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Upper bounds for kth power coset
representatives modulo »
by

K4arr K. NoRTON (Boulder, Colo.)

1. Introduction. Let n and k be positive integers, let O'(n) denote
the multiplicative group consisting of the residue classes mod n which
are relatively prime to n, and let C(n) denote the subgroup of kth powers.
Write » = w(n) = [O(n): Cr(n)]; and let

1= .(]0(72" k)< nin, k) <..< Go—r(n, k)

be the smallest positive representatives of the » cosets of Cr(n). In this
paper we shall obtain upper bounds for g,(n, %), 0 <m < v—1.

To the best of the author’s knowledge, all previously published work
on this problem depended on the assumption that » is a prime p, and
many of the estimates obtained are effective only for large p. Much of
this work was restricted to special values of & (e.g., k =2,3, or 5), and
all of it was devoted to obtaining estimates for either g:(p, k) (the small-
est kth power non-residue mod p) or g,_,(p, k), with no attention being
given to the estimation of g,(p, k) as a function of m.

In [21], [22] (note that [21] is reprinted in [24], pp. 54-57), I. M.
Vinogradov obtained results from which it follows immediately that

(1.1) Go1(p, k) < L--wp™logp

v
(here » = (k, p—1)), and in [23], he obtained a better inequality for
g1(p, k) when p is very large. Davenport and Erdos [8] improved Vino-
gradov’s estimate for g,(p, %) when » > 4, and they showed also that

(1.2) Go1(D, k) < p'*-F

for p sufficiently large, where § = f#(») is positive and tends to 0 as» — +oco.
J. H. Jordan [12] showed that f(») could be replaced by a funetion f*(»)
which is larger but still tends to 0. ’ '

Using D. A. Burgesy’s remarkable estimates for character sums
[4], [B], [6], it is possible to obtain dramatic improvements of some of the
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above results. In [3], Burgess improved a result of Vinogradov by showing
that

(1.3) 91(p, 2)

for each ¢ >0, where y = {4¢*)"". In [7], he showed that the maximum
number of consecutive integers in a given coset of Cp(p) is O(p"*logp),
where the implied constant is absolute (this improves a result of Daven-
port and Erdss [8], p. 264). Jordan [13], using one of Burgess’s estimates,
showed that

(1.4)

=0(p"")

gv_l(_p, 3) == O(p;'l'a), gv_l(p’ 5) — O(pv,lvu)

for each ¢ >0, where { iz approximately 0.191 and 0.2275 < 0 < 0.23
(these bounds for ¢ are misprinted in his paper). The first of these results
improves Theorem 3 of [8].

For further results and references, see [1], [2].

In the present paper, we do not restrict the modulus » to prime
values, and some of our results give specific estimates which are often
fairly effective even for small values of #. In Theorem (3.18), we give
a general inequality for gn(n, k) involving character sums. From this
we can derive inequalities such as

12
(1.5) Gn(n, B) <1 -93”/2(&) n*logn
@(n) y—m

for 0 <m <»—1, where » denotes the number of distinct prime factors
of n. Using (1. 5) it can be shown that g,_,(n, k) = O(n"***) for each
& >0, where the implied constant depends only on % and e. We obtain
better results by using Burgess’'s inequalities for character sums. In
particular, we show that

(1.6) gv_l(/n’ k) — O(”a/a.[n@)’

and in certain cases (for example, if n is cubefree, or if 24(n, k) and %
is squarefree), we have
(1.7) Go_1(n, k) = O (n!*+e),

If we make the further assumptidm that the number of distinet prime
factors of » is bounded above by a function of % alone, then (1.6) and

(1.7) can be improved slightly by using a method due to Davenport and
Erdos, and we obtain

(1.8) Goor(m, k) = O (nP0-98+ey
whereas if the conditions for (1.7) hold, it follows that
(1-9) gu_l(ﬂ, k) - 0(71’(1—-6)/44,5)'

Here 0 is a very small positive function of % (and 6 - 0 as k — - o0).

i=m®
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In Section 8, we mention an application of results like (1.5) to a seem-
ingly unrelated problem in the theory of congruences. This will be the
subject of a future paper.

This paper is an extension of part of the author’s Ph. D. thesis [17],
which was written at the University of Illinois. I would like to thank
Professor Paul T. Bateman, my thesis advisor, for his guidance. Thanks
are due also to Dr. Richard L. Roth for some helpful comments.

