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1. At the present there is no practicable method of reducing binary
quadratic forms with coefficients in a quadratic ring R of discriminant A,
by which one could, for example, tell whether or not such a simple form
a8 #2-+y* is in a genus of one class. G. Pall has shown in [2] how to tran-
sform the problem of expressing y = a*+f2 (a, 8,y in R) to one of
representing the norm N (y) by the principal form of determinant 4,
in ordinary inftegers subject to certain conditions; and has illustrated
his method for 4 = —4, 5, 8. It is the purpose of this paper to determine
the limitations of Pall’s method, and to treat further cases. The formulas
themselves are of interest. If 4 < 0 (but not in the exceptional case
where — 4 is a square) the number of representations, if not zero, is
infinite. However, the number of sets of representations (with set defined
in a natural way) is finite.

It will be helpful to review Pall’s method. Small Latin letters will
denote ordinary integers (in Z); we may set 4 = —4k+4, j =0 or 1,
4 nonsquare, ¢ = ?;(—j—l—VA) and R = {&,+2;0] 2,2, in Z}.

The equation

(1 6o+ 010 = (@t a1 0)*+ (by+ b, 0)*
is equivalent to the two equations

(2) 6o = ag+bg—k(ai-+ 1),

(3) 61 = 2(agy+boby) —j (a7 ).

If we set I = ai-+b}, the problem of counting the number of solu-
tions of (1) is reduced to the problem of choosing non-negative integers I
such that the form

(4) D = (¢y+ k) w2+ (ey+ jl) oy -+ ly?
is a sum of two squares of linear forms

(ao@+ a,y)3+ (byz+ b, )2
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with integral coefficients and summing the numbers 7,(P) of such repre-
sentations. Here 7,(®) denotes the number of representations of & as
the sum of squares of two linear forms with integral coefficients. Algo
in [2] Pall showed that 7,(®) = 0 unless @ = d, @;, where @, is primitive,
positive definite or semidefinite, and of square determinant m?, and d,
is a positive infeger such that no prime of the form 4n-+3 divides d,
to an odd exponent; and that if m? == 0, the number of representations
of @ is 27y(d,); if m? = 0, the number is #,(d,).

Thus, 7 must be chosen so that (¢, ¢,, 1) has no prime factor 4n+4 3
to an odd exponent, and so that

(6o+Tl)T— (0y +31)2
is a square w*. The last condition can be expressed as follows: if j = 0,
(8) 63+ 4kt = oF + Au?,
where v = 2kl-+¢,, ¢, = 2¢;; if j = 1,

(6) Co— Co0y+ ket = v* L Au?,

where v = 4(4l4e;,)—¢,. Since N(c¢o+640) = cj~—jog6,+ ke?, we mnotice
that the left sides of both (5) and (6) are just N (c,+¢;0).

An examination of Pall’s method shows that it succeeds only if the
form »*+Au? is in a genus of one class. It is necessary that v, u satisfy
the condition that I be a non-negative integer, where

- L[t cali2k it j =0,
2o+ @ep—e)1yd it §=1.

In the following discussion of Pall’s algorithm, we must consider
separately the cases 4 >0 and 4 < 0.

First assume 4 > 0. In the case 4 = —4% we have k< 0 and ¢, > 0.
Here 1= (v—ocy)/2k = (6,—0)/|2k|]. Since ¢} = |4k|ci+ o>+ Au® > o,
6 = [v| and 1> 0. Thus, if ¢y = +v(mod 2k), then I is a non-negative
integer for either sign of ». In the case A4 = —4%k-+1 we have % < 0 and
26,—0,2 0, 1= [20—(2¢,—¢;)]/4. Since (26,— ;) = Ao? + 4Au> + (20)*
= (20)*, 2¢—e; > [20] and 1>0. Thus, if 2¢,—e, = +2v(mod 4),
then I is a non-negative integer for either sign of .

