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of squares of two linear forms. The number of representations of f as a sum
of two squares is 7,(27).

Proof. If 5y =0, ry(2n) = 1,(0) is infinite as is the number of rep-
resentations of f as a sum of two squares. Suppose n # 0. From Theorem 3
we see that » must be even, and with every factorization n = 2a, 4, there
is associated a representation of f as a sum of squares of two linear forms,
‘We have only to count the number of factors a4, f;. We may write
2y = ' (L+4)°aial2 ... afr  where the =; are odd primary primes,
r=0,1,2, or 3, and s>4. The number of factors of 2n/4 is then
4(s—3)(ky+1) ... (k,+1) which is just r,(27).
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On a problem of P. Erdos and S. Stein
by
P. Erpos and E. SzeMEREDI (Budapest)

The system of congruences

(1) a;(modng), gy <... << 7y

is called a covering system it every integer satisfies at least one of the
congruences (1). An old conjecture of P. Erdos states that for every
integer ¢ there is a covering system with fy = ¢ Selfridge and others
settled this question for ¢ < 8. The general case is still unsettled and
seems difficult.

A system (1) is called disjoint if every integer satisfies at most one

of the congruences (1). It is trivial that in a disjoint system we must
have

Mw

(ngym;) >1  and 1/n; < 1.
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It is known that a disjoint system can never be covering [2] and that
for a disjoint system we have [3]
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(2) is easily seen to be best possible.

Denote by f (m). the largest value of & for which there exists a disjoint
system (1) satisfying g <@ P. Brdés and 8. Stein conjectured that
f(@) = o(a).

The main purpose of this paper will be to prove this conjecture,
In fact, we prove the following

TamorREM 1. For every ¢ > 0 if o> #o(e) we have (¢q,¢,, ... denote
suitable positive constants)

@ x

exp (o)™ <7 < {iogay
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The proof of the lower bound we obtained with the help of S. Stein
[3]. First we outline the proof of the lower bound in (3) leaving some
details to the reader.

Let p, be the least prime greater than exp((logz)?), ny, <<... < my
are the squarefree integers not exceeding « the greatest prime factor of
which is p,. Put

o= Piy e Dylry Pip < ooo < Piyp < P
Let
o = 0(modpy), @ = p;_, (modp,),

a; = py(modp,).

l<sgl,
(4)

The congruences (4) determine a; uniquely (modns). It is easy to
see that the system a;(modmny),l <j<k, is disjoint. Clearly % equals
o (/pr, p,) where y,(u,v) denotes the number of squarefree integers
not exceeding u all whose prime factors do not exceed v. It easily follows
from the results of de Bruijn and others [1] that for z > xy(e)

&z
"""""" ’

v1(2/Dry r) >

which proves the lower bound in (3).

The proof of the upper bound will be considerably more difficult.
Let N = {n, < ... < < 2} be an arbitrary sequence of integers. Denote
by gx(d) the largest j for which there are j n’s the greatest common divisor
of any two of which is d. (¢x(1) is thus the largest integer for which there
are gny(1) »'s which are pairwise relatively prime.)

Now we prove the following

Lemma 1. Assume that the system (L) is disjoint. Then we have for
every d =1

(5) gn(d) < d.

Assume that (5) is not satistied for a certain d and asswme that the
greatest common divisor of any two of the integers Mgy - iy d.

e Mgy
We show that the congruences

(6) ay (modn,;j), 1<<j<<d+a,

cannot be disjoint. To see this put ny; = dmij, 1<j<<d+1, where any
two of the m’s are relatively prime. By the box principle, there are two
integers 1 <j; <jo<d-+1 satisfying ay = a%(modd), but then the
congruences aiﬂ.l(modd) and a%(modd) have a common solution, or the
system (6) is not disjoint, which proves (5) and the lemma.
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Denote Ay(z) = }'1. Put F(r) = max Ay(z) where the maximum

<z
is taken over all the sequences N which satisfy (5) for every 4 > 1. By
Lemma 1 we have

(6) Fx) > f(@).

Now we prove

THEOREM 2. Let ¢y > 0 be sufficiently small and c, sufficiently large.
Then

- x x
M Togarz <~ '@ < Gogaps-

Theorem 2 and Lemma 1 prove the upper bound in (3) and this
completes the proof of Theorem 1.

It is quite possible that f(z) < #/exp (logx)* for some ¢, > 0, but
the lower bound in (7) shows that the method used in this paper cannot
give f(x) < z/(logz).

To prove Theorem 2 we need some lemmas.

LEMMA 2. The number of integers n < x divisible by the square of a prime
p >logw is o{w[logz).

The number of these integers is clearly less than

= les)
— =
25k p? logz
which proves the lemma.

k .
Leva 3. Put n= [] pft, py <... < py. et ¢;> 0 be sufficiently
=1

small. Al but o (m/(logx)”ﬂ integers n < x have a prime factor p; satisfying
: j—1
(8) ;> (loga) [ [ ((loga)* = T).
i=1
A well known theorem of Hardy and Ramanujan [4] states that
for a sufficiently small ¢, > 0 for all but 0(m/(10gm)°3) integers n <«
we have
k

(9) 2 @ < (1+5)logloga.

