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Here L : 5
——— < J,(Q) =[[(MP@)"
G <@ ﬂ( 9(@)
IR(2)G(2) por <71 .- 75 (T (@)1 (R) < (T(Q) =T 4 (R),
where s

ny<Q F—m R—D(Q) R
o2
e—a;l = R—D(Q)
and so ) ey
Il <Jz(Q)‘—2*1;'27\:1?(Jl(Q))""al(l")Js(R)._1%(_ - )
1-+3/(1—¢] 8D (Q)\Me-
< (L Q1T (Q)To(R) (.»—]T)

Combining all our estimates for y, we get
I 3 L3y 8D(@) |\
1< (7@t e, 07, 1) (P )
and since the exponent of J,(Q) on the right does not exceed hy[3+
+3/(1—£)] = 8h, = Bh(Q), for &= 2, this proves the validity of the
inequality of the Main Theovem for R > 2D (@) and the inequality is trivial
for R < 8D(Q). This completes the proof of the Main Theorem.
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§ 1. A special case of the Main Theorem. In this section we apply
a special case of the Main Theorem of the earlier paper I ([9], p. 69)
to deduce Theorem 1 below which will be the only theorem to which we
shall refer in the later sections of this paper. We begin with some defi-
nitions (incidentally we also recall the notation). From now on we deal
only with meromorphic functions which are quotients of entire functions
of finite order. Given s (> 2) algebraically independent meromorphic
functions F,(z), ..., Fs(2) we introduce with respect to these

DEFINITION 1. A weighted sequence 8 (often we write {a,} for 8)
is an infinite sequence {a,} (z = 1,2,...) of distinet complex numbeis
together with an infinite subsequence {a,} (r = 1,2, 3,...) (which may
be the same as {a,}) and an infinite sequence {n,} (. =1,2,3,...) of
natural numbers not necessarily distinet satistying the following conditions.

(i) The sequence {n,} is non-decreasing.

(if) For each @ ==1,2,3,... there are only finitely many {a,} for
which n, does not exceed . We denote this number by N (@). It follows
that there are only finitely many numbers a, for which n, does not
exceed @ and this number N,(Q) does not exceed N (Q).

(iii) The limits

AT T

§ = lim log A (Q—)» and 4, = lim 17(1g1\ 1(@2
ow  log@ Qoo logQ)
exist and are finite.

(iv) The upper limit

lim sup (—l— max| %i)
Q-—s00 n,<Q
is finite.
(v) Whenever a polynomial in F,(2), ..., F(2) with complex coeffi-
cients vanishes for all values z = a,, with n, <@, it also vanishes for
all values # = a, with n, <@.
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(vi) The numbers Fyla,) (t=1,...,8 4 :1,2,'3,:..) are all
algebraic numbers lying in some fixed algebraic number :Elleld of do;gree I
(the number field and its degree may be different for different S).

DEFINITION 2. The numbers 6, 6, in (iii) are called the major and
minor densities of the weighted sequence § and d— 6, (which we know
to be non-negative) is called the deviation of S.

DeFmNrrIoN 3. Next we write Fy(2) = Hy(2)/Gs(2) (£ =1, ..., 8) wherfr.
Hy(2) and G;(=) are entire functions without common zeros and t]{e maxi-
mum of the orders of Hy(z) and Gy(z) is least possible. We define this
number g; as the order of the function Fy(z).

DEFINITION 4. A weighted sequence § is said to Dbe special if it
sabisfies the following hypotheses:

limsup {(log@) oglog (maxsize Fy(a,))} < o
Q00 <@

and
limsup{(10gQ)"110g10g(m&lei(aﬂ)Fl)} < o
Q-0 n,sQ
(Size of an algebraic number o is as usual d(a)+ |a| where d(a) is the least
natural number for which ad(a) is an algebraic integer.)

Remark. We can work with weaker hypotheses where g is replaced
by bigger constants o; and the results obtained will then be rougl}
However we are lucky to have the truth of the hypotheses in appli-
cations.

TaroreM 1. Let Fy(2), ..., Fs(2) (s = 2) be s algebraically independent
meromorphic functions of orders oy, ..., o5 and let ¢ be the mamimum and g,
the minimum of these orders. Then for amy weighted sequence S which is
also special with major and minor densities J, 8, we have necessarily

provided the second term on the Tight is non-negative.
Remark, We will have occasion to apply this result only when

8
D(o— oy) is zero, and further § and o are non-negative rational integers.
=2

Proof. Tf 4 < o there is nothing to prove. Let now 6 > ¢. In this
case
S

Bt Do = 01— D (0— @) — (§—8))+ 3+ (s—1)¢ > 0.
i=1 .

