'-+e. We claim that
G(Ef_llg(l)) is eyclic only if ¢ = 0. Changing 1 to A—d, and « to x-+b
we assume f(z)— A = (' €)— 4. The zeros of this polynomial are

1 % 1
Ty = Gi(LR A" —e)Y

where {3, {;, are primitive I and kth roots of 1. If G(Z,_ A/Q(A)) is cyeclic,
then Q(x,,) would contain all other zeros of @s. However, letting

bm@
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M — g i (Gre— e)”leé((z—e)lﬂ), there exist polynomials % and v such
that
uf(z—e)')

17
o((z—e)")

‘We easily deduce in order that » is constant, » is linear, and then that
¢ = 0. Applying this argument several times to the decomposition of
h(x) in terms of the h;(z), ¢ =1, ..., r, we see that i(x) must be a eyclic
polynomial. »

‘We note that Lemma 3 is not true if we do not have characteristic 0.
In fact, for A(r) = X*— X<Z/[(p)[2] we have G(Z‘h_;/Z/(p)(Z)) cyelic.
See [4] for a simple generalization of this.

1
TEEOREM 3. If hy g1, ..., qreZ[a] and Vy(h) < U Vy(g:) for a.ap.,
1

and if in addition, g,,...,q, are cyclic polynomials, then there emists
(%) EQ [#] and an index i such that h(z) = gi(r(w)).

Proof. From the remarks following Corollary 2, we may presume
that 6p_;eX,;, and thus that Z,_; < Z,,. Therefore G(Z,_,/Q(%) is
a factor group of G(Zg’l/é(l)). Since the latter is a subgroup of the direct
product of the cyclic groups G(Eni_ 2 /Q(l)} for s =1,...,1, we conclude
that G(Z,_;/Q (1)) is abelian.

From Lemma 3 we deduce that h is a cyclic polynomial. If %(z)
= a(z--b)"+¢, by relabeling, we may assume that N is the composite
of the fields X, ,,4 =1,...,s which are ramified over i—e¢. Using
the remaining polynomials, let N; (4 =1, ..., 7) be the composite of the
fields %, _, which have & common finite ramified prime among them.
Since there are no proper fields unramified at all finite places over Q(l),
NA@,...N,) = _Q(l). We then see inductively that

G(Z4/Q(2) = G(N[Q(A) XG(N,/Q (W) X... X G (N,[Q ().

Let % be the l.c.m. of degy,,..., degg,. Then G(N/Q(A)) is cyclic of
order k and we let v be a generator. Similarly, let »; (5 = 1,...,7) be

respectively, generators of the cyelic groups G(Ni/Q(A)) (i=1,...,%
Let 9 = (335 ..., 7). The automorphism

(7", 1) G2,/ (2))

is fixed on Q(f,_,). Since 7 fixes none of 0y for j =s41,...,1, the
hypothesis implies

(=" 1) €6 (Z,,4/Q (6,,_))
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for somes = 1, ..., s. For this index 4, 7" «G(N/Q(6,,_,)), and we conclude
that deggi]degh.

The remainder of this section iy restricted to the case of the poly-
nomial conjecture where I =1, and we bring to bear primarily group
theory to deduee consequences from relation (12) in the case I =1.

THrROREM 4. Let h,ge<Z[z], and assume that V,(h) = Vy,(g) for
a.a.p. If g is a composite of polynomials of one of the following types:

) G(Q2,_2]0(y)) (when represented as o permutation group on the
zeros of g(z)— 1) is the symmetric group or alternating group;

(b) g 4s a polynomial of prime degree;
then there exists r(x)eQ[x] such that g( ')) = h(2)

Remark. See also the comments following the proof of Theorem 4.

Proof. From the condition
(14) U 6(2,-4/Q (0-2)) = U G(~ 1-21Q(0,_3))
Op—2a
if b = g,(hy) and g = ¢1(g2), we may replaee A by one fixed determination
of ¢7'(1) and look only at elements fixed on 2, _; to deduce

U G (29,-2/Q (0,—2)) = 01UZG(Q:72—1/Q(%2~1))-
1.:,— A ay—
Also, it h = hy(hs), ¢ = ¢,(gs) where h, and g, are indecomposable, an
argument similar to that leading to formula (12) implies that (14) is
true with A and g replaced respectively by kb, and g,. To obtain this formula
just restrict elements of G(Q,,_Z/Q(l)) to £, _;. Thus, if (14) implies our
theorem is true under conditions (a) and (b), then the theorem is true
in general by induction.