2. Notation. Except in a few obvious cases, small Latin letters other
than e and 7 represent integers, and p always denotes a (positive) prime
number. When # >1 and we have occasion to refer to the prime factor-
ization of n, we shall always write n = p{!... ppr, where p; < ... < P»r
and a, 1 for each j. With reference to this factonza:hon of n, we Wnte

k= p;kl,, where f; >0 for each j and (ky,p;...p,) =1. We
deﬁne i . .
min{e;, f;+1} i p; is odd,
Vi = . .
! min{e;, fi+2} i p;=2.
Also, let
2 if =nis even and % is odd,
A= Ag(n) = X
1 otherwise.

When there is no risk of confusion, we write ».(n) =, g;(n, k) =g;.

¢ denotes Euler’s function, and w is the Mobius function. y always
denotes a residue character, and y, is the principal character with respect
to the modulus in question. y denotes a typical character mod » such
that wk = y,. (Such a character is said to have exponent %.)

If B is a set, |B] means the number of elements in B. An empty sum
means 0, and an empty product means 1. [f] means the largest integer
< f. Finally, “iff” means “if and only if”.

3. Basic lemmas.

(8.1) Leya. Let G be a finite multiplicative Abelian group, and let GF
denote its character group. If H is any subgroup of @, define

(3.2) H = {06%: 6(z) =1 for all zeH}.
For each 6¢H', define 0* on GJH by 6" (xH) = 0(z). Then:

(3.3) G is isomorphic to G*;

(3.4) = {zeG: 0(z) =1 for all 6cH'};
(8.8) The mapping 6 — 0% is an isomorphism of H' onto (G[H)";
\HI  if 0eH
(3.6) Dlb(a) = . L
&l 0 ’Lf 0eG"—H H
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[G:H] if weH,
3. O(x) =1{
(8.7) (,g; () ‘0 if weG—H;

(8.8) If o = [G: H] and @y, ..., 2, are any representatives of the distinet
cosets of H, then
o i

gﬁ(m: o i

Proof. (3.3), (3.4), and (3.5) are proved in [9], pp. 194-196, and in
[11], pp. 212-214. The first part of (3.6) is obvious, while if Oe* 11",
there exists yeH such that 6(y) = 1, and

0(z) = Y 0(ay) = 0y
2 () = 2 0(my) = 0(y) %
so that the second part of (3.6) follows. (3.7) is proved similarly (using
(3.3), (3.4), and (3.5)).
To proye (3.8), we apply (3.5).

D 0(@) = 6" (0, 1) =
i=1 =1

by (3.6) (with & and H both replaced by G/H). Since 0* iy principal iff 0
is principal, (3.8) follows.

For the remainder of this section, all residue characters are to the
modulus n, and y denotes the typical character of exponent k. Recall
that r is the number of distinet prime factors of .

0 is the principal character,

OcH' and 0 is mon-principal.

0(x),

o if 0% is principal,

0 otherwise,

(3.9) LemMMa. For 0 <s<y—1 and 0 <h<<n, let Ny(h) be the number
of @ satisfying 1 < < h and zegsCr(n). Then

(3.10) Ns(h) = v~ {n ™ @ () b+ Ry (h) + Ay (h)},
where

(3.11) Bu(h) = D' u(d)([h[d]—h/d)

and ‘””

(3.12) Asth) = 3 w(gy) i’w(m.
Turthermore, T -

(3.13) “—lzls(h) =0,

(3.14) Zjdz(h) =v 3| ﬁ’w(w)iz,

and . e

(3.15) [Ba(B) <27 i n>1.
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Proof. In Lemma (3.1), take @ = ((n) and H = Ci(n), so H' is

just the set of all . By (3.5) and (3.3), the number of pis [G: H] =,

and by (3.7), )

it 2eg,Cr(n),

© 1 :
-1 z - —
’ ;’ v@)vig) 0 otherwise.

Summing this formula over 1 < x <h, we get

3 R
B16) W) =5 37 Bplarvlae) =57 3 zolo) +57 ulh.
y T=1 - =
Now,
n " 5" -
3.17 70(@) = pd)y=du@ M 1
( ) Jg; ’ gd]( 1) éiTnl 1<o<h,dix
= > u(d)h]d+ R,(h).
amn
Thus (3.10) is proved, with R, (%), 4:(h) defined by (3.11) and (3.12)
respectively.

