Corrigendum to the paper
“A problem of Erdős concerning power residue sums”
(Acta Arithmetica 13 (1968), pp. 131-149)

by
P.D.T.A. ELLIOTT (Nottingham)

The author would like to draw attention to the following oversights.
1. In the statement of Lemma 3 the condition that \(l \) be a power of \(g \)
has been inadvertently omitted, and that \(g \) is a prime.
2. The results of Lemmas 4, 5 are correct only if all the \(g_i \) under
consideration are odd. If one of the primes \(g_i \) has the value 2 a slight change
has to be made. This is due to the fact that when \(m \geq 3 \) the Galois group
of the cyclotomic field generated by a primitive \(2^m \)-th root of unity is
the direct product of cyclic groups of order 2 and \(2^{m-1} \). Thus that cyclotomic
field has two quadratic subfields, namely \(Q(\sqrt{-1}) \) and \(Q(\sqrt{2}) \).
Accordingly the definition of \(c(k) \) (with an attendant change in the defini-
tion of \(n_i \)) becomes \(2^{-t} \), where

\[
t = \begin{cases}
0 & \text{if } 2 \nmid k, \\
\text{the number of odd primes } g_i \text{ dividing } k \text{ and satisfying } g_i \equiv 1 \pmod{4} & \text{if } 2 \mid k, \\
\text{the number of odd primes } g_i \text{ dividing } k & \text{if } 4 \mid k, \\
\text{the number of primes dividing } k & \text{if } 8 \mid k.
\end{cases}
\]

This change does not affect any succeeding argument. Indeed we
only use the fact that \(t \) is bounded by \(k \), and has the value zero when \(k \)
is an odd prime.
3. On page 137 line 22 for \(2^{-t'} \) read \(2^{-t} \).

We note that we do not mention separability in for example Lemma 1,
since the fields we are considering are of characteristic zero and so automa-
tically separable. Moreover, for each field \(F \), \(\overline{F} \) is its ring of integers.

Finally we notice that unless otherwise stated the primes \(g_i \) are
arbitrary until we reach p. 146. For pp. 146-149 they then become the
rational primes in increasing order.

UNIVERSITY OF NOTTINGHAM

Reçu par la Rédaction le 12. 2. 1968