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ACTA ARITHMETICA
XIV (1968)

The density of power residues and non-residues
in subintervals of [1, }/p]
by

CrreroN T. WHYBURN (Baton Rouge, La.)

Throughout this paper, p will denote an odd prime, and in the new
portion p will be assumed “sufficiently large”.

The distribution of power residues and non-residues (modp), partic-
ularly in the interval [1, Vﬁ], has been an object of study since the time
of Gauss ([1], art. 129). For the k classes of kth power residues and non-
residues (modp), where k|p—1, L. Rédei [3] has proved:

THEOREM A. If ki(p—1)/2, the density of each class in the interval
[71,}/]7] i less than 1~—(k—«1)/lc(2-|—l/§).

TureorEM B. For 4|p+1, the density of the quadratic residues and
also that of the non-residues in the interval [1, 21/5/1/5] is  greater than
1)(B+4V8) (=1/14,928 ...).

Theorem A has the corollary:

TurorEM A'. For 4|p-—1, the density of the quadratic residues and
also that of the non-residues (modp) in the interval [1, 1/1_3] s greater than
(4 4+2V3) (= 1/6,828 ...).

The purpose of this article is to exhibit results similar to those of
Rédei, but valid for shorter intervals, and for all sufficiently large (odd)
primes p. The technigue used is elementary except for the use of the well-
known {[2], p. 131} formula:

43
Do) = B¢¥m+ O(qlogg).
J=1
THrORENM. Let d be o positive integer, such that d\p—1 and d = 2.
Let b be such that ¢ = hl/p 8 @ positive integer and
1> h? > n?/6d.

Denote by C, the set of d-th power residues (modp) and define the classes
Oy Cyy ooy Cyoy by 2, y€Cy if w and y are prime to p and their quotient
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is congruent an element of C, (modp). If v; is the number of elements of (;
in [1, ¢q], we have:

wlg = 8 < (14 (@—D) 1= 6d=*(a 1) +1 /@~ Uf)) )/d +o(

Proof. Let the number of distinet, rednced fractions a/b ((@, b) = 1),
with @, b integers of [1,¢] be denoted by 4. Then
[

() A =2 Y p(j)—1 = 6¢*/=*+ 0 (glogq),

=1

where ¢ is Huler’s function. 7
Let us define »; for ¢ 3= d by »; = v if 4 == j (mod d). One may then
form

ViViyt

e

i

e

fractions which are congruent elements of C; (modp) and which have
numerator and denominator chosen from [1,¢]. Not all of these are
reduced. -

Since the A fractions a/b enumerated in (1) have 1 < a, b < ¢ < Vp,
and (@,b) = 1, no two are congruent (modp). Even if these fractions
represent all (p—1)/d elements of C,, they will still represent 4 —(p—1)/d
elements of C; 0y u ... u 0z_;. Further, since p is large, and by the
lower bound on %, we have:

A—(p—1)/d >0,

and certainly:
—1

(2) 2 Z wviss = A—(p—1)/d.

§=1 i=1
There is the additional condition:
q
®) | Noui=q.
im

We may divide (3) through by ¢ to obtain
(4) D) bi=1,
and (2) by ¢* so that: ‘ ’
(5) D) Y dibdug > w(a—1),

‘where
x = (4] —(p—1)/dg") J(d—1).
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We attempt a solution to (4) and (5) (with “=7") by setting
by =1u, Oy=120=...=04;=n0.
Then (4), (5) become:
u+(d—1)yp =1, 2uv-4(d—2)v? = »x,

which may be solved:

(6) % = (L4 (d—1)(1— dx)**) Jd,
(7) v = (1—(1—dx)")/d.
(5) may be written:
a 2 a
(E (s,) - ¥ (d—1)
J=1 F=1
and by (4):
a
(8) Do <1—(a—1)x.
j=1

Let us attermnpt to find real numbers «,,..., g such that:
(9) Oy =%+ay; Si=v4a, =2,...d

then because of (4) and the equations for w and v:
a

(10) Dlai=0,
qe=]
and (8) becomes:
d
(11) W (d— 1)’04+~ua1—|—z102 wt D) ak <1—(d—1)x
por; i=1 ‘

By (6) and (7), (11) becomes:

d d
n Y o
2ua, 4 20 y ;- Z a0,
ot ~
T & Tar

80:

da
uay+20 Y o <0

t=2
By (10) this is 2ua; —2va; € 0, but u—v > 0, 80 a; < 0. Hence, by (9)
and (6), we have the desired result for &,. However, the argument is en-
tirely the same for each of the remaining §’s, so the theorem is established.
Probably the most interesting special cases of this theorem are
obtained when d = 2 and ¢ = [l/p]. The following two corollaries treat
these and will furnish an example of how the theorem may be applied.
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COROLLARY 1. If h is such thal
1> b2 12
and ¢ =k Vp is a positive integer, and s denotes the number of quadratio
residues or non-restdues (modp) in [1, ql, then:
sq 2 (1—(1—12/m*+1/R%'#)j2 4 0 (1),

Proof. In the theorem, d = 2 and n necessarily is 1. Ninee | 0y

= by, 1— 8, = §,, we have:
Oy By o L= (L (U120 L1 B | o(1),

which is the corollary.

COROLLARY 2. The density of quadratic residues or won-residues in
[1, Wpl] is = .042.

Proof. Choose h == [l/p |Vp in Corollary 1 so that:

1< 1R < 14-2/(Vp -1V I,

and observe that:

lim /[Vp)-+1/[Vp]2 = 0,

Jreroa
so these terms may be absorbed into the o(1). The rest is conmputbation,

Note: The author wishes to express his appreciation to A. Sehinzel for pointing
out a superfluous hypothesis in the theorem to him. Professor Schinzel also indicat-
ed a way of strengthening the theorem’s conclusion, once (his hypothesis  was
removed.
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