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Therefore if s # p—2 by Staudt’s theorem we see

»
1
7 Z ay’(a) = By, (mod pY),

so that (1) is proved.

a=1

. 2
For demonstration of analogy of (1) for cyclotomic field @ exp~ﬁ—7;-»~ ,

n > 1, a construction of the character with a value in algebraic completion
of @, is required.
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A number-theoretic constant*
by
R. J. MiecE (Los Angeles, Calif.)

Let k be a positive integer, y be a character modulo , L(s, ) be
the associated L-series, and £(s) be the product of all the L-series modulo %.
It is well known that there is a positive constant ¢ that does not depend
on % such that £(s) has at most one zero in the region

e
1— m <o<1, ¢t arbitrary,

There have been several investigations about the size of ¢. Landan,
for example, proved that one could take ¢ > 1/(18.52) for the zeta func-
tion; that is, ¢ >1/(18.52) for k = 1. ([5], p. 320.) More recently Pan
Cheng-tung stated that one could take ¢ >1/200 for all large & [6] and
Chen Jing-run claimed that this could be improved to ¢ > 1/(104.5) [2].
The interest of both of these authors in the nature of ¢ was based on
the fact that its size plays an important role in the determination of the
size of the smallest prime of an arithmetic progression.

The purpose of this paper is to prove that one can take ¢ >1/20
for all large k. I think that this result can be employed to prove that
the smallest prime in the progression kn-+1 is less than k* where o is
somewhere in the neighborhood of 200; this would be an improvement
on Chen Jing-run’s result that a < 777. However 1 have not yet carried
out the details of the proof.

Formally, the main result of this paper is the

THEOREM. Let £(s) be defined as above. Then there is a constant d,
such that for all k> d, 2(s) has at most one zero in the region

1

l—————————— o< t arbitrary.
1 20T08 B (1L 1)) o<1, arbitrary

Moreover, if L(s) does have one zero B in this region then B is real and it
@8 a zero of L(s, x;) where y, is a real character modulo k.

*The preparation of this paper was sponsored in part by NSF Grant GP-5497.
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Generally speaking the proof of this theorem follows customary
lines. However its details, which stem from ideas of Heilbronn and Rade-
macher [4], [8], are somewhat complicated so I Delieve there is some
point in giving a complete proof. I also believe that the size of the constant,
1/20, is about the best one can do with this type of argument; i.e. it
might be possible to prove that ¢ > 1/10, but I doubt if one eould prove
that ¢ > 1/4. A short heuristic discussion of the limitations of the proof
can be found in the final section of this paper.

1. The main result of this section is:

Lemma 1. Suppose that y is a non-principal characler modulo & and
let ¢ denote a zero of L(s, x). Let &, and &, be any fized positive numbers
and let a be any number such that &, < a < 500. Set

[

— P S = it
oy 1+ logk(l—l—ltol)’ 0 UO+ 03
11
— D000 a a1l sesso
logh (1 -+ |ty)) T 4

Then there is a constant dy, which depends only on & omd ey, such that if
k> d, then

y '
Re—-(s,7) >Re )

4
lo—sol<r

1
= —{A+ex)log k(14 [,]).
So—@

The proof of Lemma 1 is based on the following result of Rade-
macher: :

LeMmA 2. Let y be a primitive mon-principal charvacter modulo k.
Let 5 be any number such that 0 < 5 <1/2. Then, for —n<KLog 1ty
we have

E(14).

27

1L(s, ) <(

See [8] for a proof.
If y is not a primitive character we have

kls+1| )W-”"}

LemmA 3. Let y be a non-principal character modulo ki and SuPPose
that the character x* formed o the modulus &* is the conductor of x. Let n
be defined as above. Then if k>dy and 1/2 <o < 1475 we have

1L, )| < ex{o (L4 [+ D¢ (14 ) (loglog 7)2,
where ¢, and ¢, are positive constants.

Incidentally, from this point on ¢, €y, ... will denote positive absolute
constants.
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Proof of the lemma. We have

*
‘ z (p)
L(s, ) = Ils, 1) [](1———?)
DlkjE ?
and we can suppose that k/k* > exp(e).
Let M denote the number of prime factors of %/k* and p; denote
the jth prime. We then have

M
[k <3

DIk[E* =1 £7

log + 3.

Now if
1
loglog (% [k*)
then
1 M-
l1—0o
(I—0o-+1%)

< — og(k/E*)+1.