(3.13) can be obtained by summing (3.12) over s and applying (3.8),
or by noting that

-
|

1

\%

b
No(h) = Do)

8=0

and using (3.16).
To prove (3.14), square both sides of (3.12) and sum over s to get

y-1 »—1 R
D Aam =3 3 ) vale) B (9
§=0 S=0 y1#Eg#Yy T,Ty=1

Inverting the order of summation and using (3.8), we get (3.14).
Finally, if » >1,

—Rm < Y (wla—[hja)< 3 1=13,

din,u(d)=1 din,pd)=1
say, and likewise
“‘-Rn(h)>‘ ! 1 -——22.
A id)=—1
Since
DT = ud) =0
am
and

D—Z= D |ud) =2,

din

(3.15) follows immediately.
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The following fundamental result indicates that upper estimates
for character sums can be applied to obtain upper bounds for the numbers
I (0, k).

(3.18) THEOREM. For 0 < m < v—1, we have

p—1
7 m \? 212 n
<14+ — — —— Ry (gm—1).
< 14— ) (213 v}~y mto
el o

Proof. Let m be fixed throughout this proof, and write h,, = g, —1.
Also write H,, = n~*¢(n)hy,+ Ry (hy). By definition,

Ng(h) =0 for 0<h<yg,—1,
so by (3.10),
(3.19) do(hy) = — Hy, for m< s <<y—1

By (3.13), it follows that
m—1

0 =g; As(hm)—("’_qn)}[m,

and applying the Cauchy-Schwarz inequality, we get

m—1

(r—mPH < {21 1} {Z‘ A ()}

8=0 §=0

(3.20)

If m %0, it follows from (3.19) and (3.20) that
-1
D) Ailh) = = (v —m)+ (y—m)} HY,,
8=0
so by (3.14),
T

r—1
5 m m Rl
H, < — - E 2 = e § E ;
m S v(’"_gn) A.g(hm) —m ‘ : 1/1(1})

§=0 iy e

2
b

and this is obviously true for m = 0 as well. By (3.17), I, > 0, and
the conclugion of the theorem follows.

In order to obtain specific estimates for Jm, We examine the sum in
braces in Theorem (3.18). The method is as follows: for each positive
divisor d of n, we collect the terms for which v has conductor d, then apply
well-known estimates for character sums. The next three sections are
devoted to facilitating this program. We shall first find the valne of v,
then discuss various upper bounds for absolute values of character sums,
and finally caleulate the number of characters mod n having given con-
ductor and exponent.
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4. The value of ». In this section, we always write » — e(n).
(4.1) LEMMA. For n > 1, w(n) = v (1) ... v (p2r).

Proof. By an easy application of the Chinese remainder theorem,
C(n) is isomorphic to the (external) direct produet of C(pd), ..., C(plr)
(see [11], p. 58). Hence Cy(n) is isomorphic to the (external) direct product
of Crp(p1h), ..., Cr(pfr). The lemma follows immediately.

(4.2) Lmwia. If p is odd and a1, then wi(p”) = (k, p(p%). Also,
v (2) = 1, and v (2%) = (%, 2)(k, 2°°%) for o > 2.

Proof. Suppose that p is odd, and let g be a primitive root mod 7.
Then ¢' is a kth power mod p" iff the congruence t = mk (mod ¢ (p™))
can be solved for . As is well-known, this congruence is solvable iff
& = (k, p(p®) divides t. Thus C,(p%) is represented by the numbers g%,
0<u<o@)/d, so [Cc(p)] = ¢(»")/d and »(p®) = d.

If @ > 2, then any odd number # satisfies a congruence of the form
@ = (—1)"5°(mod 2%), where y and z are uniquely determined mod 2
and mod 2%, respectively. Proceeding as before, it follows easily that
(2% = (k, 2) (%, 2°7%).

(4.3) LeMMA., For n >1,
w(n) = [ [ oy~ (k, p;—1)}.
j=1

Also, v (n) < 2K, (A and y; are defined in Section 2.)
Proof. If (b,c) =1, then (ab, ¢) = (a, ¢). Applying this twice, we get
() (o, g (pf7)) = Pk, py—1) = pif ' (k, p;—1), it p; is 0dd.

Now suppose that p;, = 2. If a;>2 and f; = 0, then #»,(2%) =1 by
Lemma (4.2). If a, =1, or if ¢, > 2 and f; >0, it is easy to see that
2,(2%) = 21171, The first conclusion follows, and the second is obvious
after Lemmas (4.1) and (4.2).

5. Bounds for character sums. Let y be a character mod n, and
let D be the set of positive divisors d of » with the following property:
2(z) =1 whenever & = 1 (modd) and (#,n) = 1. The conductor of x
(which we denote by K (y)) is defined to be the smallest member of D.
If K(y) =n, then x is said to be primitive mod n (or to belong properly
to the modulus n). (The Dbasic properties of conduectors and primitive
characters arve discussed in [15], pp. 479-494, [16], Vol. LI, pp. 330-334,
and [11], pp. 217-224.)