=1
~ Hence we cleéyrly can agsume that n satisfies (9) and
(10) zfloge < n < x.

Denote by p; the greatest ‘prime factor of n which is less than log .
By Lemma 2 we can assume that a, i =1 for all 1 <1< %—r. Further
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sinee n satisfies (9) we evidently have

r
(11) ”pﬁi < (‘Iogm)zloglogm = T,.

=1
If (8) fails to hold for every r << j<k we have from (11)

(12) Pro1 < TyToy  Pryn < T5T5

and by induction with respeet to 4 (using (11) and (12))

(13) Pras < (LT
Hence finally from (13) and (9) by a simple calculation (expz == ¢

(14)  pp < (TT9)"" < oxp(2E+RIE18o1005  1og 14 1Y) < 0081085
From (14), (11) and (9) we obtain

2logloga

n < T,p% < gl

which contradicts (10) and hence Lemma 3 is proved.

Now we are ready to prove the upper bound in (7). Let n, < ... < n,
<& be a sequence of integers which satisfies () for all d > 1. Assume
that

(15) r = z/(logw)®s.

We shall show that (15) leads to a contradiction. First of all if (15) holds
then by Lemma 3 we can assume that for at least »/2 ny’s there is a &;
so that d;|n; and all prime factors of #;/d; are greater than d;(logw)®.
If d; has these properties we say that d; corregsponds to n;. Now we prove
the simple but crucial

LeMma 4. There is at least one d which corresponds to ot least w/d(logw)®
values of n;.

From (15) and what we just stated it follows that at least one
d; (1< d; <) corresponds to more than 7/2 > 2/2(logx)® nys. Thus if
our lemma would be false we would have

@®
i r @ 1 * '
o <7 S D7 =l
2(logz)* " 2~ (loga)’ £ d ? ( logw)’
an evident contradiection for ¢; <1, which proves Lemma 4.
Let now d be an integer which satisfies Lemma 4 and let 5, < ... < g
<@, s> w/d(logm)® be the n’s to which d corresponds. Put

x

, o
(16) ng = dv;, 1<i<s, 'vi<—d—, s>mw—)5,
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where all prime factors of v; are greater than d(logz). Let Viy ooy Vi
be a maximal set of ©’s which are pairwise relatively prime. We evidently
have by (5)

(17) Az gn(d) =1

since (ni?.l, "“‘12) =qd,1<j; <jy<t Now we show that (16) and (17)

contradict each other and this will complete the proof of the upper bound

in (7). ¢

Let ¢, < ... < g be the set of prime factors of [[v;,. Clearly
Pe=1

(18) z < tloga

since every m < # has fewer than logo distinet prime factors. The maxi-
mality property of v;, ..., v, implies that every v is divisible by at least
one of the ¢’s. Thus by (16), (18) and ¢; > d(logz)® we evidently have

z
b @ 1 o tlogz = t
‘Aogay = ° <E§"g§ <% @ ~d dogwy’

or t> d(logz)* which contradicts (17) and complefes our proof. Thus
as stated previously Theorem 1 is also proved.

To complete the proof of Theorem 2 we outline the proof of the lower
bound in (7), leaving many of the details to the reader. Let n be square-
free, put » =P, ... Pg, Py < ... < Py. Denote by N the sefi of all in-
tegers n for which

i1
(19) Pi<nl’i: P1=3, p;=35,

j=1
holds for every prime factor p; &> 3.

Now we show that the sequence N satisfies (5) for every 4 > 1.

To see this let n; < ... <my,s = gn(d) be a maximal set of »’s
the greatest common divisor of any two of which is d. Write now n;, = de;.
By (19) each »; must have a prime factor less than d and since we must
have (vy,v,) =1,1<j; <ja<8, we clearly have

s =gy(d)<n(d) <d

which proves that the sequence N satisfies (5) for every d > 1. To complete
the proof of Theorem 2 we only have to show that for sufficiently large
¢, (n;e N satisfies (19))

(20) Nay= Y1> -

< (1Og m)cz ’

We only outline the proof of (20). Let 2 <a, < ... < a < o™t
be the sequence of squarefree integers = 0(mod3,5,7,11) so that if
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ps and p;,, are two consecutive prime factors of 43 Pisa > 11, then
Pipy < pi*. It is immediate that the a’s satisfy (19) and it is not hard

to prove that
k

1 1
2 %~ Togays
7=1
It is immediate that the integers of the form

(22) P, p<m/a’7'7 (P:“l) =1,

also satisfy (19). From (21) we obtain that the number of integers of the
form (22) is less than (»(a;) denotes the number of prime factors of &)

k
g 2 (7)) > g

j=1

(21)

(23)

The factor 1/logx in (23) comes from the fact that an integer n < # can
be represented in the form a;p at most v(n) < loga times. (23) cloarly
implies (20), and thus the proof of Theorem 2 is complete,
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