We want o = ¢j(mod 4%k) to imply ¢, = +0(2k) in case j=0,
and (2v)® = (2¢,—¢;)? (mod 4) to imply 2¢,—e¢, = +2v(mod 4) it j = 1.
This means that, if j = 0, % can only be —1, —2, —p, —2p (p any
odd prime); and if j =1, 4 can only be an odd prime p =1 (mod 4).
In Article 303 of [1] we find the 65 known values of 4 > 0 for which
2%+ Au? ig in a genus of one clags. In the case J = 0 and with % restricted
ag mentione@ above, the possible values of A are 4, 8, 12, 24,28, 40, 88,
and 232. In the cage j = 1, the possible values of 4 are 5, 13, and 37,
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Again, consider 4 = —4k > 0. If k = —p, then ¢ = ¢* (mod 4p)
implies ¢, = £v(mod 2p) for one or both signs of ». If k = —2p, then

¢; = v* (mod 8p) can be split into ¢ = +° (mod 8) and ¢ = +* (mod p).
If (cg,2) =1 = (¢, ), then ¢, = +v(mod 4) for one and only one
sign of v and ¢; = F-v(mod p) for one and only one sign of v. Thus, we
may nob be able to guarantee ¢, = 4-v(mod 4p) whenever ¢ = »* (mod 8p)
without placing restrictions on ¢,, i.e., ¢, even or divisible by p. Since
we wish to confine ourselves here to cases where the method works for

all ¢,, ¢;, we shall concern ourselves only with the cases where k = —p,
ie., 4 =12, 28.
Finally, we consider the case 4 < 0. If A = —4k, the condition

1> 0 may not be satisfied for both signs of », and ¢, = +v (mod 2%)
may hold for only one sign of » with the corresponding I < 0. We therefore
assume in this paper since 1> 0 is not satisfied automatically that
¢y = 4 (mod 2k) for both signs of v. Also, if 4 = —4k-+1, the condition
1> 0 may not be satisfied for both signs of v». Again, we shall assume
since 1> 0 is not satisfied automatically that 2¢,—e¢; = 420 (mod 4)
for both signs of v.

Again, we want ©* = ¢} (mod 4k) to imply ¢, = 4o (mod 2k) in
case j = 0, and (2v)? = (2¢,— ¢,)*(mod 4) to imply 2¢,—¢; = +2v(mod A)
it j=1.If j =0, k can only be 1,2,p,2p (p any odd prime). Since
we want the preceding implication to hold for all ¢,, ¢,, we must restrict
ourselves to the cases where k =2 or k=p. If j =1, 4 can only be
—p where p = 3 (mod 4).

We may sum wp the preceding remarks in the following state-
ment.

THEOREM. Assume ¢y-+¢ o 48 totally positive and that ¢y 8 even if
4|4 im the case A > 0. Then Pall’s algorithm succeeds in giving a formula
for the number of representations of cy+c 0 as o sum of two squares in the
guadratic ring B = {@y+ 2,0| %9, %y in Z} if

(a) v2+Adu? is in a genus of one class; )

(b) all solutions v, u of (5) or (8) have 1 integral by choice of sign of v
if 4 >0, and for either sign of v if 4 < 0.

Again, we remark that the positive values of A for which Pall’s
algorithm succeeds are 4,5,8,12,13,28, and 37. It is conjectured
that there may be an infinite number of negative values of A for which
the method succeeds.

2. In discussing the representability of numbers by the form
@2+ Ay?, we make use of the following well-known result.

LeMMA 1. An integral, binary quadratic form of discriminant d does
not represent a prime p such that (d|p) = —1.
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If 4 =1(mod4), all odd numbers prime to 24 represented by
the form 24 Ay? must be congruent to 1 modulo 4. If A" denotes the
odd prime dividing 4, then x24 Ay? represents primes p such that p = 1
(mod 4) and (—A4*p) = 1. In the case 4 = 0 (mod 4), let m = 3 +4ke 2.
The exponents of primes ¢ dividing m such that g = 3 (mod 4) and
(—4%g) = 1 must be even by Lemma 1. Likewise, the exponents of
primes » and = dividing m such that (—4%|w) = —1 = (—4*%) and
7=1= —»(mod4) must be even. In the case A =1 (mod4), let

m = g — e, +hof = (co— 36,) — (4/4) e}

The exponents of the primes ¢, =, » dividing m with the above mentioned
properties must also be even. In the case 4 = 13 and 37, the corresponding
values of & ave odd. Since 2|¢;— ¢y¢, - ke; implies ¢, and ¢, ave even, the
power of 2 in m must be even.