(5.1) Lemna. Let y be o character mod n, let d be its conductor, and define X
as follows: if (y,d) >1, let X(y) =0; if (y,d) =1, choose y' so thai
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y' =y (mod d) and (y',n) =1, and let X(y) = x(y'). The?n X is a (well-
defined) primitive character mod d (we refer to X as the pmmz.m'.oe'clmmotey
mod d induced by x). If qi,y..., g, are the distinct primes dividing n but
not d (v may be 0), then for h =1,

L
| D] <
Y=1

Proof. We refer to [15]. The first assertion is proved on pp. 481-482,
and (5.2) follows easily from the identity

© v b

rmym= = {[T(L =X (@)g)} 3 X (m)m™,

j=1 TR

PRSI

clay...qy 1<U<hjc

(5.2)

m=
which is proved for .o >1 on pp. 482-483. . .
The following lemma collects much of the known information on
bounds for character sums. The rather odd phrasing of the lemma is
for the purpose of convenience in obtaining our main results.

(6.3) LEMMA. Let q,h,t be any positive integers with ¢ = 3, and suppose
that y is primitive mod q. Then for 1 <z<6,

I
(5.4) | D] < a1 g, 1,1,
y=1
where:
(3/4)logg if t=1,
(5.5) Fi{g,h,t) = B i i>1;
(2n)*(logg+2loglogq+ 4,) if t=1,
(5.6)  TFy(q, hyt) = 5 if  t>1;

7~ (logg+2loglogg+A4,) if t=1 and y(—1)=1,
(57) Fs(q,h:t)= h

otherwise;

Ay(e)Wg for amy given & >0, if 1 =2,
(5:8) Tulg by t) =1 if 12
Ashl“”‘logq if qis pm’m@,
(5.9) Fs(g, hy 1) = [ if g is not prime;

Ag(e, )WY for any given £ >0, if q is cubefree,
h if

(“Cubefree” means not divisible by the cube of amy prime.) Ay, 45, A; are ab-
solute constants, while A,(e), Aq(e, t) depend only on the indicated arguments.

(5-10) Felg, b, 9 z{ q is not cubefree.

h“@
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Proof. (5.5), (5.6), and (5.7) applied to (5.4) give variants of the

Pélya-Vinogradov inequality ([18], [21], [24], pp. 54-57, [20], [147).

For completeness, and also for the sake of a future application (see

Section 8), we shall give a complete proof of (5.4) when z = 1.
Write e(t) for ¢, and define

T, 1) = D z(w)elylg).

Since y iy primitive mod q, we have

(5.11) It(g, 2)) = ¢*
and
< -
(5.12) 2 x@elmylg) = 7 (m)w(q, y)

for any integer m (see [15], pp. 483-486 and 492-494 or [16], Vol. III
PD. 330-334). Using (5.12) (with % Teplaced by x), we have

el

b a-1 b
7)) D xlm) = D) N etmylq)
M=a y=1 m=a N
q-—-1
= D7) lewaje)—e(y (b+1)/g)} {1 —e(y /g,
V=1

Applying (5.11), it follows that

4 g-1 1
N ! | *
q”‘}m;z(m! <y§ ese(mylg) = 2gese(ny/q),

where ! = [(¢—1)/2] and * indicates that the term y = ¢/2 is omitted
if g is even. Since :
y+12
ese(nyfg) < f ese(wu/q)du
y-12
for 1 <y <1, we have

b a2

Zx(77z)!<2 f ese(mu/q) du

‘m=a 1/

9

(5.13) ¢

= 2n‘1q16g 00t(m/4g) < 27 glog (4=~ 1¢).

Now if 2 =1 and ¢ is 3 or 4, (5.4) is obvious.
If ¢ =5, then

(3w /8—1)logg > (0.17)(1.6) > log(4/x),
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so by (5.13),
b
| Z‘x(m)\< (3/4)¢"logg,

m=a

which completes the proof of (5.4) when z = 1.

When z = 2 or z = 3, (5.4) can be obtained by a more complicated
method using Fourier series. This was essentially carried out by Landau
in [14], pp. 79-86. Landau’s method yields the values of I';(q, h, t) and
F.(g, h,t) given in (5.6) and (5.7), respectively, except that the constant
2735~ i3 obtained in (5.7) instead of the smaller eonstant =~*. The
latter constant can be obtained Dy using the Fourier series of |sinaz| to
improve Landau’s estimate of

nw
2 m™ |sinma|
M==1
(see [19], pp. 81 and 274).