=2
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Putting R = € for a big constant (' and taking logarithms twice in
the inequality of the Main Theorem we get easily the inequality

8
log ¥ (Q—1) <log 3 r**+0(1) (&> 0; fixed)
i=1

valid for infinitely many @. The condition on the natural numbers r; is
that their product shall be asymptotic to h(h-+1)N,(q) where h is the
degree of the number field occurring in the definition of a weighted
sequence and ¢ is a natural number less than @ and related to it in a certain
way (both ¢ and @ will be arbitrarily large). We set 7; to be the smallest
natural number which exceeds

%(ﬂﬁ-ﬁ) 18

¢ {h(h+1) N1 (g)gq
In view of the inequality 8,1 j‘ 0; > sp it is easy to verify the asym-
ptotic condition on 7, (¢t =1, ...t,=sl), provided ¢ is small enough. Also
Seg+e) s,
ne= ol a0 )

and so we are led to

Jleg+#)

1
log N (@--1) *\\’vglog{Nl(Q)Q‘ JH0(1).

Dividing this by log® and passing to the limit @ — co we get
1
é s:;-{él—f—ZQt} since & is arbitrary. This is precisely the desired ine-
1

quality and completes the proof of Theorem 1.

Remark. Here we have applied the Main Theorem to deduce Theo-
rem 1. We can also make other deductions. One can prove that if F(z)
is a single valued (analytic except at singularities) transcendental function
for which F(1/n) are algebraic numbers, lying in a fixed algebraic
number field, for all sufficiently large # and logsize (F(1/n)) = O (n/logn)
then #(z) must have an essential singularity in a finite part of the plane.

§ 2. Some preparations. In this section we set out some preparations
which will enable us to verify the necessary hypotheses in applications
of Theorem 1. These preparations are rather lengthy and spread over
quite a few lemmas. We have also to specify the conditions of algebraic
independence of certain meromorphic functions and the conditions we
give are not quite satisfactory in some cases. We begin with

LevMyaA 1. Let o and B be two algebraic numbers of degree not exceeding h.
Then size(a+-p) and size(af) do not exceed sizea sizef; for natural nwm-
bers m, size(a") lies between 2" (size a)" and (size a)™; and finally size(1/a)
does not emceed: 2 (size o)™,
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Remark. It can be proved that sizea does not exc oed, "”(II(a))”
and that H (a) does not exceed 2"(size ), where H (a) denotes the familiar
height of a.

Proof. Tt is clear that d{a+f) and d(af) do not exceed d(«)d(f).
(We have denoted by d(«) the least natural number for which ad(a) is
an algebraic integer.) Also Ja+ f and [af| do not exceed o]+ || and |d][g]
and hence the assertions regarding size(a-+p) and size(uf) follow. Now
size o = (d{a))"+ u1 and the inequality (a--b)" 3 a"--b" 22 2" "(a--b)"
valid for all real positive a, b and natural numbers #, proves the second
statement. Again mulmplymg the numerator and denominator in 1/« by

a ' N (ad(a)) = d(a) (ad(a))"'N {ad (),

it is easily seen that the denominator becomes a rational integer and the
numerator an algebraic integer. It follows that d(a™') does not exceed

| ad(a)) < [e]' (@(@)" < (sizea)™.

The result mentioned in the remark can be proved in the following
way. Let a be different from zero and of degree % not exceeding h. Suppose
« satisfies ap2"+a,0" "4 ... +a, = 0 where a,,...,, are rational in-
tegers with g.c.d. 1, ag > 0 and a, different from. zero. If «' is any con-
jugate of «, which does not exceed % in absolute value it follows that
1< ) < lag "4 A0’ | < 2o’ H(a). Now since H(a) z |ag N (0)]
> |N(a)|, H(a) = a[ﬂ\a [[Tie"’| where o' runs over conjugabes of «,
whose absolute values do not exceed } and ¢ those with absolute value
exceeding 4, both with the exception of one conjugate for which the
absolute value is maximal. Now []le'[[]la”| > (2H (a)) 727" (wherer,
s are non-negative rational integers with sum less than n) > 2~ 9(H (o))"
and so |a| < 2"(H(a))". Also since a,a is an algebraic integer, d(a) < a,
< H(a). These two together prove the upper estimate for size a. Again
since ad(a) is an algebraic integer a, divides (a,d, a,d?, ..., a,d"™), where
d = d(a), which itself divides d"(a,, .- ,an) But a, beiug prime to the
second factor, a, divides d” and so a, < d" Now --a,’ ll(u) ix the jth
elementary symmetric function of o and 1ts conjugates (j == 0). 1t follows
that a7 'H(«) does not exceed 1 if j = 0, ‘>7’\a]’“ it j> 0. Now since
@, < d* < (sizea)t, it follows that H () does not exceed 2"(sizoa)™.