! x*(p))’ ( k)w'“_"’
’ el B
L1057

and this inequality, combined with Lemma 2 yields the desired result
if ¢ is not too close to 1.

log (k/EH) Ti—o
<1+ [loglog(7~‘/7°'*)][i)glcglgv{‘jb )]

Consequently,

If
1 - <ol
loglog (k/E*) ~
then

M M
1 log (% /%) J*~° log (k&

Ziag e ‘Zpg[ﬂ_)] csloglog[_ogui]

~ p; ~ P log2 | log2

1—
< d=otn log(%/k*) + eslogloglogk.

2
This implies that

[1(
DIRIR*

This result completes the proof of Lemma 3.

* . \ ¥(1—0+1)
% (P) o[k
g )! < (loglog %)~ (.k—*_) .
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LemMA 4. Let 5, 0, @, S, 7 and A be defined as in Lemma 1. Let R
be amy number such that 1/2 < Rloglogh <2 and L(s, x) # 0 for [s—s,|

= R. Then there is a positive number d, such that for k = d, we have

S 7
8g— 0 R’
Ja~8§1<R

Proof. We begin with a change of variables. First, set

< (z -4—2~) logh(1-+ [1).

f ($0y2)—

;8% ,_ 0—8
ey ol =T
Then let
Lls, ) _
L(sq, 1)

Finally, define g(s') by

g(s) = fis) [ 222

’
e SI—Q

where ¢ runs through the zeros of L(s, y) inside the circle |s—s,| = R
(The form of the factors of the above product, which is important in
this proof, is due to Heilbronn [4].)
We then have:
g(s') is analytic for |¢'| < 1,

g(s') #0
l9(s)] = (")

l9(0)] = |f<0>|n|—-§,~‘ > 1.
4

for |¢'|<1,

for 8| =1,

These four conditions imply that there is a function I(s') such that:

L(s") is analytic for |s'| < 1,

g(s) =€ for |¢| <1,
Reh(s') = log|f(s')] for |¢'| == 1,
Rek(0) = 0.

The last two conditions follow directly from the equations:
l9(s")] = 1€ = exp(Reh(s")),

901 = If(s")| = explog|f(s')] for |¢'| =1.
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To continue, let

h(s") = ag+ a,8" +... 4 ay(s")"+...
where
G =@, and |8’ =967, 0 <P < 1.

Integrating term-by-term gives ms

[ Re[h(eMldp = 3lan] [ c08(an+ mg)dp — 2xRe(ay).

Moreover, for > 1,
27
f Re[h(6”)]cos (an+ng)dp = 7 |an|.
[
Thus, since
Re(a,) = Re[h(0)] >0,

we have for n > 1

|| < 7 |@,] 42 Re (a,) = f Re [ (6")](1+ cos (e, + np)) dp

Recall that we have

L(s, x)

Re[h(6%)] = Re[} —12
[ (e™)] e[h(s (e, 1) |

(8] = log|f(s')] = log

where
8" = ¢ it and only if s = s, Re'.

Thus if 0 <@ < n/2 then, since

0 o0

1 1
d —_—
= ¢l and e <

(8, 1)1 <

n=1

it follows that

/2
| Rel(e™)1(1+ cos (m+np)) dp < (2log? (0y)) (2) (= [2).

Since a similar result holds if (3/2)n < ¢ < 2= we have

3m/2

[ Re[h(d")] (1+cos(an—]~fngu))dgv+inlogé'(o‘o)

w2

wla,]| <

If 7/2 <<p<3nf2 and ¢’ = €™ we then have s = g,+Re®. That is
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9
|
| So
|
i
|
|
|
I
0 ds(g) 1
Fig. 1
—cosp = COS(m—@) = f%@ or —o(p)+o, = —Rcosp.

Thus if we apply Lemma 3, with 5 = 0,—1, to the function

D05, 2) | _ joq| ZO0t BT 1),
L(sq, %) L(80, 1)

Re[h(€7)] = log

we get

Re[k(6")] <

1_"‘52’2;."_“_"_1_ log k(14 [to]) +2log £ (0y) + calogs &

=:f%ﬁfL+2mga%%md%M

where L = logk(1+ |fp|). This, in turn implies that

3mf2

wmn|<L§ f (—1)cos@(L+ cos (an-+np)) dp+ ¢ (log ¢ (o) +1ogak),
2
or .
R T
O = ] < (1= cos) Bt o fog )+ Toga -