Finally, if 2 = 4,5, or 6, then (5.4) follows immediately from the-
orems of Burgess ([6], p. 524).

In (5.6) and (5.7), the respective constants (2w)™' and =~* seem
to be the best known. It is not hard to calculate explicit values for 4,
and A, using Landau’'s method. Burgess did not calculate admissible
values of A4,(¢), 4;, and A4(e,?), and it is apparently not known how
small they can be taken.

Using (5.2), each of the inequalities in Lemma (5.3) can easily be
extended to arbifrary non-principal g, only a change in the constant
factor being required (see [14], pp. 85-86). This is not necessary for our
purposes.

6. The number of characters mod n with given expoment and con-
ductor.
(6.1) DeriNITION. For each positive integer d, let 2,(d) denote the number
of primitive characters mod d having exponent k.

(6.2) LmMmA. Let d be any positive divisor of n. Then there are exactly ()
characters mod n having conductor d and exponent k.

Proof. Let ¢*(n,d, ) be the set of y mod n such that K(g) = d
and y* is principal. If x€C*(n, d, k), define f(y) = X, the primitive
character mod d induced by y (see Lemma (5.1)). It is easy to see that f
is & one-one mapping of ¢*(n, d, k) into 0*(d, &, k); we shall show that f
has image C*(d, 4, k).

Suppose that X is any member of 0*(d, d, k), and define x(2) t0 be
X(2) if (,n) =1 and 0 otherwise. Clearly x is a character mod n of
exponent k. Let d' = K(y). If y =1(modd) and (y,n) = 1, then x(¥y)

bm©
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= X(y) = 1,50 d'|d (see [16], Vol. IIT, p. 331, Hilfssatz 4 or [11], p. 219,
XI). On the other hand, suppose y=1(modd’) and (y,d) =1. Let
15 - -5 gv be the distinet primes dividing # but not d (v may De 0). Choose 2z
such that ¢ = y(mod d) and z = 1 (mod Q- q).Thenz =y =1 (mod d')
and (z,n) =1, so X(y) = X(z) = #(#) =1 (since d' = K(y)). Henece
d < d' (because K(X) = d), so d = d' and 2eC*(n,d, k). Finally, it is
clear that f(y) = X.
Hence |C"(n,d, k)| = |0*(d, d, k)] = 24(d).

(6.3) LEMMA. For fized &, Qu(n) is multiplicative, and
for
Proof. As we remarked in the proof of Lemma (3.9), the number of
characters v mod » with exponent k is vx(n). From this' it follows that
m(n) = ' Ou(d),
din
by Lemma (6.2). By the Mébius inversion formula,

Qun) = D w(@)we(nfd).
din

(p%) = w(®")—m(p"Y) b>1.

(6.4)

Since Qp(n) is a “Dirichlet produet” of multiplicative functions (ef.
Lemma (4.1)), it must be multiplicative, and the formula for 2, (p°) follows
from (6.4).

7. The main results. After Theorem (3.18), we need upper estimates
for sums of the form

(7.1) 8=
A

h
| 2
2| Y@l
#ip T=1

where y runs through the non-principal characters mod » having expo-
nent k. The following lemma gives such estimates.

(7.2) LemMA. Assume that » =w(n) >1 (s0 n>3 and &k > 2). Let h
and t be any positive integers, and let S be defined by (7.1). Then for1<z<6,
we have

(7.3) 8 < 2" RY(pF ... pir b, )T,
where
(7.4) T'=—1+ ﬁ(l—;—(k,pj_l)p;(j{1+(i+l)/2iz}—1)_
Furthermore, =
(7.5) T< 2'v( - p;'a‘)(t“"”z.
7=1
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=3, we can take I,
1) == 1 for each

(We are using the notation of Lemma (5.3). If ¢
to have the first value given in (5.7) if ¢ = 1 and if ¢(—
Y # x; otherwise Fy = h.)