The following lemma is an improvement of a certain statement
implicitly contained in Schneider’s work ([11], II) (the result of Schneider
here referred to is size g (nB) < A™ in the notation of the lemma that
follows). Using Mahler’s result [8] and our remark below Lemma 1 we
can show that our result is the best possible in the sense that if @(8),
9s, g3 are rational, sizeg(nf) exceeds, for infinitely many =, Ay for
a suitable constant 4, > 1 which depends on 8, ., o,.
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LeMMa 2. Let p(2) = @(2;5 01, wy) be the Weierstrass elliptic function
with periods w,, w, whose invariants ¢, ¢, which appear in its differential
equatlon of the first order, are algebraic numbers. Let £ be a complex
namber such that 8, w,, w, are linearly independent over the field of rationals.
Swppose @ (B) is an algebraie number. Then all the numbers @ (nf) (n =1,

..) are algebr aic numbers belonging to « fived algebraic number field and
suzego (nf) does not exceed A" where 4 s a positive constant independent of n.

Proof. We have following Schneider ([11], IT) the following for-
mulae ([6]):

Wy ()W ()

(2.1) @A) = @(n)— - (@00 -y
A

A=2,3,...
where
Viw)y =1, Wy(u) = —p'(u),
Py () == 30" (1) — 3 ga 0? (1) — By 9 (1) — 5 2,
(2.2) W) = g)'(u)
X A2 (1) = 20" (1) = 1095 0" (1) — S G100° (1) — 32 2 9 (1) 45503 — 93}
and further
(2.3) Yorpa(1t) = ¥y 0 (1) Wi (u)— ¥, AR (), A= 2,
Woa(u) Wo(ut) = V(1) {¥s0 () Wi 1 (1) — ¥ o () ¥ia(m)}, A>3,

First we remark that since f, »,, m, ave linearly independent over the
rationals @ (A8) # @(B) it 2 = 2,3, ... Now W,(8) is different from zero.
From these two it follows (on using (2.1)) that ¥,(8) (A =1,2,3,...)
are all finite and further they are algebraic numbers different from zero
lying in a fixed algebraic number field. We malke the following assertions
which we verify by induction. We write ¥, for ¥,(8).
) |73 < 474 where A, is a positive constant independent of 2

(A=1,2,3,...).

Suppose this is true for all 2 < n. Then to verify the truth of the
statement for A ==n--1, we have to verify

(a) If 0 = 2m,

2Al‘|"u‘x[m"ﬂ"‘m‘) P2 an L2530 4 1% (1) o120 - 1]
2 ,
does not exceed AP™TUTEMEY o all gy = 0
(b) If n = 2m—1,
T
ol =
2

Ainux[e((mfl)zu O 1) 4 (022 (0 12) F N2 2O 4 1y (1)) (D) — (M @) 72 2]

92 9
does not exceed AP ¥ for all m > 3.
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We rewrite (a) and (b) as
2A11nax[4m2+2; amPa] < A%nﬂq—zm, o,

AE
E

2 e 40465 AP AM 4 6] - P2 )
Ajlnax[mz 4465 +6] < “Ll . vz 3.

. - L ogEn s se g2 e

The first inequality is satistied for all m > 2 if 24} < 41“,’ ie, if A7 = 0.
: : s e g — A s 1 16 - 12:11 .

The second inequality is satistied for all m 24 if 2|-—-| Ay 0 A7, Le.

g

2 .

]-‘?;| < AP for A = 1,2,...,7. This secures (i) by induction for all 2.

Next we note that in the second equality of (2.3), W,(u) divides
the right hand side. We can thus regard ¥;(%) as a polynomial in go(u),
@'(u), g5, g5 with rational numbers as coefficients. We now assert

(il) The denominators of the rational number coefficients of ¥;(u)
divide 2°-%,

We verify this for 2 = 1,2, 3,4. Then we have only to verify

it A2 =2 . We choose A, big enough to satisfy these and also

max {3 (m2 —m)+ (m+ 2)2— (m+2); 3((m-+1)2— (m 1))+
—{—(m——l)‘*—(m—l)] < (2m4+1)2—(2m+1), for m 2
and
max[2((m—1)2—(m—1))+
+ (m42) — (m A 2) + m* —m; 2((m A1) — (m 1)) 4

+ (m—2p2—(m—2)+m*—m] < (2m)2—2m  for m =3,

These have already been evident.

By the same argument it is also evident that

(i) The degree of ¥;(u) in any of the varviables g(u), @' (4), ¢y, s
does not exceed A*—A.

Combining these facts it is now evident that d(¥;) does not exceed

éz‘* (for some positive constant 4, independent of 1) and so size ¥,
does not exceed 2A22“. The truth of Lemma 2 now follows in view of (2.1),
by a simple application of Lemma 1.

Levma 3. Let p(2) be as in Lemma 2, By,...,Pp (p 22 1) complex
numbers lnearly independent over the field of rational nmumbers. Suppose
that ©(B), ..., p(Bp) are algebraic numbers. Let ws write for brevity
@ =myfy+...+myfy, where my, ..., m, are natural numbers. Then as
My, ..oy My TUN ndependently through all natural numbers for which a is
not a pole of (z), the numbers p(a) all lie in a fiwved algebraic number field
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and sizep(a) < B”z, where n = max(my, ..., my) and B is a positive
constant independent of my, ..., m, (but B may depend on ).

Proof. First consider the case when for each ¢ (¢ = 1,... y ) it is true
that fy, @y, w, are linearly independent (hereafter we shall mean over
the field of rationals unless otherwise specified). The lemma is true for
p = 1. Suppose it iy true for p—1 (p = 2). We write b = My B4+
+ #p_1 fp-1, and we have either b is a pole of g(2) in which case it is
a period, or size $(d) does not exceed B’,"Z, for some positive constant B,
independent of my, ..., my. ;. In the first case p(a) = p(mypy) and the
lemma follows by Lemma 2. In the second case we apply the theorem

o e ! 2
Putv) = —p(u)—pv)+ %{K;) g}%_—_—_g(g) }

Putting # = b, v =m,f, (and Lence u-+v = a), we apply Lemma 1
as follows. Now as a function of u, p(u)— @ (v) has a zero of order ab
most 2 ab w = b and therefore we have to apply L’Hospital’s rule at
most twice to the function in the curly brackets. Thus one of the
expressions (go’(b)—-go’(a—b))(g)(b)—«go(a—b))“l, (0 (@ B} o (b) %
X (@ (b)) is determinate. Now (0 (@) = 40°(2) — 1o () — g5, "' (2)
= 60%(2)—1gs, "' (2) = 120(2)p’'(2) and so by Lemma 1, the sizes of
P'(b), @'la=D); "(b), p"(a—b), p"'(b), p"'(a—b) do not exceed
respectively constant (independent of a, b) multiples of (size go(‘b))z,
(sizep(a—b)f, (sizegp (b)), (size @ (a—b))?, (size (b)) and (sizep (a— b)),
It is now easy to complete the proof using Lemma 1.

Now consider the case when exactly one of the g,,..., Pp say By
depends linearly on ,, w,. Under this condition the point my fp 18 either
a period or congruent modulo the periods of g(z) to one of a fixed number
of points which are not poles. In the firgt case the estimate trivially fol-
lows from the case p —1 already considered and in the second size @ (myp Py)
does not exceed a bound independent of my,, and we can complete the
proof ag before. When only two of the ; have the above property the
result follows similarly.

Finally if 8, o,, w, ave linearly dependent for ¢ = P—2, p—1 and
P Boss Pp-1, fp are themselves linearly dependent contrary to the hy-
Dothesis of the lemma, This completes the proof of Lemma 3.

LuMMa 4. Let a and B be real numbers and f irrational. Then the
number N, = N,; of natural numbers n not ewceeding x for which the
Sractional part (nB+ a) of nB-+a belongs to a given interval I (may be open
or closed or consist of a single point) contained in [0,1) of length |I]| has
the following property. Given any positive number 1 however small, there
exists @ positive number zy = 2,(8, ) depending only on the parameters
indicated (in particular independent of a and I) such that x=*N, lies between
Hl—n and |I|+ 9 for all o ewceeding m,.
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Proof. We first consider the case « = 0. Let .L be a natural number
and divide [0,1] into L subintervals of length 1/L each. Let A, denote
the maximum number of these sub-intervals contained wholly in I and 2,
the minimum number of these sub-intervals which contain /. Then it
is easy to verify the inequalities

1 2 y
i ~ U
(i) xl'f—Ff;\"]]f%L L’
. 1 —1 1 S v .
(i) Ay (f —}—171) e Ny 2 A (L ““71) for all @ 3= w(f, L) 1),
The second of these follows from Weyl’s result ([13], see also [4] for
other references and also for a simple proof of the result using only the
simplest property of continued fractions). These inequalities are valid
even if one or both of 1,, 1, are zero.

Now,

1 2 2
% (7 +m) < (IIH— f)(l + L) <L+ T+ 2

and
1 2 2
2y (f —171) > (\I\m —f)(l—Lnl) > |I|—‘»I»J— — Ly — 29,
Hence
P
e Ny —1| < T 4Ly +2n,  for all @ = u0(f, L, m).

We first fix I large enough and then a small enongh #, to get the result.

Now if « is different from zero, consider the interval I’ = [+1—(a)
with an obvious meaning. Now the points of [0, 1) which differ from those
of I' by a rational integer form at most two (and at least one) intervals
of total length |I|. These intervals say I,, I, are further disjoint and
have the property that (nf-+a) lies in I if and only if (nf) lies in I or I,.
The general case now follows on applying the case « == 0 to the intervals
I, and I,.

COROLLARY. Let &, ..., ap (p = 1) be real numbers not all rational.
Then the number of p-tuples (my, ..., m,) of natural numbers none of which
exceed a given natural number Q, for which the fractional part (myoy ...+
-+ myap) les in a given interval I contained in [0, 1) is asymptotic to OF i,
where |I| is as usual the length of I, as @ tends to infinity.