We note also that from Corollary 2, degg|degh. But, 0;_, is expres-
sible as a rational function of the 0, ;, which are in turn Laurent series
in A~ where degg = n'. Therefore degh|degg, and so degh = degy.

For the remainder of this argument we will let

H= G{‘Q(I«A/Q(Oh—z))y = G( “g- R/Q g )

We disregard the fact that we have not distinguished between the
various conjugates of H and G°. If H =%, then the fundamental
theorem of galois theory implies Q(0;_,) = Q(9,-,), and therefore that
glaz+b) = h(z) for some a,beQ. If H were a transitive group when
represented on the letters 6, , then we could conclude from Lemma 2
that there exists veH which moves each of the 6, ,. For if v did not
exist, the union of the stabilizers of the §,_, in H would be all of H.
However, this would contradict the fact that the union of the conjugates
of a proper subgroup cannot cover the group. The existence of such

i=m®
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a teH would in turn contradict (14). Therefore H must be intransitive
on the zeros of g(x)— 4.

CiAsE (a). @ =G(QO,Z/Q(}.)) is the allernating or symmetric group
of degree n.

An intransitive permutation group of degree n on the letters Lyyoery Ty
has order dividing (s;!)(s.!)...(s,!) where the letters z,...,#, are
divided into » transitivity classes of whieh the ¢th contains s; elements.
If the order of H were as large as (n—1)!, then ¢ would be of order =!
and therefore the symmetric group. Thus H (being an intransitive group)
would have exactly one of the letters fixed, and so H = G*. Thus, we
may assume the order of H is < 2!(n—2)!. But, since @ is the alternating
or symmetric group of degree n, the order of H is > (n—1)!/2. Thus,
we are done'if n > 6. Case (b) handles n = 5, and n = 2, 3, 4 are trivial.

Case (b). degg is a prime.

From Proposition 4 (Section III) the transitivity classes of H on
the letters 6,_; are in one-one correspondence with the irreducible factors
of h(x)—g(y) over Q. Since H is intransitive on the 6,_,, h(z) g(y)
must be reducible. From [12], since degh = degy = prime, g(cm—l b)
= h(z) for some @,beQ unless both g and % are cyclic. However, it is
easy to see that .Qh_ 1< £2,_, implies that in this case also there exist
a, beQ such that g(ar-+b) = hix).

Comments. Using some group theory and a little geometry, Theorem 4
can be strengthened to include a category:

(¢) polynomials of ‘low’ degree. The author has actually carried
this out where the degree of ¢ is 4, 6, 8, or 9 (not covered by category
(b)). The apropos geometry is well-known (see [13], especially Chapters 4
and 10). However, in this case we can give a very simple specialized
treatment which is meant to De a review that may be referred to in sub-
sequent work. Before we start we note one technical fact needed to incor-
porate these arguments into the induction of Theorem 4. The use of
Riemann surfaces requires us to use formula (13) in the case I — 1,
instead of formula (14). However, since Case (b) of Theorem 4 requires
that our polynomials be considered over Q, it is necessary to know that
all decompositions of a polynomial over Q correspond in a one-one way
to decompositions of the same polynomial over Q, and in fact; if h(x)
and g(z) are a composite pair over Q, then they are a composite pair
over Q, unless h(») has a decomposition containing some cyeclic poly-
nomials. This latter possibility is already handled by Case (b) of The-
orem 4, and the other statements are easy consequences of Proposition 3.

Let g(®)eQ[x]. We describe a set of generators for G(X,_ ,1/0 )
A finite branch point is a complex number A, for which ¢'(») (the deri-
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vative of g(#)) and g(x)—4, have a zero in common, or equivalently
g(z)—2, has a double zero at least. Suppose

11
g@)—i = a[ [ @—a)¥.