Proof. Temporarily fix y # x,, and let d = K(y), so d|n and
d>3. Let ¥ be the primitive character mod d induced by v, and let
G1y--+y 4y be the distinct primes dividing » but not d, so 0 < v < r—1,

By (5.2},
JZVJ(J,)‘(\\ 2' y ¥(x)|,

(7.6) >
clay..ay 1<zhie

and by Lemma (5.3),

(7.7) by yf(m)[ < @V, TR, 1) < dUIE R, 1)
1<§Iz/c
for 1 <2< 6 (for the case z = 3, note that ¥(—1) = »(—1)). Com-

bining (7.6) and (7.7), we get

h
| Ywt@)] <oratr i a,n, .
Z=1

Hence
(7.8) 8 = > }\"’w
d|n,¢l>1 V,,K(y:) d z=1
< N 2rrg e g h 1) 9,(d)

din,d>1

— 21{2%—2(1)1'1 O ) an p/] }

where 2, indicates summation over all r-tuples b,, ..., b, with 0 < by << ay
(for all j) and some b; # 0, and where we have mpphed Lemmm (6.2)
and (6.3) (if z =3, F, is interpreted as in the statement of the present
lemma).

Applying Lemmas (6.3) and (4. 2), as well as the first equation in
(4.4), it is easy to see that if p, is odd, then

» pgr)(t+l)lﬂt‘pi (p?l

(1 it by =0,
(T.9)  Qu(pl) <2y by p—1)(1—p7Y) i 1<b<fj+1,
0 i b >f1
Likewise, if p; = 2 and k is odd, then
(7.10) @y =t T =0
it b>=1,
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while if % is even,
1 if b =0,
(7.11) 2.2 =10 if b=1orb>ft2,

2 it 2 b <f 2.

Recalling the definitions of y; and 4 = ix(n) (see Section 2), and

applying (7.9), (7.10), and (7.11), we see that the sum 2 in (#.8) can be
written in the form
r
(1.12) or—2 Zq {Fﬁ (}72’ . p?", R, 1) n (p?j(t+1)[‘_’£2 Qlc(p?i))}’
2 . ;4
where 2, indicates summation over all b, ..., D, with 0 < b; <y, (for

all j) and some ¥; 5= 0. It is clear that the qua,ntlty in (7.12) does not
exceed

227’—21;@(19'}? I, B, t)Znn {p?j(l+1)/2f“g (p?i)}
“i=2

0 g; b(t+1)/vt< p))}

Suppose that p; is odd. Using (7.9), a routine caleulation gives

= 22 Fl(p}r ... pir, D, t){

;'=1.

vi o
(7.13) ) pf I 04 (0]) < 1ok (I, py—1) 0

b=0

and an application of (7.11) shows that (7.13) holds also when % is even
and p; = p; = 2. Combining (7.8) and (7.13) with (7.12) (and the result
immediately following it), we get (7.3). Finally, we note that

r
T < [T, p—1)ppietsioy,
j=2

so that (7.5) follows from Lemma (4.3).
In applying (7.3) and (7.5), it is useful to note the obvious ine-

quality
»
[Jo <
j=1

There is equality in (7.14) if, for example, » is squarefree and 1 = 1.
We can now derive (1.5), which is trivial if m = 0. H 1< m <»—1
and & = gn(n, k)—1, then by Theorem (3.18) and (3.15),

12
h< K {( ) S1/2+2r—1},
p(n)

(7.14)

m

v—m
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where 8 is defined by (7.1). Applying Lemma (7.2) with 2 = = 1 and
using (5.5), we obtain (1.5) by an easy calculation.

If ¢t = 1, then (7.13) can be improved slightly. Using (7.9) and (7.11),
we find that

7.
(7.15) D7 Q) < 1+ (e, pi—1) (571 —1) (94 1)
b=0

it p; is odd, or if p; = 2 and k is even. This fact is applied in the proof
of the next theorem, which is of particular importance for the application
mentioned in Section 8.

(7.16) TuroreM. Let p be odd, a>1, and wrile &k = p'ky, where ptk,.
Also write y = min{a, f+1} and 6 = (k,p—1) = (ky, p—1). Then for
0 < m < (ph—1 = p""*6—1, we have

Im (P", %) < L4 {md ("~ 6—m)} ' yp” =V logp.

Proof. Write i = g, (p”, k)—1, and let » = p® in Theorem (3.18).
By (3.11), Ry(h) = hjp—[h/p] >0, so

12
P m e
< | &Y
(7.17) h 1 ('v L) s

where v = »,(p”) = p"™'6 (by (4.4)) and § is given by (7.1). If » =1,
there is nothing to prove. Otherwise, we can combine (7.8), (7.12) (and
the result immediately following it), (7.15), and (7.17) (taking v =2z = 1
=t=1,p1=p, 71 =7) to get

3p mo
4(p—1)

172 . Yz
) ypy—lﬂlogp < (—;—’)—1’94(3) yp”*“zlogI?'
y—"m

B <{ <1+zfl>‘”2}(

y—1m

The estimate of Theorem (7.16) is sometimes weaker than the trivial
estimate g (p", %) < p“ (for example, suppose y = 4> 2 and m == Prre—1).
Vinogradov’s classical result (1.1) follows on taking a =1 in The-
orem (7.16).

We shall not write down explicitly the estimates for g,,(n, k) which
can be obtained by combining Theorem (3.18), Lemma (5.3), and Lemma
(7.2) when 2 =2 or 2 = 3. It is interesting to note that when % is odd,
we can apply the non-trivial part of (5.7) to Lemma (7 .2), for in this
cage, the fact that p(—1) =1 for each w follows from the equation
(1) = yo(—1) = 1.

We now apply the estimates of Burgess given in (5.8) and (5.10)
%0 obtain inequalities for g, (n, k).

bm©
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(7.18) THEOREM. Let ¢ > 0, let t be any positive integer, and suppose v > 1.
If i=1or ¢t =2 or max{y;,..., »} <2, then

¢ w \U2 Tyt e
O e | e | )
p(n) v— &,

for 1<m <v—1, where 4,(¢, 1) depends only on & and t.

Proof. Let k = g, (n, k)—1, and let § be given by (7.1). By (7.3)
(7.5), and (5.5), (5.8), or (5.10), we can say that

)

-
7.20 S < (e, )29 gyt T ) (r0iatte
(7.20) (e, 1) (7];] ¥)
for any e >0,if t =1 o0ort=2 or max {y;, ..., y-} < 2. Using Theorem
(3.18) and (3.15), we get the result with a little computation.

If pi* ... pir is prime, then Theorem (7.18) can be improved slightly
by using (5.9) instead of (5.8) and (5.10).

‘We shall now show how to obtain (1.6), (1.7), (1.8), and (1.9), which
generalize and strengthen certain results of Davenport, Brdos, and Jordan
(cf. (1.2) and the comments after it).

(7.21) TEEOREM. For any & > 0, we have (1.6). Furthermore, if max{y,, ...
ooy ¥} < 2 (€9, if 1 ds cubefree, or if 21 (n, k) and % is squarefree), then
(1.7) holds. In each case, the constant tmplied by the O-notation depends
only on k and e.

Proof. By [10], Chap. XVIII, Theorems 315 and 327, we have
(7.22) 2" < d(n) < Aqy(e)nt,
where d(n) is the number of positive divisors of n, and
(7.23) . nlp(n) < Ayle)nt.

Combining these results with (7.19), (7.14), and Lemma (4.3), we find
that if ¢ = 2 or max{y;, ..., »,} <2, then

Goa (0 B) < Ay (e, ) (FFRY 0V < 44y (k, 0, g)nte I,

Taking ¢ = 2, we get (1.6). If max{y,...,y,} <2, then there is no re-
striction on t, and we can take ¢ to be the smallest integer > 271 (3¢)~ 42,
Thus (1.7) follows.

Before proving (1.8) and (1.9), we need to establish the following
result, which is of interest in itself. (For the notation, see Lemma (3.9).)

(7.24) THEOREM. Let 0 <s<v—1 and 1<h<n, let ¢ >0, and let t
be any positive integer. If t=1 or t =2 or max{y,..., p,} <2 , then

Vs (h)— ()~ g (m)h] < Agale, )R MinsDisctse,
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Proof. By (3.10) and (3.15),

(7.25) [V ()= ()" p(m) | < v~ {27 - | Ay ()]}

Applying the Cauchy-Schwarz inequality to (3.12), we get

(7.26) |4y (h)] <(2 )1/281/2 = (r—1)V2 8",
PEKY

where S is given by (7.1). If » = 1, then |4,(h)| = 0 Dy (7.26), and the
result follows from (7.25) and (7.22). Suppose that » > 1. If { =1 or
t =2 or max{y;, ..., »} <2, then (7 ‘)0) holds for any ¢ >0 and any h
with 1 <% <n. Applying 714), (7.22), and (7.26), we get the result
from (7.25).

We will now show how to obtain a slight improvement in Theorem
(7.21) under the additional assumption that the number of distinet prime
factors of n does not exceed a bound depending only on .

(7.27) TEmoREM. Suppose that r < ry, where i, depends only on k. Then
there exisis a (very small) positive number o, depending only on k, such
that (1.8) holds for each e >0, and if max{m,...,94}<2, then (1.9)
holds for each & >0. In each case, the constant implied by the O-notation
depends only on k and e.