LA 2. Let +'(n) denote the number of proper representations of n by
the system of positive, primitive binary quedratic forms of discriminant
d (< 0). If (dlp) =1, then

2¢'(m) if t>0,

rmt, -
O =1 i i—o.

This result may be found in [3].

3. We now proceed to illustrate Pall’s method for the case 4 = 12.
The problem is now reduced to finding the number of solutions », u of
¢g—12¢ = 9241242 which give a non-negative integral value of I such
that d, = (¢, ¢;,1) contains no prime factor of the form 4n--3 to an
odd exponent. Then for each such value of I,.the number of solutions
of (1) is 2r,(dy) if u* # 0 or 7y(d,) if 4* = 0. Since v,  and v, —u give
the same value of 1, the factor 2 or 1 multiplying r,(d,) will work out
correctly if we count all solutions v, u of Gg—12¢;2 = ¢2-124%. We note
here that

dy = (o, G;; 1) = (e, C;? ) = (g, 017 vy ).

By the preceding remarks on the representability of numbers by the
form #*4-124%, we may putb

G—126% = gagsnp%yﬁdi” qgﬁinﬁgi

where the p; denote primes of the form 12n4-1 and y; is the exponent
to which p; oceurs in (c,, ¢;), the ¢; are primes of the form 12n 45, and
the 7; are primes of the form 12xn--11.

We first consider the case of ¢j—12¢;* 0dd and prime to 3. If ¢ is
a prime such that ¢ = 5 (mod 12), then ¢ =1 (mod 4) and (—3jq)
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= —1 = (3|¢). By Lemma 1, ¢*||(v, u) and ¢°|(co, ¢;); hence
¢lldy  and  ry(d) = ry(¢"d) = (14 B)ra(d).

Thus, 75(d,) is multiplied by the factor (1--4;) for each ¢; = 5 (mod 12).

If ¢ = —5(mod 12) then ¢ = 3 (mod4), (—3|¢) =1, and (31q)
= —1. Again, by Lemma 1, ¢’||(¢,, ¢;). Suppose ¢°||(v, u), ¢ < . Then
¢°lld,, and e must be even if the number of solutions of (1) is to be non-
zero. Then ¢ = 0,2, ..., 8 or —1, according as f# is even or odd. Now
7o(g°dy) = r5(dy). We now consider solutions of o2+12u = ¢*~m.
By Lemma 2, if 0 <e< g,

(" m) = 2 (m).

If p is even and e = 3, then

(¢ m) = +'(m).

For f even, 7,(d,) is multiplied by twice the number of even integers
= 0 and < f, plus one; for g odd, 7,(d,) is multiplied by twice the number
of even integers > 0 and < §—1. In either case, the factor is 1+ §; hence
75(d;) is multiplied by 1 ; for each ¢; = ——5 (mod 12).

If r = 11 (mod 12) thenr =3 (m0d4 —3|r) = —1,and (3|r) =1.
7°||(v, ) by Lemma 1. Let 7°}|(c,, ¢1), e< e. Then »*||d;, and we must
assume that ¢ is even if the number Of solutions of (1) is to be non-zero.

‘Since 7,(r°dy) = r,(dy), 7.(d,) is multiplied by the factor 1 for each

7; = 11 (mod 19).

If p =1 (mod 12), we have p™*°|c;—12¢,> and p”||(co, ¢;). Suppose
P|(w, u). Then e <y or y < e<y-+68/2 or y-+(6—1)/2, according ag §
is even or odd. We again consider v} +12u5 = p¥*°~*m. For 0 e < v,
r (PP m) = 20/ (m), and ry(d,) = ry(p°d1) = (1-+¢€)ry(d;) since p°||d,
As e runs from 0 to y—1, 7,(d,) is multiplied by the sum 2(14+24-...+y)
=y(y+1). If y <e, then p”||d;, and 7,(d,) = (1+y)7s(d;). For & even,
e runs from y to y+48/2. I y <e<<y+4/2, v (P m) = 2r'(m);
if 6 =yp40/2, (P m) =¢'(m). Thus, #y(dy) is multiplied by
2(14+9)(6/2)+ (L149) = (L+9)(1+6). For § odd, e runs from y to
y-(8=1)/2, ¥ (p***~%m) = 2¢'(m) and ry(d,) is multiplied by 2(14y) X
X[1+4+(6—1)/2] = (1+y)(1+ 6). In either case, we have the factor
(1+9)(1+ 8). Combining the results for 0 < e < y and y < ¢ and adding
factors, we obtain ¢(1-4+9)+(148)(1+9y) = (L-+y)(1+yp+6) as the
multiplying factor of r,(d,). Therefore, 7,(d,) is multiplied by (14 y:) X

" X(1+948;) for each p; = 1(mod12). If » denotes the number of

integral solutions of (1), then

(8) v= 4[] @+ Aty d) [ [ 1+p0).
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We now consider the case of ¢g—12¢," 0dd but divisible by 3. Both ¢,
and v are divisible by 3 and putting ¢, = 3¢, and v = 3¢’ , Wwe obtain
3¢ —4eyt = 307 +4u? which is impossible unless ¢; and » are divisible
by 3. Putting ¢ = 3¢ and w = 3u’, we gebt ¢’ —12¢,"% = v'24-19y'2,
Continuing in this manner, we finally obtain ¢;>—12¢F2 = v*2124*
with (¢}, 3) = 1 = (v*, 3). The exponent s to which 3 occurs in ¢t —12¢2
must be even, say s = 20. Then ¢;—12¢* = 3 m and 3°||(c,, ¢,). Since
¢, = v (mod 6) and ¢, = —v (mod 6), we get two values for 7. We now
have d, = (cn, e, 3% ep +o* )) and dy = (co, €}, 3°! (‘a v*)). 3",
if 6 == —v (mod3) or if ¢ == v*(mod 3). 3°||d, it co = —2* (mod 3)
or if ¢ =0*(mod3). We cannot have both ¢ == —o *(mod 3),
¢ % v*(mod 3) and both ¢ = —o(mod 3), ¢ = v*(mod 3). Therefore,
only one value of ! will result in a d, exactly divisible by an even power
of 3. Since the power of 3 in d, does not affect r,(d,), formula (8) holds
in this case also.

Finally, we consider the case of ¢—12¢;* even. Both ¢, and v are
even, and putting ¢, = 2¢; and v = 2¢', we obtain ¢ —3¢> = o'21-3u?.

If @ > 2 then 032—3012 is even, and v = u (mod 2), i.e., v = u+21.
Subs‘ﬁituting, we have o”-3u? —4(u —|—ut+t) Since 4[00 -3¢}, ¢
and ¢; are even. Puttmg 0 = 2¢ and ¢} =2}, we get ;> —3¢)* = ut+
+ut+*. Suppose ¢*>—3¢,% = 2" *m where m is odd. From results
in [3], we see that if a—4 is even, the number of representations of 2% *m
by w*+wi-+1 is the same as the number of representations of m by
w?~-ui+9%; if a—4 is odd, the number of representations is zero. Thus,
& must be even, say a = 2a. Suppose now that c,*—3¢;* = m, where
m is odd. Since x2-3y> is equivalent to 2(z*+ay+42), we have that
the number of representations of m by z2-+ sy +y2 is 3 times the number
of representations of m by #2+43y2. If m — 2>+3y%, we must have a
odd and y even, otherwise m = 3 (mod 4) and could not be represented
by #3+-12y2. This gives m = #2-+12y’2, and the number of representations
of m by #2412y has been determined. Then

Y= 12”(1+V¢)(1+')’i+ai)”(1+ﬂi)~

I a=2 t]len 0> —30,2 1s odd, and we have two possﬂ)ﬂmcs e
odd c, even or ¢, even, ¢, odd. If 6 is odd and 6, 18 even, say
=26, we have co " —12¢,% = v +3u®. o' must be odd and u even,
sa.y % = 2u’, since »%-+34° czunnot represent odd numbers congruent

to 3 modulo 4. Therefore, 6" —12¢]* = v 4124, and this case is

already done

If ao is even and ¢;.ig odd, we have 4¢,*—3¢,* = 0?1242 , Where
¢ = 2¢;’ . We now have to find all representations of 40”2——30 by v%+
+12¢* such that I is a non-negative integer and (e, ¢;, 1) contains no
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prime factor of the form 4n+3 to an odd exponent. We follow the same
procedure as before and obtain the following formula:

v= 4 [[Q+p)@+pt o ][] @+ 8.

Summing up, we have the following
THEOREM 1. To find the number v of integral solutions of

Co+20V3 = (ag+a V3 4 (b +b,V3)Y,
where ¢, >0, we may set

2 I 202 25+0; 28; 2
og—12¢" = 2%3% l lpi”l "lnqiﬁl l lviel

where the p; denote primes of the form 12rn+1 and y; is the exponent to
which p; ocours in (cy, ¢1), the q; are primes of the form 12n 45, and the
r; are primes of the form 12n-11. In order that v shall not be zero, it is
necessary that the ewponents of the primes 2,3, ¢; and r; be even, as ind-
icated, and that the »; shall occwr n (cy, c1) to even ewxponents = 0. With
these conditions holding,

v=de, [ [+ A4yt 0) [[@+8)

where ¢, =1 if a=0o0r 1 and ¢, =3 if a = 2.

The procedure for the case of 4 = 28 is the same as that for 4 = 12
except for the prime 2, which we shall now indicate. Here, c;—28¢;>
= v2-+-28u?. Suppose ¢g—28¢,* = 2%m where m is odd and a > 0. Both ¢,
and v are even, say ¢ — 26, and o = 2¢’. This gives ¢ —7e}*
=2""%m = o +7u’. If ¢—Te is even, then v = u(mod?2), ie.,
V" = u+2¢f. Substituting, we obtain »'24Tu? = 4(2u2+ut+4-12). The
number of representations of 4n by the form #2--7y? is the same as the
number of representations of n» by the form 24 zy-+2y2. In this case,
n = 2% *m and the number of representations of 2°*m by #?-+ay-+2y2
is a—3 times the number of representations of m by #*+ 2xy-+2y2. This
result may be found in [3]. If ¢’ —7¢;* is odd, then a = 2, and we have
e —Te? = m = v*47u*. This case can be handled as before. We can
now state the following

TusorEM 2. To find the number v of integral solutions of

ca+20£l/§ = (wo+5011/?)2+(b0+ b1ﬁ)27

where ¢, >0, we may set

0(2,—98012 = "”’7“”]]‘714“’ n q"ﬁmn 7251.

where the p; are primes of the form 28n4-1, 28n4-5, 28n-9, 2§n+25
and y; is the emponent to which p; occurs in (cy, 1), the ¢; are primes of
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the form 28n+3, 28n4-11, 28n 413, 28u+23, and the r; are primes of
the form 28n+19 and 28n--27. In order that » shall not be zero, it is neces-
sary that the exponents of the primes T, q;, and v; be even, as indicated, and
that the r; shall ocour in (cq, ¢)) to even exponents = 0, with these conditions
holding,

v=de [ [ A+ p)(1+yit+0) [ [ (1+8)
where e, =1 if a=0,2 and ¢, = a—3 if o = 4.
Following Pall’s proof of Theorem 3 in [2] for the case 4 = 5, we

obtain the results for the cases 4 = 13 and 4 = 37. These results are
sbated in the next two theorems.

THEOREM 3. To find the number v of integral solutions of

Gyt 00 = (ot a1 0)*+ (0o + Dy 0)%,

where
0= (—14+V13)/2, ