J. Hardy

84

of squares of two linear forms. The number of representations of f as a sum of two squares is $r_2(2\eta)$.

Proof. If $\eta=0$, $r_2(2\eta)=r_2(0)$ is infinite as is the number of representations of f as a sum of two squares. Suppose $\eta\neq 0$. From Theorem 3 we see that η must be even, and with every factorization $\eta=2a_1\beta_1$ there is associated a representation of f as a sum of squares of two linear forms. We have only to count the number of factors a_1, β_1 . We may write $2\eta=i^r(1+i)^s\pi_1^{k_1}\pi_2^{k_2}\dots\pi_n^{k_n}$ where the π_i are odd primary primes, r=0,1,2, or 3, and $s\geqslant 4$. The number of factors of $2\eta/4$ is then $4(s-3)(k_1+1)\dots(k_n+1)$ which is just $r_2(2\eta)$.

References

- [1] G. L. Dirichlet, Recherches sur les formes quadratiques à coefficients et à indéterminées complexes. Journ. Math. 24 (1842), pp. 291-371.
- [2] Ivan Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc. 48 (1940), pp. 405-417.
- [3] A note on the number theory of quaternions, Duke Math. Journ. 13 (1946), pp. 397-400.
- [4] Gordon Pall, Sums of two squares in a quadratic field, Duke Math. Journ. 18 (1951), pp. 399-409.
- [5] Representation by quadratic forms, Canad. Journ. Math. 1 (1949), pp. 344-364.
- [6] L. W. Reid, The Elements of the Theory of Algebraic Numbers, New York 1910.

THE UNIVERSITY OF GEORGIA Athens, Georgia

Recu par la Rédaction le 23, 1, 1968

ACTA ARITHMETICA XV (1968)

On a problem of P. Erdös and S. Stein

by

P. Erdős and E. Szemerédi (Budapest)

The system of congruences

$$a_i(\bmod n_i), \quad n_1 < \ldots < n_i$$

is called a covering system if every integer satisfies at least one of the congruences (1). An old conjecture of P. Erdös states that for every integer c there is a covering system with $n_1=c$. Selfridge and others settled this question for $c \leq 8$. The general case is still unsettled and seems difficult.

A system (1) is called *disjoint* if every integer satisfies at most one of the congruences (1). It is trivial that in a disjoint system we must have

$$(n_i,\,n_j)>1 \quad ext{ and } \quad \sum_{i=1}^k 1/n_i\leqslant 1\,.$$

It is known that a disjoint system can never be covering [2] and that for a disjoint system we have [3]

(2)
$$\sum_{i=1}^{k} \frac{1}{n_i} \le 1 - \frac{1}{2^k}.$$

(2) is easily seen to be best possible.

Denote by f(x) the largest value of k for which there exists a disjoint system (1) satisfying $n_k \leq x$. P. Erdős and S. Stein conjectured that f(x) = o(x).

The main purpose of this paper will be to prove this conjecture. In fact, we prove the following

Theorem 1. For every $\varepsilon>0$ if $x>x_0(\varepsilon)$ we have $(c_1,\,c_2,\,\dots$ denote suitable positive constants)

$$\frac{x}{\exp\left((\log x)^{1/2+\epsilon}\right)} < f(x) < \frac{x}{(\log x)^{c_1}}.$$

On a problem of P. Erdős and S. Stein

The proof of the lower bound we obtained with the help of S. Stein [3]. First we outline the proof of the lower bound in (3) leaving some details to the reader.

Let p_r be the least prime greater than $\exp((\log x)^{1/2})$, $n_1 < \ldots < n_k$ are the squarefree integers not exceeding x the greatest prime factor of which is p_r . Put

$$n_j = p_{i_1} \dots p_{i_l} p_r, \quad p_{i_1} < \dots < p_{i_l} < p_r.$$

Let

$$a_j \equiv 0 \pmod{p_{i_1}}, \quad a_j \equiv p_{i_{s-1}} \pmod{p_{i_s}}, \quad 1 < s \leqslant l,$$

$$a_j \equiv p_{i_j} \pmod{p_j}.$$

The congruences (4) determine a_j uniquely $(\text{mod } n_j)$. It is easy to see that the system $a_j (\text{mod } n_j), 1 \leq j \leq k$, is disjoint. Clearly k equals $\psi_1(x/p_r, p_r)$ where $\psi_1(u, v)$ denotes the number of squarefree integers not exceeding u all whose prime factors do not exceed v. It easily follows from the results of de Bruijn and others [1] that for $x > x_0(\varepsilon)$

$$\psi_1(x/p_r, p_r) > \frac{x}{\exp((\log x)^{1/2+\epsilon})},$$

which proves the lower bound in (3).

The proof of the upper bound will be considerably more difficult. Let $N = \{n_1 < \ldots < n_k \leqslant x\}$ be an arbitrary sequence of integers. Denote by $g_N(d)$ the largest j for which there are j n's the greatest common divisor of any two of which is d. $(g_N(1)$ is thus the largest integer for which there are $g_N(1)$ n's which are pairwise relatively prime.)

Now we prove the following

Lemma 1. Assume that the system (1) is disjoint. Then we have for every $d\geqslant 1$

$$(5) g_N(d) \leqslant d.$$

Assume that (5) is not satisfied for a certain d and assume that the greatest common divisor of any two of the integers $n_{i_1}, \ldots, n_{i_{d+1}}$ is d. We show that the congruences

(6)
$$a_{i_j}(\operatorname{mod} n_{i_j}), \quad 1 \leqslant j \leqslant d+1,$$

cannot be disjoint. To see this put $n_{i_j} = dm_{i_j}$, $1 \leqslant j \leqslant d+1$, where any two of the m's are relatively prime. By the box principle, there are two integers $1 \leqslant j_1 < j_2 \leqslant d+1$ satisfying $a_{i_{j_1}} \equiv a_{i_{j_2}} \pmod{d}$, but then the congruences $a_{i_{j_1}} \pmod{d}$ and $a_{i_{j_2}} \pmod{d}$ have a common solution, or the system (6) is not disjoint, which proves (5) and the lemma.

Denote $A_N(x)=\sum_{n_l\leqslant x}$ 1. Put $F(x)=\max A_N(x)$ where the maximum is taken over all the sequences N which satisfy (5) for every $d\geqslant 1$. By Lemma 1 we have

$$(6) F(x) \geqslant f(x).$$

Now we prove

THEOREM 2. Let $c_3>0$ be sufficiently small and c_2 sufficiently large. Then

(7)
$$\frac{x}{(\log x)^{e_2}} < F(x) < \frac{x}{(\log x)^{e_3}}.$$

Theorem 2 and Lemma 1 prove the upper bound in (3) and this completes the proof of Theorem 1.

It is quite possible that $f(x) < x/\exp(\log x)^{c_4}$ for some $c_4 > 0$, but the lower bound in (7) shows that the method used in this paper cannot give $f(x) < x/(\log x)^{c_2}$.

To prove Theorem 2 we need some lemmas.

LEMMA 2. The number of integers $n \leq x$ divisible by the square of a prime $p > \log x$ is $o(x/\log x)$.

The number of these integers is clearly less than

$$\sum_{p>\log x} \frac{x}{p^2} = o\left(\frac{x}{\log x}\right)$$

which proves the lemma.

LEMMA 3. Put $n = \prod_{i=1}^{n} p_i^{a_i}, p_1 < \dots < p_k$. Let $c_3 > 0$ be sufficiently small. All but $o(x/(\log x)^{c_3})$ integers $n \leq x$ have a prime factor p_i satisfying

$$(8) p_{i} > (\log x)^{10} \prod_{i=1}^{j-1} p_{i}^{a_{i}} ((\log x)^{10} = T_{1}).$$

A well known theorem of Hardy and Ramanujan [4] states that for a sufficiently small $c_3>0$ for all but $o\left(x/(\log x)^{c_3}\right)$ integers $n\leqslant x$ we have

(9)
$$\sum_{i=1}^{k} a_i < (1 + \frac{1}{10}) \log \log x.$$

Hence we clearly can assume that n satisfies (9) and

$$(10) x/\log x < n \leqslant x.$$

Denote by p_r the greatest prime factor of n which is less than $\log x$. By Lemma 2 we can assume that $a_{r+i} = 1$ for all $1 \le l \le k-r$. Further

icm[©]

since n satisfies (9) we evidently have

If (8) fails to hold for every $r < j \le k$ we have from (11)

$$(12) p_{r+1} < T_1 T_2, p_{r+2} < T_1^2 T_2^2$$

and by induction with respect to i (using (11) and (12))

$$(13) p_{r+i} < (T_1 T_2)^{2^{i-1}}.$$

Hence finally from (13) and (9) by a simple calculation (exp $z = e^z$)

$$(14) p_k < (T_1 T_2)^{2^{k-1}} < \exp(2^{(1+1/10)\log\log x} \log 2 \cdot \log T_k T_2) < x^{1/(\log\log x)^2}.$$

From (14), (11) and (9) we obtain

$$n < T_2 p_k^{2\log\log x} < x^{1/2}$$

which contradicts (10) and hence Lemma 3 is proved.

Now we are ready to prove the upper bound in (7). Let $n_1 < ... < n_r \le x$ be a sequence of integers which satisfies (5) for all $d \ge 1$. Assume that

$$(15) r \geqslant x/(\log x)^{c_3}.$$

We shall show that (15) leads to a contradiction. First of all if (15) holds then by Lemma 3 we can assume that for at least r/2 n_i 's there is a d_i so that $d_i | n_i$ and all prime factors of n_i/d_i are greater than $d_i(\log x)^{10}$. If d_i has these properties we say that d_i corresponds to n_i . Now we prove the simple but crucial

LEMMA 4. There is at least one d which corresponds to at least $x/d(\log x)^5$ values of n_i .

From (15) and what we just stated it follows that at least one d_i $(1 \le d_i \le x)$ corresponds to more than $r/2 > x/2 (\log x)^{c_3} n_i$'s. Thus if our lemma would be false we would have

$$\frac{x}{2(\log x)^{c_3}} < \frac{r}{2} \le \frac{x}{(\log x)^5} \sum_{d=1}^{x} \frac{1}{d} = o\left(\frac{x}{\log x}\right),$$

an evident contradiction for $c_3 < 1$, which proves Lemma 4.

Let now d be an integer which satisfies Lemma 4 and let $n_1 < \ldots < n_s \le x$, $s > x/d(\log x)^5$ be the n's to which d corresponds. Put

(16)
$$n_i = dv_i, \quad 1 \leqslant i \leqslant s, \quad v_i \leqslant \frac{x}{d}, \quad s > \frac{x}{d(\log x)^5},$$

where all prime factors of v_i are greater than $d(\log v)^{10}$. Let v_{i_1}, \ldots, v_{i_t} be a maximal set of v's which are pairwise relatively prime. We evidently have by (5)

$$(17) d \geqslant q_N(d) \geqslant t$$

since $(n_{i_1}, n_{i_2}) = d$, $1 \le j_1 < j_2 \le t$. Now we show that (16) and (17) contradict each other and this will complete the proof of the upper bound in (7).

Let $q_1 < \ldots < q_z$ be the set of prime factors of $\prod_i v_{i_r}$. Clearly

$$(18) z < t \log x$$

since every $m \leq x$ has fewer than $\log x$ distinct prime factors. The maximality property of v_{i_1}, \ldots, v_{i_t} implies that every v is divisible by at least one of the q's. Thus by (16), (18) and $q_1 > d(\log x)^{10}$ we evidently have

$$\frac{x}{d(\log x)^5} < s < \frac{x}{d} \sum_{i=1}^{z} \frac{1}{q_i} < \frac{x}{d} \cdot \frac{t \log x}{q_1} < \frac{x}{d} \cdot \frac{t}{d(\log x)^9},$$

or $t > d(\log x)^4$ which contradicts (17) and completes our proof. Thus as stated previously Theorem 1 is also proved.

To complete the proof of Theorem 2 we outline the proof of the lower bound in (7), leaving many of the details to the reader. Let n be square-free, put $n = p_1 \dots p_k$, $p_1 < \dots < p_k$. Denote by N the set of all integers n for which

(19)
$$p_i < \prod_{j=1}^{i-1} p_j, \quad p_1 = 3, \quad p_2 = 5,$$

holds for every prime factor p_i , $i \geqslant 3$.

Now we show that the sequence N satisfies (5) for every $d \ge 1$.

To see this let $n_{i_1} < \ldots < n_{i_g}$, $s = g_N(d)$ be a maximal set of n's the greatest common divisor of any two of which is d. Write now $n_{i_j} = dv_j$. By (19) each v_j must have a prime factor less than d and since we must have $(v_{i_1}, v_{i_2}) = 1, 1 \le j_1 < j_2 \le s$, we clearly have

$$s = g_N(d) \leqslant \pi(d) < d$$

which proves that the sequence N satisfies (5) for every $d \ge 1$. To complete the proof of Theorem 2 we only have to show that for sufficiently large c_2 $(n_i \in N$ satisfies (19))

(20)
$$N(x) = \sum_{n_i \le x} 1 > \frac{x}{(\log x)^{c_2}}.$$

We only outline the proof of (20). Let $x^{1/2} < a_1 < \ldots < a_k < x^{3/4}$ be the sequence of squarefree integers $\equiv 0 \pmod{3, 5, 7, 11}$ so that if

90

P. Erdős and E. Szemerédi

 p_i and p_{i+1} are two consecutive prime factors of $a_i, p_{i+1} > 1.1$, then $p_{i+1} < p_i^{i,i}$. It is immediate that the a's satisfy (19) and it is not hard to prove that

(21)
$$\sum_{j=1}^{k} \frac{1}{a_j} > \frac{1}{(\log x)^{c_4}}.$$

It is immediate that the integers of the form

(22)
$$a_i p, \quad p < x/a_i, \quad (p, a_i) = 1,$$

also satisfy (19). From (21) we obtain that the number of integers of the form (22) is less than $(\nu(a_j)$ denotes the number of prime factors of a_j)

(23)
$$\frac{1}{\log x} \sum_{i=1}^{k} \left(\pi \left(\frac{x}{a_i} \right) - \nu(a_i) \right) > \frac{x}{(\log x)^{c_3}}.$$

The factor $1/\log x$ in (23) comes from the fact that an integer $n \leq x$ can be represented in the form $a_j p$ at most $v(n) < \log x$ times. (23) clearly implies (20), and thus the proof of Theorem 2 is complete.

References

- [1] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $\geq y$, Nederl. Acad. Wetensch. Proc. Ser. A (Indag. Math.) 54 (1951), pp. 54-60.
- [2] This result was first proved by L. Mirsky and D. Neuman, see P. Erdős, Egy kongruenciarendszerekről szótó problémáról, Mat. Lapok 3 (1952), pp. 122-128, see also S. K. Stein, Unions of arithmetic sequences, Math. Annalen 134 (1958-59), pp. 289-294.
 - [3] P. Erdös, Számelméleti megjegyzések IV, Mat. Lapok 13 (1962), pp. 241-243.
 - [4] S. Ramanujan, Collected papers (1927), pp. 262-275.

Recu par la Rédaction le 16, 2, 1967

LIVRES PUBLIÉS PAR L'INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES

- Z. Janiszewski, Oeuvres choisies, 1962, p. 320, \$5.00.
- J. Marcinkiewicz, Collected papers, 1964, p. 673, \$10.00.
- S. Banach, Oeuvres, vol. I, 1967, p. 381, \$10.00.

MONOGRAFIE MATEMATYCZNE

- 10. S. Saks i A. Zygmund, Funkcje analityczne, 3-ème éd., 1959, p. VIII+431, \$4.00.
- 20. C. Kuratowski, Topologie I, 4-ème éd., 1958, p. XII+494, \$8.00.
- 21. C. Kuratowski, Topologie II, 3-ème éd., 1961, p. IX+524, \$8.00.
- K. Kuratowski i A. Mostowski, Teoria mnogości, 2-ème éd., augmentée et corrigée, 1966, p. 376, \$ 5.00.
- S. Saks and A. Zygmund, Analytic functions, 2-ème éd., augmentée, 1965,
 p. IX+508, \$ 10.00.
- 30. J. Mikusiński, Rachunek operatorów, 2-ème éd., 1957, p. 375, \$4.50.
- 31. W. Ślebodziński, Formes extérieures et leurs applications I, 1954, p. VI+154, \$ 3.00.
- W. Sierpiński, Cardinal and ordinal numbers, 2-ème éd., corrigée, 1965, p. 492,
 \$10.00.
- 35. R. Sikorski, Funkcje rzeczywiste I, 1958, p. 534, \$5.50.
- 36. K. Maurin, Metody przestrzeni Hilberta, 1959, p. 363, \$5.00.
- 37. R. Sikorski, Funkcje rzeczywiste II, 1959, p. 261, \$4.00.
- 38. W. Sierpiński, Teoria liczb II, 1959, p. 487, \$6.00.
- J. Aczél und S. Gołab, Funktionalgleichungen der Theorie der geometrischen Objekte, 1960, p. 172, \$4.50.
- 40. W. Ślebodziński, Formes extérieures et leurs applications II, 1963, p. 271, \$8.00.
- 41. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, 2-ème éd., corrigée, 1968, p. 520, \$12.00.
- 42. W. Sierpiński, Elementary theory of numbers, 1964, p. 480, \$12.00.
- 43. J. Szarski, Differential inequalities, 2-éme éd., 1967, p. 256, \$8.00.
- 44. K. Borsuk, Theory of retracts, 1967, p. 251, \$ 9.00.
- 45. K. Maurin, Methods of Hilbert spaces, 1967, p. 552, \$12.00.
- 46. M. Kuczma, Functional equations in a single variable, 1968, p. 383, \$9.00.
- 47. D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces, 1968, p. 380, \$ 12.00.
- 48. K. Maurin, General eigenfunction expansions and unitary representations of topological groups, 1968, p. 368, \$ 12.00.

LES DERNIERS FASCICULES DES DISSERTATIONES MATHEMATICAE

- LVIII. A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, 1968, p. 92, \$2.50.
- LIX. A. Sniatycki, An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion, 1968, p. 45, \$1.00.
- LX. S. Trybuła, Sequential estimation in processes with independent increments, 1968, p. 49, \$1.00.