Proof. Let u denote the total number of prime factors of » = y,(n)
(multiple prime factors counted according to their multiplicity). Let @;
denote the jth prime (@, = 2), and define

D= [Ja—07, Be=2t
<y

By = (Dk/ZEi)E"’Z“’(Ek+ 1)—13,”2_

Since » < 74, it follows that for n >1,

N

”

(7.28) w7 o) =[] A—pi") = Dp.
F=1

By Lemma (4.3),

(7.29) v < By,

‘We define

Oy = (Br+1)7Y,  Ooy1 = DpS2(2E3)" for 1<s< < 4.

Clearly 1 >4, >...>4,,,>0, and since u < logy [log2, it follows
from (7.29) that

(7.30) Op = Iy,
We now define the 6 of the theorem by the equation
(7.31) 6 = Dy F}(2H;+1)"
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80 6 < Fy < 8, and we take 7 = 2 V44> where ¢ iy any glven positive
real number and ¢ is chosen ag followq xf max{y;, ..., y,} <2, t is the
smallest integer > (8¢)~*; otherwise t = Under our standing assumption
thatr < 7y, we shall show that g,_(n, k) < #~* for kfixed and n > n,(k, &).
The method of proof is indirect: assummg that 4 is any given coset of
Cr(n) and that every positive member of A4 is > 2~ *, we shall deduce
a contradiction.

Let Py =a’ for 1<s<p-+1, 50 P,>P, >... The primes < P,
and not dividing » belong to certain cosets of Cy(n), and these cosets
generate a subgroup of the quotient group C(n)/Ck(n). We now follow
the argument of Davenport and Erdos ([8], pp. 258-261), with occasional
changes in their notation (in particular, their k is replaced by our », their »
by 0111 #). We find that there is some s, 1 < s < p, such that if we write
y = @'~°~"+1 and use Theorem (7.24), we can replace the inequality (21)
of [8] by
(7.32) D0 > ) () — Ay (e)a el

y<a<y
= (”7?)4(}7(”)‘“*414(5)774,

where * indicates summation over those integers ¢ all of whose prime
factors are > P,. The sum on the left in (7.32) can be estimated from
above as in [8], and this leads to the inequality

() (n)— A (e)n™* < (0+98,.1) 657+ 0 (1 flogn),

where the constant implied by O depends only on k. Using the results
(7.28) to (7.31) and the fact that &, d,, we get

Dy Bt < 6677+ 05,1652+ 0(1[logn)
< Dp (2B +1)"'+ Dy (2B,) "1+ 0 (1/logn),
where the implied constant depends only on % and e This gives a con-
tradiction if & and ¢ are fixed and n > n,(k, ).

8. An application. Let I™(k) denote the smallest s with the following
property: for each prime p, each h > 1, and each set of integers ¢y, ..., ¢,
the congruence

@+ ettt .. 4ok = 0 (mod p")
has a solution with some #; not divisible by p. Define
o = limsup {I* (k) (klogk)~},

where the limsup is taken over odd % tendmg t0 oo, Chowla and Shi-
mura have shown that

(8.1) 1/log2 < o < 2[log2.
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Using Theorem (7.16) and a number of other lemmas, the author showed
in [17] that

(8.2) o < 3/log4.

It seems likely that ¢ = 1/log2, but this may be very difficu.lth to prove,
Tt is interesting that the proof of Theorem (7.16) used a version of the
relatively elementary Pélya-Vinogradov inequality for character sums,
whereas the very deep inequalities of Burgess yield estimates (vuch as
(7.19)) 01 gm(p*, k) Which, although stronger when p® is large, seem to
be ineffective in obtaining upper bounds for o.

Details of the proof of (8.2), ag well ag other facts about [ ™(k), will
be presented in forthcoming papers.

Note added January, 1968. An easy application of (5.5) to (5.2)
shows that the left-hand side of (5.4) is less than (3V6)¢"*logq when-
ever y is non-principal mod ¢ (cf. [14], pp. 85-86). Applying this result
directly to Theorem (3.18) (without using the methods of Section 7),
we find that the factor 2*/* in (1.5) can be replaced by an absolute con-

stant, e.g., (2-+3V5)/V30.
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Erratum. On p. 173, the statement in lines 10 to 13 may not be true if
# =05 or =6 and p%2...pJr is not prime or not cubefree, respectively. However,

the lemma is obvious in these cases, since 7 > by Lemma (4.3) and trivially
8 < (v—1)h2
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