Then the expansion of the zeros of g(x)— A about A, yields a set of ex-
pansions of the form:

w1+a1,1£§1(ﬂ"20)1/51’|‘al,zcgi(l”lo)zlsl"F~ IRy r=0,1,...,8—1,
Gyt Gy £, (A V8 g O (A 2y 7= 0,1,y 80,

. ete. where £, is a primitive s;th root of 1. As with the expansion at
infinity (see remarks preceding Corollary 2) we may embed ZXj_, in Iy
the field of formal Laurent series in (A— 4,)"~ where N is the least common
multiple of sy, ..., 8. Let 7; be the operator on Ly defined by

aeLy, then = (a(d—2A)"™) = a(ly(i—21)"Y).

The restriction of 7; to 2,_; is an element of G(Z‘,,_A/Q(l)), and is in
fact a generator for the inertial group of some valuation of X,_; lying
i

over A,. We say that v; has index Z’ (s;—1). The two fundamental
facts are: =t

(@) 3 indz, =n—1 (easy to see);

A finite _

(b)' the elements 7, generate &(Z;_;/Q(2)) (not so easy).

If we do this also for 2_;, then the same elements 7, deseribe actions
on the zeros of h(x)—A4, using Xj_, <= XZ,_,. If the degree of ¢ is low we
can see by inspection of the expansions that 7, induces similar actions
on the 8,_; and 6,_,. For low degrees we can therefore use formula (13)
to combinatorially draw the conclusion of Theorem 4. Some techniques
extending these will be used in a subsequent paper.

TuREOREM 5. Assume h,geZ[z]. Then V,(h) = V,(g) for a.ap.
implies: each decomposition of h(z) into primely composite polynomials
has a corresponding decomposition of g(x) where the degrees of the prime
components h(w) are the same in the given order as the degrees of the prime
components in the respective decomposition of g(x).

Proof. From PH (see Theorem 2) we conclude that

DHAG(Q -}./Q(Bh—z)) = HHAG(Qa—a/Q(ﬂg—A))

and £, ; = 2,_;. From Proposition 2 we need only show that to each
subfield of Q(6_,) containing Q (1) there corresponds a subfield of Q(6,_,)
of the same degree over Q(1).

i=m®
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Let M De a subfield of Q(6;_;) containing Q(1). From Proposition 2,
M = Q(fm_;) where h = h*(r(z)). The restriction of the elements of
G(-Qg_;,/Q(ﬁhf;,)) to .thx7;. ylelds G(Q,L*MA/Q(H,L*_A)).

Lemma 1 implies that the restriction of elements of G(Q,,_l 10(6,_2))
50 Qe_; yields G(Qp_1/0(04e_5) Where Q(6,_3) ~ Qur_z = Q(6p_s).

We obtain

U G(Qh*—l/g({’h*—a)) =sU G(Qm-A/Q(@guz))-
Op*—2 1

Repeating the argument of the second paragraph of the proof of The-
orem 4, we conclude that Q_; = Qpe_; and degh* = degg*.

IHI. Schinzel [10] has shown that if f(z,y) in Z[z, y] is irreducible,
then there exists an arithmetic progression P of integers such that flze, )
is an irreducible polynomial in one variable for #,cP. We will show that
for suitable conditions on f(z,y) we may find such an arithmetic pro-
gression that has the additional property that its modulus is a prime
number. More precisely:

TeEOREM 6. Let f(2,y)eZ[z,y] have o totally ramified Puiseur
expansion over some place on the z-sphere. Then there exists an arithmetic
progression P with prime modulus such that zy< P implies f(zx, , y) irreducible,

By a totally ramified Puiseux expansion about ¢ we mean that
y =%’ai(w—a)i/“ is an expansion for f(z,y), where deg, f =mn and
the denominator » is essential in the expansion. In particular we note
that f(z)—g(y) has a totally ramified Puisenx expansion at oo if and
only if (degf, degg) = 1. The existence of snch a Puiseux expansion
automatically implies the irreducibility of f (z, y) because a Puiseux ex-
pansion for an irreducible polynomial ¢ (z , %) has ramification less than
or equal to deg,p.

Proof of Theorem 6. Dirge [3] (see also Lang [8]) showed how
to reduce the question of a polynomial remaining irreducible under
rational integer specialization of one of its variables to a question about
integer solutions to a polynomial in two variables. It will be necessary
to investigate his method in detail to obtain our result.

If f(@, y) is irreducible, then we write

n
f@, 9 =[] g—)]hi)
1
where %(z) is a rational function. For each partition of the integers
1,2,...,n into two non-empty disjoint sets 4 and B, we decompose

f@,9) = 6465 where Gy =nh(@) ][] y—y).
ted
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Then one of the coefficients of G (as a polynomial in %) is not a rational

function of 2 over Q. In fact, in the case where f(z,y) has a totally

ramified expansion over the place a, [Jy; is not a power series in (x—a)
ied

(but rather in (#—a)"" for some integer r >1). Let ;qyi =z,. It is
k13

important to notice that the conjugates of z, can also not be expressed
as a power series in (¥ — a). If 2, is an integer for which f(z,, ¥) is reducible
(assume h(z,) # 0), there exists a set A such that 2, (2,) e Q. For simplicity,
we notice that we may multiply each function z,(2) by an element of
Z[®], so that for each 4, z(#) is integral over Z[«]. Therefore if 2, (2,) <0,
then z,(z,)eZ.

Let f.4(, Z) be the irreducible polynomial in Z[z, Z]having 2z, as a zero.
‘Wemust now show that there exists an arithmetic progression P with prime
modulus, such that f (2, Z) = 0 has no solution in Z for any 4, if @,<P.

Let 2y, be the splitting field (over Q(x)) of f4(z,Z), and let Q,
be the composite of the fields Q; . By exactly the same methods used
to prove Theorem 2, we see that if such an arithmetic progression did.
not exist, then we would have
(15) U U F(Q:/Q (29, @) = ¢(2:/Q ().

4 aﬁ) Tuns over
conjugates of 2 ‘A

The automorphism of &2, described by sending (z— a)" > £, (v— a)¥"
({n & primitive nth root of 1) is easily seen to be an element of the right
side of (15), but not the left. With this contradiction the theorem is proved.

Note. With somewhat the same analysis as above it is possible
to show that the conclusion of Theorem 6 remains true for irrecducible
polynomials f(#)—g(y)eZ [z, y] if deggtdegf. However, even in the
case where degf = degg our method does not obtain the corresponding
result (unless, of course, the degrees are very small).

The simplest case of the polynomial conjecture which hag not been
resolved is that deseribed by the hypothesis; k(x), g(#)<Z [#] have the
same value sets mod p for a.a.p. Although Theorems 4 and 5 give rea-

sonable information, they arve far short of the desired conclusion that .

there exists a,beQ such that g(az-+0) = i(z). We will now give two
examples that show that neither group theory alone, nor formal power
series manipulations alone can obtain this result.

The hypothesis V, (k) = V,(g) for a.a.p. does imply

(16) Qpn = Qa-—l;
(7) 0%)2@(391»«1/9(%4)) BHL*JIG(Q::—A/Q(@V—A)),

(18)  there exists oeG(£,_;/Q(1)) such that o represented as acting
on either the 6,_; or 0,_; is an n-cycle. .

I
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Exaypre 1. Professor J. McLaughlin gave us the following example
of a group ¢ which may be represented in inequivalent ways on two
different sets of letters {w,, ..., @y}, {yi, ..., ¥u} such that @ is primitive

" n

on Dboth sets of letters, | @, = (J &, (Where G, denotes the stabilizing
1 1

group of z;), and there iy an element of @ which is an n-cycle on both
sets of letters. The group P (2, p¥) is doubly transitive (and thus primitive)
on both points ({wy,...,2,}) and lines ({y;, ..., ¥x}). It is very easy to
see that if an element of P (2, p*) fixes some point, then it must also fix
some line, and conversely.

If we let aers,; (finite field with p** elements) be a primitive gener-
ator of the cyelic group of non-zero elements, then 1, «, a®is also a basis
over F ; for F, 3. Multiplication by « on F s induces a projective trans-
formation 7T such that T'(¢") = o"*'. Thus 7T is a cyclic transformation
of the points of the vector space F,,sk over Fpk. To show that 7' is also
a cyclic transformation on the lines of projective space, we use a trick
related to us by Richard Misare. If we look at the affine space underlying
the projective space, and we denote by L any non-trivial linear functional
such that L(1) # 0, then the functional I;(z) = L(fz) has kernel
B~ '(kerL). A linear functional is described by its kernel and the value
at one point of the kernel. Since the linear functionals of a finite field are
all of the form I, we see that the planes of this veetor space (through
the origin) are cyclically permuted among each other by T. Therefore
the lines of the induced projective space are also cyelically permuted by T.

We note a couple of facts related to Example 1. If g(z)eQ[z], then
the subgroups of G(2,_:/Q(2)) containing G (2, ,/Q(6;_;) are (by the
fundamental theorem of galois theory) in one-one correspondence with
fields between Q (6,_;) and @ (4). By Proposition 2 the latter are in one-one
correspondence with the composition factors of g(z). Thus, by well-known
group theory, G(QH_A/Q(A)) is a primitive group (on the letters 6,_,)
if and only if g(«) is indecomposable.. The argument of the proof of The-
orem 4 shows that we may presume this with no loss.

We make now one last conjecture (our third) which, combined with
Proposition 4, implies that the situation of Example 1 cannot be a counter-
example to the polynomial conjecture.

CoNJECTURE 3. Suppose h(x), g(x)eQ[z] are of the same degree n. Let

Ma)—gy) = [[ mlo,v)

be the factorization of h(x)— g(y) into irreducible Jactors over Q. Then,
if none of the p; are linear, one of the numbers (n, degps), i =1,...,7r,
is different from 1.
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Conjecture 3 has been made as weak as possible because of our pre-
vious experience with conjectures about the factorization of polynomials
in two variables.

ProprosiTION 4. Let h(w), g(x)eQ[x]. In the nolation of Section TI
let Q)= Q_2-0,_1. Then the tramsitivity classes of the quanmtities Op_2
when acted on by the group G(Q;/Q( 9;,_1)) are in one-one correspondence
with the irreducible factors (over Q) of h(x)—g(y).

Proof. The irreducible factors of h(6,_;)—g(y) are the minimal
polynomials for the quantities 6,_, over Q(0h_,). The rest follows by
galois theory.

If in Example 1 we let p* = ¢, then the ¢*+q+1 lines fall into two
transitivity classes under the action of G, (i.e. the g+ 1 lines through m,
are in one transitivity class, the remainder in another). However, since
(g+1,*+q-+1) = (¢?, ¢*+¢+1) = 1, we would obtain a contradiction
to Conjecture 3.

ExsmpLE 2. We now show that (16) is not strong enough to imply
the conclusion of the polynomial conjecture. Let h(x) = (22— 1)2. The
zeros of h(z)— 2 are

T, = 1/1—1-1/3, Ty = — ]/i—H/E, 23 = ‘/;1_/7, Ly = — Vl—ﬁ.
We list the elements of @(Q(w, @, 73, 2,) /Q(A)) as permutations:
=1, o=@®m), o= (2), o= (21,) (232,)
05 = (2123} (02 80,), 05 = (018) (%), 07 = (1 2,) (2 25)
0 = (21%3) (B2 24) .

By applying the ¢s to the element x,+x,, we find its conjugates
to be z4ay, B+ @y, 23+ 5, and 80 @+, is of degree 4. Since x4z,
is integral over Q[A] and it has an expansion ab infinity of the form
a M b ag+a A7V L i s easy to see that 2,4 @5 is a zero of a poly-
nomial -of form g(z)—2. In fact, g(x) turns out to be }a'—a?. Clearly
g(z) and h(z) are not a composite pair. Since (@14 @) — (@ + @4) = 20,
and (@, @)+ (2, +25) = 205, we see that Q,_; = 522

More generally, we state without proof the very simple

Lmyma 4. If h(z)eQ 2], and acfy_; has the properties

(Ty) a is integral over Q[A],

(T2) a is of degree m = degh over Q[A],

(Ts) @ has an expansion at infinity of form a_, A"+ ao-+ a, 2" +...

where a_, #+ 0,
then there exisis ¢(x)eQ[x] such that g(a) = A.

bm© .
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Note. We do not yet know if properties (T;), (T.), and (T;) imply
that « is a linear combination over Q of the quantities 6,_,, but if this
were 50 it would be very helpful in solving the polynomial conjecture.

Quadratic polynomials. We finish with the statements of some
combinatorial results that we helieve give the full story on the poly-
nomial conjecture when all the polynomials involved are of degree 2.
We add that a similar result is true when all the polynomials are cyclic
of the same prime degree. However, when the degrees are not prime,
the analysis might run into insurmountable difficulties because of the
occurrence of linear equations over non-integral domains.

We remark that Hecke [6] (Satz 147) has a very clever proof of
Corollary A using the zeta function. However, a generalization of that
fact is needed here, so we have included a straightforward proof of Lemma
A whose extension to Lemma B is obvious.

Let I be the multiplicative group of non-zero integers modulo the
non-zero square integers. Let {—1,1} denote the multiplicative group
of two elements.

Leas A, Let b(1),...,b(n) be distinct elements of I. Let qy, ..., gs

be the set of primes that appear in at least one of the b(i), 1 =1,...,n.
There exists a homomorphism ®: I — {—1, 1} such that ®(p) =1 if p
i a prime not among ¢, ..., qs, and DO(i)) = —1 for 4=1,...,n,

if and only if there exists no product consisting of an odd number of distinct
b(i)’s such that

2l+1

[]ein =1.

j=1

Proof. Consider the following set of linear eguations with coeffi-
cients in F,.

(2) Da(ia@) =1 for i=1,...,n,
j=1

where

() 0 if g; does not appear in b(3),
a; =
W 1 if g; does appear in b(3).

Let ®(g;) = (—1)""). It there exists a solution wvector (1), ..., 2(s)

to the equations (a), then

Ob(d) = (—1FD = —1  where s(i) = PRAGEION
Conversely, if the desired @ of the lemma, exists, there is a solution vector
(#(1),...,2(s)) e F5. A solution vector for (a) exists if and only if

waak o) = k[ |
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If there exists a relation over F, among ¢ rows of |a;(j)| (say the rows
Fyy ...y k), then we have equality of the two ranks only if ¢ is even. The
relation is equivalent to b(k,)... d(k) = 1.

COROLLARY A, Let b(1),...,b(n) be o set of distinct square-free
integers. There exists an arithmetic progression A of primes p such that
b(i), i =1,...,n, is o quadratic non-residue mod p if and only if there

ewists no pwduct of an odd number of distinct b(i)’s which is a square.
2141
Proof. If [] b(i;) is a squave, then for all primes different from
=1 :

iy ..., gs (set of primes appearing in the b(i)’s, ¢ =1,..., n)

2141
N IT o)
(M) = —1 implies (L) = —1.
p P

This is a contradiction.

In the other direction, if there exists no product of an odd number
of distinct b(4)’s which is a square, Lemma A implies the existence of
©: I »{—1,1} such that ®(b(:)) = —1 for ¢ =1,...,n. If we can

find an arithmetic progression A of primes p such that (i;) = D(q;)

b
for j=1,...,s, then we would have (—1(:1) =—1for i=1,...,n
Finding 4 is an elementary exercise.

Lemma B. (BExtension of Lemma A.) Let B(1) = {b 1), co b(ny)},
B(2) = {b(n,+1),...,b(ny)}, ..., B(k) = {b( n,ﬂ_l—i—l) b(ny)} be dis-

joint sets of elements of I. There exists a homomorphism tD: I—-{-1,1}
such that

(c) D(B(1) = D(b(2)) =... = Bb(ny) = —1,
(@) OB(m41) = Bb(n;+2)) =... = O(b(niy)) for i=1,.., k1

if and only if there ewists a subcollection B(1), B(ry),..., B(r,) with
2Ly <. < 1y < k such that when a product satisfies
m

(e) []6) =1 (where b(iy) are distinet)
7=1

then the total number of b(i;)’s, j = 1, ..., m, in the union of B(1), B(ry),...
B(ry) is even.
Proof Analogous to the proof of Lemma A.
If 7y g1,..., 0 are quadratic polynomials in Z[x], then we may
assume b = ar*+c, g;(x) = a(i)w2+c(i), ¢ =1,...,1, with a, a(l),...
.-y o(l) all square free. In this normalized form some of the resulting
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polynomials may not have integer coefficients. In this case, multiply
all polynomials by some one constant to put them back in Z[z]. This
will change any relation between their value sets for at most finitely
many primes.
THEOREM A. Let h,gy,...,q1 be quadratic polynomials such that
1
Vulh) « UVplgs) for a.a.p. Assume for i =1, ..., n, that ¢(i) = ¢, and
1
for i >ny further divide up the o(i)’s into classes such that ¢(n,-+1) =
c=e(Na), (1) = ... = 06(ng), ..., c(mp_1+1) = ... = ¢(nz). Let b(3)
=aa(i),t=1,.. landB(J = {b(n;_1+1), b(n,}for]__l Lo k.
Then we conc?ude that for each subset of 'mdwes {rey ... m} with
m

2 <71y <...< 7 <k there exists some product of distinct b(i)'s, Hb

mod squares such that the total number of b(i)’s in the pmduot that are in
the union of B(1), B(ry), ..., B(r) s odd.

Proof. With no loss we may assume that each B(i) consists of distinet
elements. Assume ‘rhere exists a subset of indices (ry,...,7;) such that

for every product, nb (7) = 1 mod squares, the total number of b(3)’s

m the product that are also in one of B(1), B(ry),..., B(r;) is even.
Ve shall show that there exists an integer 2 and an arithmetic progression 4
of primes p such that h(x)—A = 0modp, ped, has a solution, but
gi(¢)— 2 = 0mod p has no solution for ¢ =1,...,1. Since this would
contradict the hypothesis, the conclusion of Theorem A must hold.

Let ¢y,...,gs be the primes which appear in by, ..., 5 (including
without loss ¢, = —1, ¢, = 1). Let @ be the homomorphism given by
Lemma B such that

o) =... =2(b(n)) = —1,
Ob(n+1) =... = Bb(niy1), i=1,..., k1.

In a manner similar to that of Corollary A we can find an arlthmetlc
progression of pnmes p (call this 4%) such that p = z* mod 8¢5 ..
for some integer z*, and

2 -

(ﬂ"iiirL)) - _(__b (i)
R

Leb Py, ..., pr be distinet primes larger than either |a-8:gq... g
or max(]c(n )—e¢(ny)]). By the Chinese remainder theorem there exlsts

) for i=1,..,k—1.

an mtegel A such that e(n;))—2 = p; mod p}. Note that for i #7,
;1 (e(n:)—2) because it {e(n)—e(ny)).
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Define an arithmetic progression of primes 4™ by the following
set of linear equations:

() P = 2" mod[8(gs ... go) (0 (n1) — Alpy) ... (c(m)— Afma)],
(g) p=mmodp; for {=1,...,5k,
where m; is chosen so that
(1) 1= (a(ﬂi)) (O(Wz)—l) _ ( a(m))(_g(?%)*ﬂ%)(&)
r ¥4 p P
_ (ﬁ)(__,l)p_; 2l (M) (_c(ni)—i/-jﬁ)’
D ¥4 »

i)— Alp: o
For p satistying (f) the values of (“—(;i—)) and (0—(@%0~) and (—1)@-Ie

are determined by that congruence alone. Since

(.‘i)(ﬂ)z(_b@)z_1 for i=1,...,1 and ped™,
)\ p P

we conclude that

(i)(c_l)=1, and (M)(ﬂ)—_ﬁ):—l for i=1,..,1.
2]\ p ) P

Let 4 = A*. Then for primes ped, h(z)— A = 0 mod p has a so-
lution although g;(#)—21 = 0 mod » has no solution for i = 1.1
From the Dirichlet density theorem there exist infinitely many primes
in the arilthmetic progression A. This contradicts our assumption that

Vp(h) = U Vp(g:) for a.a.p.
1

Clearly the criterion of Theorem A to test for the hypothesis of the
polynomial conjecture is one which may be verified in a finite number
of steps. Of course, Theorem A has as a particular corollary that the poly-
nomial conjecture is true when all the polynomials involved are quadratic.
This was also a consequence of Theorem 3.
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