Proof. Without loss of generality we may assume q, to be irrational.
In Lemma 4 we write f = a;, a = Myay+...+mya,. Then for all
% =2, = 5,(B, n) the number N, lies between x(|I|+4») and x(|I|—n)-
Let now @ = x,(8, #) and note that =, is independent of a. We consider
for the (p—1)-tuple (my, ..., my,) any one of the @' possibilities. Sum-
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ming up the bounds for N, for these possibilities we see that the total
number of solutions required by the corollary lies between QF (|I|—n)
and Q¥(|I|+#). Since 7 is arbitrary this proves the corollary. However
our proof also gives the following result. The total number of solutions
of (myoy+...-Fmpay)el, where m; runs through all natural numbers
not exceeding @, and my, ..., m, through any ,, ..., s, distinet natural
numbers, is asymptotic to =, ...a,|I| uniformly in @,,..., s, (with an
obvious meaning) as x, tends to infinity. In this result we have to assume
that a, is irrational.

DERINIEION. Let g;(2) = @i(e; o, o)) (4 = 1, ..., u) be  Weierstrass
functions (not necessarily distinet; for the purpose of this definition
and the three lemmas to follow we do not even need the restriction that
the invariants ¢§, ¢, 4 =1, ..., %, be algebraic) whose period groups
are #; (i =1, ..., %), respectively. Let by, ..., b, be u nonzero complex
numbers linearly independent over the field of rationals. With every
complex number of the type a = myf;+...4my,f, (where my, ..., my
are natural numbers) we associate the natural number n(a) = max(m,, ...
..., mp). Let W be any set of distinct complex numbers. We say that
a number o is W-admissible if W contains a representative of the coset b;a
mod&; for each ¢ =1,..., %

LEMMA 5. There exists in the complex plane a compact set W free
from the poles of each of the functions p;(2) (4 = 1, ..., u) with the property
that the number of W-admissible numbers o (sce the definition above) with
n(a) not exceeding Q is at least 3Q° for all Q ewoeeding Q,. Here W and @,
depend on the period groups P; (i =1, ..., u) and the numbers fy, ..., fy.

Proof. Consider the union of % closed parallelograms (0, wf), w{)4-
+of), o) corresponding to the period groups #;. The union contains
only finitely many points of the % groups £, ..., #,. We exclude from
the union all those points which are at a distance less than & (a fixed
positive quantity) from these points and denote the resulting set by W.
The set W is compact and we show that, if ¢ is a fixed number sufficiently
small, this set hag the property required. We fix & in such a way that
the sum of the projections of the excluded regions on the four sides of
the parallelogram corresponding to & is less than 1/3w times the mini-
mum of the length of its sides (here we have used the word projection
not as orthogonal projection, but as oblique projection parallel to the
sides of the parallelogram).

We write bif; = ayof?-+pyofd (i =1,...,4,j =1,...,p) where ay
and fi; are real. For each fixed 4 (i = 1, ..., %) it is clear that one at least
of the 2p numbers ay, f; is irrational, since otherwise it would lead to
the linear dependence of By, ..., Bp Over the field of rationals. Now b;a
= o) Ym; ay+ of) Smyfy, the sums being from j =1,...,p. Since we

Acta Arithmetica XIV.1 6
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are interested in a representative of b;amod#; we may reduce the coeffi-
cients of of? and o{? modulo 1, to lie in the interval [0,1). Suppose for
definiteness that one of the coefficients oy is irrational. Then the total
number of numbers ¢ with n(a) not exceeding ¢ for which the coefficient
of of), in b;a, reduced modulo 1 lies in the projection (parallel to the
side (0, w{?)) of the excluded regions on the side (0, w{?) does not exceed
Q%[2w for @ = Qy(ay, ..., ay) by the Corollary to Lemma 4. If all the o
are rational we consider the coefficient of m;“ and obtain a similar result
with f; in place of a;;. Repeating this for each 4 = 1,..., %, we find
that the total number of numbers ¢ with n(a) not exceeding ¢, for which
one at least of the coefficients of wf?, of? in b4 does not lie modulo 1,
in the projections of the excluded regions on (0, o{’) (resp. (0, wf?) for
each ¢ =1,..., %, is at least 3Q” for all @ exceeding a certain number (.
The number ¢, and the set W depend clearly on the parameters mentioned

in the lemma. This proves Lemma 5 completely.

Lesma 6. Let of), of), gi(e), by (6 =1,..., %), B1, ..., fp be as in
the definition preceding Lemma B, @, the points @ == myfi~-...4-myp,
which oceur in_connection with Lemma 5 arranged in the order of Ny = n(a,)
non-decreasing, and a; @ zero of p;(2). Let fi; (2) and fy(2) be respectively
—oi(z—w)oi(2+ o) and of(2) oi(a;) where oy2) is the Weierstrass sigma
Junction corresponding to p;(2) (f,4(2) and fail®) are two entive fumctions
without common zeros and pi(2) = f1.4(2) (fos(2))™). Then we have

1 2
Max — - < BY
i=1,...0% [fz,‘t(bi“ﬂ)l

n <@

and
Max {{maxfys(be2)|+1) (max fo ()] 1)) < B

i=1,..,% [#=R
where B, is a positive constant independent of Q and R.

. Proof. Denoting by ¢;(2) the Weierstrass zeta function correspond-
ing to goi_(z), we have the identity ([14], page 448; for the result Pi(?)
= f14(2) (fas(2))™" see example 1 on page 451)

’

. . (9
U 3 o [¢ . ! f
oi(z+mof) +nyof)) = (—1)"+"2Bxp [f«; (i};—) {2032+ 20 my 0§ 4 0}

of) ;
+ & (-—2~~) {2ny2 -+ ni wf )}] 0i(2),

where 7., n, are arbitrary non-negative rational integers and it is easy
to modify thiz when n,,n, are arbitrary rational integers. To deduce
the first we take for some fixed i, ¢ = b;a, and select n,, n, such that
a4 m ol +ny0f) lies in the parallelogram 0, of), o4 of), wf). We
observe that |o;(bia,+n, () +n,0fd)| is greater than a fixed positive
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constant independent of m,, .., m, and also that |n,] and |n,| do not
exceed a certain constant mmultiple ot . This leads to the first inequality.
The second one also follows by a similar argument.

LevMA 7. Let @,(2) = p(2; o, o), .(2) = p(2; 0@, o), ... be
finitely many Weierstrass elliptic functions with peiiods indicated. Then fp,(z)
and p,(2) are algebraically wndependent (unless otherwise specified we meamn
over the field of complex numbers) if and only if there exists a rational 2 x 2
matriz M such that (0f, o) = o), )M, in this case we say that the
periods of ,(z) and P.(2) are commensurable. The necessary and supficient
condition that &, 0,(2), P.(2) be algebraically independent 18 that (,(2)
and_,(2) be algebraically independent. Finally suppose that of ", o)™,
w7, ... are Linearly independent over the field of rationals and the ratio
of every two of them is real. Then the functions @,(2), P.(2), ... are alge-
braically independent.

Remark. Let p(2) = p(2; w,, w,) with usual notation and by, b,,
bs, ... be finitely many complex numbers linearly independent over the
rationals. Then @(b;2) and @(by2) are algebraically dependent if and
only if w,/w, is an algebraic number of degree 2 and b,b7%, 1, w,/w, are
linearly dependent over the field of rationals. Let further that one of
the numbers w,, w, be either real or pure imaginary and by, b,, ... have
the property that the ratio of every two ot them is real. Then the functions
@ (b12), p(by2), ... are algebraically independent.

Proof. The first statement of the lemma is standard. To prove
the final statement we assume that @,(2), @.(2), ... have an algebraic
relation of the form

PL@ P {P2(2), - )+ O ()P (2(2), )+ =0 (b >1)

where P;, P,,... are polynomials in 0,(2),... (with complex number
coefficients) and that P, is not identically zero. This relation is an identity
and hence we replace z by z--n,0f), where =, is an arbitrary natural
number. The function @.(2) remains unaltered and in other functions
we may further change z--n,of) by the addition of a suitable period.
For instance @,(z4n, o) = @,(2+n, 0P+ n,0) where n, is a suitable
rational integer and si*nilarly for the other functions. Now let z be a com-
plex number different from zero and close to zero such that 2 'w{) is
real. Since the fractional parts of the numbers 7, o o™, ny o) 0P ™,
(say T numbers) regarded as points of the Buclidean R® are dense in
the unit cube there by Kronecker’s Theorem [7], we may for certain
arbitrarily large values of n, choose #,, ny, ... in. such a way that

Py(palzt+niof+n0f), ..),  Pypaletn, ol +n0f),...)

are bounded above by a constant independent of 2, n,,ng, Ny, ... and
that the first term has its absolute value bounded below by a positive
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constant independent of z, fy, Ny, ... Since @,(z) ~ 7% as 2 approaches
zero the assertion of the lemma follows.

We now prove the second assertion of the lemma. The necessity of
the condition is clear. Assuming the period lattices w{’, wf? and o, of?
to be incommensurable, which is equivalent to the algebraiq independence
of @.(¢) and @,(2), we have plenty of periods Q = ma{’+naf (m,n
natural numbers) which are not poles of @,(z). Suppose that there existy
a polynomial relation between the three functions. If for instance g,(2)
doeg not enter this relation a contradiction is immediate sinee ¢ iy not
doubly periodic. Consider now this polynomial ag a polynomial in @, (z)
and suppose that P (¢, 0,(2)) is the coefficient of the highest degree term.
Since p,(2)~2"" as # tends to zero we have on replacing z by 2--£2 and
letting & > 0, P(e?, ,(2)) = 0 for all periods 2 of {,(2) which are not
poles of @,(2). We now examine such periods Q. Writing of? = o, 0?4
+a0P, o = az0P)+a,0f where the o; are real we observe that
one at least of the ¢ is irratiomal. Consequently in the expression
Q = (may+ nag) 0P+ (may+na) o one at least of the coefficients can
be restricted to lie modulo 1, in any fixed closed sub-interval of (0, 1)
with non-empty interior, by Kronecker's Theorem [7]. The natural
numbers m and n are still arbitrary. If for instance «, is irrational we
can fix n as large as we please and restrict m in such a way that the points
2 are congruent mod(w®, o)) to points of a fixed compact st just
desecribed. Since m is arbitrary there are plenty of points which are in-
congruent mod({w{, of). If now P is independent of ¢°, the elliptic
function P(g,(2)) has plenty of incongruent zeros and is therefore a con-
stant. On the other hand if P,(@,(¢)) is the coefficient of the highest
degree term in P regarded as a polynomial in ¢° (we can assume without
loss of generality that the real parts of wf’ and of’ are non-negative),
it follows that Py{p,(2)) as a function of the natural numbers m, n tends
to zero. But we can further restrict the points 2 (since the zeros of 1’1(@2(3))
are isolated) to lie mod w{, wf?, in a compact set where Py (f,(2)) never
vanishes. It follows that P, (f,(2)} is bounded below, in absolute value,
by a positive constant independent of m, n. This contradiction completes
the proof of the lemma.