It is not difficult to see, from the definitions at the beginning of
this proof, that

b 1 )
-f(s’ 2 2(3-—@ %R2~(Q_”-9‘«))(8_30))

for |s—se| << B. Consequently, for s =g,

’

L 1 0—S$y
—(Su,x)—QZ(SO_Q"F =<

‘ 7 (0)
I

R

< 1 (1 —Z cos al) L+ et (log&{og)+log, k) = B.
AN )
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Since 6y = 14 (a/logk) and ¢ (o) < ¢y1logk we have log £ (c,) < clzlog2 k.
Thus, since L = logk(1+|t,|) and 1/R < 2loglogk, we have

( -I- -+ )logl (14 [to)

for suffieiently large k. This completes the proof of Lemma 4.
Lemma 1 follows directly from Lemmsa 4. Note first of all that

%mce
1 ==, 1 ISo— o]
Re[—— + 22 =R - >
(Sra + B2 ) e[so—g(l R )] OL

we have

So—e
le—Sgl<r

Vi 1 — 8,
Re— (s, ) >Re Y ( +Q—1r) - (l+§)10gk(l—'rltn])
e - ’

where r = 1,000/logk(1+ [t,]). Secondly, if [o—3,] <7 then

e—%o_ (loglogh)®

B ogiy [FENTATR

Thirdly, since the rectangle [t—1] <1, 1/2 < o<1 contains at most
cnlogk(1+|to|) zeros of L(s, y) we ha,ve

)

le—8g|<r
0

2001 < o4 (loglogh)e
= S a5 (loglogk)2.

Ii these results are brought together we have Lemmsa 1.
The next lemma contains the information we need about the prin-
cipal character.

Levma 5. If y, is the principal character modulo % and s = o+t
where o > 1 then
I 1 logk (14 [t))

il > — -
ReL (85 %) -Re 1 G156 — 1qg10g7c

for all real t.
Proof. Since y, 15 principal

’

L log;p
L( ) Xo) = 8)+2

Plk
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If M is the number of prime factors of % and p; is the jth prime
then

M
| <1 logp logyp
<2 g < e loglogk.
.% p'-1 = P !

Suppose now that [t| >logk. Then it is known that

logt

CI
'?(8)‘ S o loglogt’

See [9], p. 52, p. 98 for a proof. Thus

1

‘—Lf(s, Xn)[ < eploglogh+ oy

logt _ logh(1+ i)
loglogt. = loglogk

for |¢| >logk.
On the other hand if |¢| < logk, we can apply the known representa-

tion ([7], p. 218)

ro-—Zr el S0 )
W=t zrz'ﬂ2s~e+e’

for ¢ >1/2 we have
I (s
Re—I-; (5)! < Cyloglogk

for |t| < logk. Moreover, since

1 1

Re( + —) >0
s—0 @

it follows that

— e L

1 10g70(1:}- 1))
T oglogh

g 1
Re% ()= — Re(s—_j) — ¢y loglogh > — Re( p

This completes the proof of Lemmsa 5.
Levma 6. Suppose that

0>-2, =&

a a-+b -8
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where B >0 >0 and § > 0. Then if we set

o= :QZ‘/RQ
we have
b> (_V/Q__lilif
8

Lemma 7. If ¢ is real then

474 80 cosp-+49cos2p+ 20 cos 3p+- 4cosdp >0,
5+8cosg--4c082p+cosdp > 0,
17424 cosp+ 8cos2¢ > 0.

The first inequality is due to Heilbronn [4]; the last two are due
to Landau [5].

2. We are now in a position to prove the Theorem of this paper.
Generally speaking the proof is quite simple if we are not close to the
real axis; however a number of special arguments are needed when we
approach this line.

Our first result is

Lemva 8. Suppose that y is a non-principal character modulo .
Then there is a positive constant ds such that if &> d, then L(s,y) #0
in the region

1

11— <0<, % arbil
201og k(1 ]1) o<1, arbitrary,

provided that 7 # g for j =2,3, and 4. If 5 = 2o for § =2,3, or 4
then L(s, x) # 0 in the region

1 1 <ok1 [t = V.52
— ag .
20logk(14-1t)) = 7 ~ jlogk

Before turning to the proof of this lemma I would like to point out
several notational devices that will be used for the balance of this section.
First of all, the symbol & will represent a positive number that can be
taken as small as desired; its value will usually be different each time
it appears. Secondly, it will be assumed, without further comment that &
is large enough for the purpose at hand.

Proof of Lemma 8. Let o = f+iy be a zero of L(s, x). Set
a b

PEr T M g M T g
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By the first inequality of Lemma 7 we have

’ L/ . L’ .
0> Re [47—%(00, x0)+80—L—(ao+Zto, X)+4QT (09128, 2*)+

' '

L . .
+20 % (g4 93tg, x*)+ 4 T (09+idly, X,L)] .

By Lemma 6

I . 1 ciglogh(l+[k))
Re7-(0040) 2 = 29 =~ oglogh

L
By Lemma 1

h o

L , 1
RGT (og+ity, 1) = Py — (A+¢)logk (14 [2]).

In addition if 4 £y, for 4 = 2,3, and 4 then

Ro- (gt it ) > — (b e)log k(1) > — (i e)log k(L ).

If these results are brought together we have

—47 80
0> (a4 e)log (L +to]),
o—1 oy—f
or
—47 80
T _1B3(A+e).
0> — =+ —153(i+)
According to Lemma 6, if
o = M ~ . 1646
153(A+¢)
then
(V80— V47)2 _ 1
b > 05016 2 -
153 (A +e) T 50

This completes the proof of the first part of Lemma 8.
I ' =y, for j =2,3, or 4 then, by Lemma 6,

r . 1 logh (1 [t])
Re— > —Re|l————| —
ez (oot Re( o+ ifto—1 ) %5 oglogh

Thus, d we put a condition on 1, say [¢| > 4/logk, that will insure that

1
Re[m] < (1+8)1.Og,k(1+ [%!)
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we can use the argument employed above, for we will have the same

lower bound at oy ijt,.
Set L = logk(1+ [f,]). Then, supposing that 1t > 4 /logk,

bzt -3l o] < e
a—1+ity) LI\ Uo)] < Eqpar b

Since A+¢ > .56 we will have what we want if

=

a

A Sy 2a—a® < A%,

Since a < .17 the last inequality will hold if we set 4 = V.32 /.
Once we have done so we have what is needed to prove the second
part of Lemma 8.

LeMma 9. If y is a complex character such that y* =y, and L(s, 3)
has a zero o = B-+iy with

V32 1 V.02

< . =
vl < 4 logk logk
then
1
<l-—
P S Sotoghi 1 71
Proof. Let
. b
y=1t, f=1l-c—————r and o,=1+ 4

log B(1+[t]) log % (1+ [ta])

where a = .17928.
The second inequality of Lemma 7 implies that

0> Re 5L, (o )—|—8LI (oot )+4LI( +42ty, £2)
= T 0y Zo 7 \% 0y X 7 Go 1124, x%)+
r .
+ 5 (09132, xa)].
Now, the first three terms of this inequality can be treated in the usual
fashion. We have, by Lemmas 5 and 1,

r 1 logk
Re-— = — —
7 (o0, ) oy—1 Gis loglogk ’

’

L 1
Re = (00 F i, 7) > ———2 — 2+ e)log k(1+ 1))
oo—f
and
LI
Re-f (o9+ 121, %) > — (At e)log k(14 [t).

Acta Arithmetica XV, 2 9
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The term associated with y® requires special attention. Since x"_ =1
we have y8 =7, i.e. ¢ = f—iy is a zero of L(s, x*). Moreover ¢ will
appear in the sum of the inequality

’

L ; it e)logh( s
Ref-(antidle )2 D) g U eogh(lIk)

le— (Uo-i?'ialo)IQ"
for o, = 1+(a/10g7c(1+|t0|)), a = 17928, r = 1,000/logk, and ||
< V.02/logk. Thus it follows that

A [ atb

RGT (Uo+i3tu, Xa) = W—I—::SE ’—(2‘"1‘ E)] ].ng(l -~ [tﬂl)‘

If we bring these results together we have

5 8 a+b
- — —134
02—7F at+b + (@ b)2-.33 *
where 1, = 1+ ¢. This inequality is equivalent to

8a (a+0)* o

P> Ot 5 ishe T (@t 0k 39 (Brisha)
If we set
_ BAVa0 17928

134,

we have
8a a
—a+ T > .04749  and FRR T > .02834.

That is,

(17928 - b)?

b > 04740+ (T8 o 5 (.02834),

or

b3 (.28273) b2+ (.33495) b— (.01810) > 0.
This last inequality completes the proof of Lemma 9, for it implies that
b >.05.

Lenra 10. Let y be a complenw character modulo T such that x° = y,.
Suppose that ¢ = B4y is a zero of L(s, y) with

lv] < V.32/(310g%).
Then
1

T Ty
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Proof. There are two parts to the proof.
Suppose first that

12 _ Vs
loghk I = Blogh

The argument for this case will be based on the inequality

’

r R L .
0 > Re [5 T(UO‘}‘”O; Xo)"i‘gf(”o‘l"nm 0+

4Ll 128, %2 el i3ty , %3
+ f(%"'@ o,%)+f (o0+17 oy%)]

where f =y, §=1—(b/logk(l+|tl)), oo =1+ (aflogh(1-+[t,]) and
@ = .19405. This is the same inequality as the one employed in the proof
of Lemma 9 and the argument is similar to that one: Since y® = y, we
have y2 = . Hence g = B—iy is a zero of L(s, x2) and, as before,

L b
Ref(do‘!‘mtm 1% = [ o

(a+0)2+ .33
Moreover, since z® = y, and |y| = [{,| >.12/logk,

—(A—i—s)] log k(1 |t,]).

’

by _ .
Ro (au+ 31, 17) > [ “ e

16
a2+.1296 loglogk

]10gk(1+3]t0|).
Utilizing the customary estimates at oo and o,-+it, we get

4(a+b) @

05242 o040+

o atb (a+b)*+ .33 a*1.1296
Since
4(a+b) a 30’ +.1884a-+ 2a%b 1 b(.5184 — ab)
(a+b)*+.33 ~ ar{.1296 ((a+5)*+.33) (a2 +.1296) >0

for we can assume that b <1 and ¢ < 1 /2, we have

5 8
—_ 12 .
0> =+ —12(te)

If we set
—5+V40
a =

— == ,19405
12(A+e)

then
(V8—V5)e

>.051
12(d+e) =77

=

the desired inequality.
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If L(s, y) has a zero ¢ = f-4y with
0< |yl <.12/logk

we shall base our argument on the inequality

I r L
0> Re [17—-5(00, Ko) 24 = (005 1)+ 8 5= (00, xz)]-

If we set ¢ = .12, o, = 1+ (aflogk), f = 1—(b/logk) we have

I . a+b
Re-(0q, x) = [(a+b)2+02

7 —(/H—a)] logk.

Similarly, since g = f—iy is a zero of L(s, 1®

r a-+b k
RG—L_<C?0; x2) = [m —— (]»—I—E)] logk.
Consequently,
17 32(a+b) _sa(ite)

Z T TRt
or, with A; = A+e and @ = (32a/[17-+ 32a4,])

b> —a+io(l+V1—(20/w)2).
If we set .

o= w < .34774
324,
then

2> .475 and 1jz<2.11.

That is, sinee ¢ = .12,
b > — .3484-(.475)(.93) = .10.

This completes the proof of Lemma 10.

LemmA 11. Suppose that x is a non-principal real character modulo k

and g = 41y is a zero of L(s, ) with

0 < |y| < V.32/(2logh).

Then ’ ) ‘

1——-—————'15 .
logie(1+ |y])

i=m®

A number theoretic -constant

The proof of this result is based on the inequality

L
0> Re—

’

L

’

L
(04, Xo)‘f’ReT(C’ua 2)

133

and the fact that ¢ = f—iy is also a zero of L(s, »). If we set oy =1+
=+ (a/logk) where a =1/2, f =1—(b/logk) and ¢ = 1/735/2 we have

’

L 2(a+b) )
Re 7 (o0, 2) = [@L————}-b)z—l—c‘-’ *(l%—a):’ logk.
Arguing as before we get
1 2(a+b)
0z ——4— __(1+
a T laropge TGO
or o
@ ¢(1+ady) ks
> — (=TT
P> et 1+a11(1+[1 = )] )

where 1, = A+e. If we set a = 1/2 then

a 1+al,
> .389 < 2.5
1+al, ! @ < 2.57
and
e(1-+al;) \*TH —_—
[1— (‘—_Z“i)] >V1— 53 > .68.
That is

b > —.5004(.389)(1.68) > .153.

Lemma 12. If ¢ s a non-principal real character modulo & then L(s, x)
has at most one zero om the line .

Proof. Suppose that

By =1~

b,

logk

b,
logk ’

and f,=1—

where 0 < b, <b,, are two real zeros of L(s, y). Then the inequality

'

’

. L L
0= RGT(‘TO; Xq)fReT(O‘o, 2)
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implies that
1 1 1 2
_= — (2 > ——+ —(2+¢).

0>—7+ a+by + a-+by (Ate)>—7 a+by (A+e)

That is,
—_ 2
b V271 oe
(A+e)

At this stage we have proved, with one qualification, that if y ig
any non-prineipal character modulo % then L(s,y) # 0 in the region

1

PR — T ] t arbitrary.
= Sotegna iy ST v

The qualification arises if x is real; then L(s, y) may have one real zero 8
in this region.

Let E demnote this set of exceptional real zeros for the modulus %
and suppose that #,, a zero of L(s, y,), is the largest element in %, We
then have

by
logh

By =1— where b, < 1/20.
Next, let y, be any non-principal character modulo % that is not equal
to yx; and let
1— 2
logk

B2 =

be a real zero of L(s, y,). Since

L L L L
0> Re [— (00, 2)+ T(Gm %1)+ — (9, Xs)‘f‘f(do: 11%2)]

L L
we have
1 1 1 1 2
0> —— — =3 2> —— :
a+a+bl+a+b2 (A+e) P I—aer2 3(i+te)
or
(V21 _ 05709 1
) = > >
3(A+e) 7 568317 10

This shows that at most one L-series has a zero on the real line

1
11—
10logk = ° <1

bm@
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and it completes the proof of our theorem for all non-prineipal characters
modulo %.

If L(s, x0) is the principal character series modulo % then since the
zeros of L(s, x,) coincide with those of {(s), since there are constants
01 Gy, and ¢; such that £(s) £ 0 in the region

&

>1—-—2 ] <
g+’ S
loglogt¢
= 4L t> 2
o Cg log? s [}l = es,

and sinee this region contains the region o > 1—20logh(1 -+ [#H~*, for suf-
ficiently large %, we will have L(s, y,) ¢ 0 for ¢ > 1—201ogk(1+ )",

3. The limitations of the proof given here are based on two consid-
erations. First of all, let 4 be a number such that

r 1
)~L—(sn, ) ]<Alogk<1+1tof>
le—sgl<r

where 8 = oo+ iy, 0y = 1—1—(a/10gk(1+]t0|)) and 7 is large enough so
that any possible zero ¢ = f-+it, is included in the circle ls—8 < 7.
Secondly, let a,, a,...,a, be a set of real numbers such that

ay >ay >0
and
Gyt a; 608 0+...+ a,cosnd = 0
for all real . Let
 (Va—Vayp
T Gyt ad] e ]

An examination of the proof of Lemma 8 reveals that if e = f+1t, is
a zero of L(s, x) that is not too close to the real axis, say |ty > 1/logk,
and g = 1—(b/logk(1—[—|to])) then

b>(BJA)—e.

Thus the problem of finding and upper bound for g is that of minimizing 4
and maximizing B.

The minimal value 4 might assume is rather obseure. On one hand
there are results that might lead one to believe that it is very small.
Vinogradov’s method, for example, shows that 4 approaches 0 for values
of ¢, that are large relative to & ([7], Ch. 8); an argument of Linnik,
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Barban, and Tschudakov shows that A approaches 0 as & inc‘rea.ses for
values of £, that are not to large relative to k, provided that 7.{? is a power
of a prime [1]. On the other hand, the techniques employed in the proof
of Lemma 1 seem to be the only known ones which work for all values
of ¢ and all large moduli k. An examination of the formula

I’ 1 1 1771 (1t 1
(5, 7) = 5 logn— 5 logk— 5 (5 (s-+0) +a1+% st

where ¢ and @, are constants that depend on y and y is a primitive char-
acter modulo %, suggests that any argument that would produce a value
of A less than 1/2 would be extremely deep.

It is fairly easy to show that we must have B < .58. We begin by
dividing the numbers a,, @y, ..., %, to get 1 as a constant term. Our
problem then becomes that of finding a set of numbers a,, a,,...,a,
with @, > 1 such that

(1) 1+4a,co80+...+azcosnd =0 for all real 0,
= . ‘
——(ﬁl—ﬂ——— is a8 large as possible.
|| 4t |
If we replace 6 by = in (1) we get
|ag| +as) +. ..+ @] = as—ag+...+(—1)"an = a,—1.

@) B=

That is, -

(Va,—1)

- 2a,—1

It is also known [3] that if (1) is true then
lay] < 2cos(n/(n+2)) < 2.

B <

Since we must have a, > 1 it follows that
(V2—1)
3

In short, if we cannot find a value of 4 that 15 less than 1 /2 then,
since B < .058 we cannot expect anything better than b = .116 < 1/8.

B< < .058.
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