§ 3. Principal results. We are now in a position to deduce our
principal regults. In view of the lemma that follows it is convenient to
introduce

DEFINITION. A complex number f is said to be a pseudo-algebraic
point of a meromorphic function f(z) if either 8 is a pole of f(2) or f(B)
is an algebraic number.

Levwa 8. Let f(2) and g(z) be two mon-constant meromorphic func-
tions with an algebraic relation P, (f(2), g(2)) = 0, where P, is a polynomial
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in f(z), and g(z) with algebraic numbers as coefficients, not all zero. Then
the set of pseudo-algebraic points of f(z) is identical with the set of pseudo-
algebraic points of g(2).

Proof. Let 8 be a pseudo-algebraic point of f() and let if possible
g(f) be transcendental. By considering the reciprocal of f(z) if necessary
we can assume that f() is algebraic. Then considering f(z)—f(f) in place
of f(z) we can assume that f(8) = 0. This would mean that P,(0, ¢(2))
is identically zero in s, i.e. f(2) divides Py(f(2), g(2)); but we can divide
P,(f(2), g(2)) by a suitable power of f(z) if necessary and assume without
loss of generality that P, (O, g(z)) is not identically zero. This proves the
lemma.

Remark 1. Lemma 8 shows that if f(2) is a nonconstant elliptie
function with periods w,, w, with algebraic invariants g¢,,g, and the
expression of f(z) in terms of @(2), p’'(2) as a rational function involves
only algebraic number coetficients, then the pseudo-algebraic points of
f(2) and @ (z) are the same. Thus it suffices to eonsider the pseudo-algebraic
points of @(z). Addition theorem for @(z) shows that these points form
a group under the usual addition of complex numbers. Also since @(2)
and p(nz) (nnatural number) are algebraically dependent over the field
of all algebraic numbers, these points have actually a vector space structure
over the field of rationals, i.e. if f,, B, are pseudo-algebraic points of
@ (2) so is 78,4+ sp, for any two rational numbers 7,s. If 7 = w,/w, is
an imaginary quadratic number then it is easy to verify that g(zr) has
the same pseudo-algebraic points as g(z), and so in this case these points
have a vector space structure over the imaginary quadratic field obtained
by adjoining = to the field of rationals.

Remark 2. Similar remarks apply to the function ¢ and non-
constant meromorphic functions which depend algebraically on ¢® with
algebraic coefficients. Needless to say that such remarks apply also to 2
and rational functions of 2z with algebraic coefficients.

It will be convenient to introduce

DeminrrroN. A meromorphic function @(z) is said possess an algebraic
addition theorem if there ewists a polynomial P(Ly, Cay &;) in three variables,
with complex number coefficients not all zero such that P(Q‘i(zl—}—za),
D(z,), di(zz)) is zero for all pairs 2,,2, of complex numbers for which
D (24 2,), P(2,) and PD(z,) ave finite. If further the coefficients of P
are algebraic numbers it is said to be algebraically additive.

By a well known Theorem of Weierstrass (see [1], p. 363) every
meromorphic funetion @(z) with an algebraic addition theorem has the
property that for a suitable nonzero complex number b depending on
the function, @(b2) is a rational function of ¥(z), ¥'(2) with complex
number coefficients where ¥(z) is either z,¢” or p(2) with invariants


Pem


86 K. Ramachandra

2, g5 006 necessarily algebraic. It can be shown that if @(2) is not a con-
stant and is algebraically additive then the coefficients in the rational
expression for @(bz) in terms of ¥(z), ¥’ (2) has algebraic number coeffi-
cients and also that if ¥(z) happens to be @(2) the invarianis ¢,, g, are
algebraic numbers. It is easy to see that the order of a non-constant mero-
morphic function @(z) with an algebraic addition theorem is 0, 1 or 2
according as the corresponding function ¥(2) is #, ¢ or p(2). In view of
Lemma 8 and the Remarks 1 and 2 below the lemma we can make

Remark 3. The pseudo algebraic points of an algebraically additive
meromorphic function form a vector space over the field of rational numbers,

Lemmas 3, 5 and 6 now enable us to dedunce from. Theorem 1,

TuroreM 2 (Principal result). Let @,(2), ..., Py(2) be s 2= 2 algebrai-
eally independent (over the field of complex numbers) meromorphic Sfunctions
each of which is algebraically additive. Let 0" and o« denote the mawimum
and the minimum of the orders of these functions. Then dim((bl (2)y «oey (I)s(z))
denoting the dimension of the vector space (over the rational number field)
of common pseudo algebraic points of these functions, we have

dim (@, (2), ..., Py(2)) < 0"+ (ex—0)/(s—1)

where 9 is 1 if the functions have a common period and 0 otherwise.
Proof. Clearly it suffices to confine to s < 4 and further to the
case where s—1 of the functions have order ¢*. By Lemma 8§ we can
make a further reduction replacing @,(z) (t =1, ..., s) by W(bz) where b;
are nonzero complex numbers and ¥ (z) =z, ¢° or @(2) with algebraic
invariants. The proof in the various cases are all similar and by way of
illustration it suffices to prove for instance that dim(p;(w{z), Eu(wP?),
©s(0z)) does not exceed 2 (from now on we use @i(e), ¢ =1,32,...
to denote Weierstrass functions with fundamental periods of?, of and
algebraic invariants g%, ¢{9). Let if possible the dimension be greater
than 2. Then there exist three complex numbers By, f,, f5 (B, rational
and 0 < §, < 1) linearly independent over the field of rationals for which
the nine numbers @;(0{®p;) (1 =1,2,3,j=1,2,3) are algebraic
numbers. In Theorem 1 we take F;(2) = pi(w{’e) (4 =1, 2, 8) and we
can define a weighted sequence {a,} as follows. We get a, == m,f -+
4 mqfy+mafs (m; natural numbers), n, = max(my, m,, my) and arrange
a, in the order of m, non-decreasing. We confine only to those a, for
which g, is W-admissible, where W is the compact set determined by
Lemma 5 with respect to by = of?, 4 =1,2,3 (see Lemma 5 and the
definition preceding it). The seti {a,} contains with a, also the point a,--1
and so the subsequence {a,} may be chosen to be the subsequence ob-
tained by taking only those points a, for which m,p, does not exceed 1.
Since F;(2) (4 =1,2,3) have period 1 condition (v) is satistied. By
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Lemma 5 N(Q) lies between 40¢ and @° and it follows that N,(Q) lies
between two positive constant multiples of Q2. This secures (iii). The
condition (vi) is easily satisfied. The major and minor densities are 3
and 2 and the deviation is 1. By Lemmas 3 and 6 this weighted sequence
is special. Hence by Theorem 1, it follows that 3 < 2+4(2—1)/2 a contra-
diction. This proves our principal result.

§ 4. Concluding remarks. A number of curious corollaries follow
from Theorem 2, on using Lemma 7. Some of these have already been
stated in the introduction. We mention one more corollary.

COROLLARY. If @ and b are real positive algebraic nwmbers different
from 1 for which logaflogh is irrational end a << b < ™, then one at least
of the two numbers

3.1

1 {% na = g
(2W +../.'.J T—a”) 17“'_“ 7
=1 N=1

[ 6 1 O a0t 07 ) 7T
1@1/2_0—1/2)4 T bR T 2 T }n (1—=a™®

M=l M=l

is transcendenial.

Forrn— 1

Proof. It is easy to verify that the functions P and. ¢(z)

= (d(wy, wy))™* (P (2; wy, w,))* are algebraically additive under the only

assumption j(w,/w,) is algebraic and have the common period w,. Hence

dim (71, g(2)) < 2. We set w, = loga, o, = —2ni and consider the

values of both the functions at z = 2ni, loga, logh which are clearly

linearly independent over the field of rationals. It follows that one at
leagt of the two numbers

i (loga

2t

), {4 (2n1, loga))~ (" (logb; 2mi, loga))®

is transcendental. The Fourier expansions for §, 4 and g functions (which
can be found for instance in Deuring [2] or Hasse [5]) lead to the result
stated.

It may be possible to improve the bound for the dimension given by
Theorem 2 probably to 1 in all cases. But even a slight improvement in
the bound such as < p*-+(gx~— 0)/s appears to be very difficult. One may
ask another question. et a, b, ¢ be three non-zero complex numbers such
that loga, logh, loge are linearly independent over the field of rationals.
Let wy, 0y, ..., w, be any complex numbers linearly independent over the
field of rationals. Then if » > 2 Theorem 2 shows that the 3n numbers

Wy po SO . @ @, (g o .
a“l, b1, ¢®1; a2, b2, P25 ...

IHM‘ ll),n 0,
3 a¥n, b¥n, cUn

can.not all be algebraic (in fact n—1 of them must be transcendental).
It is natural to ask whether among these 3n numbers there exist n—1
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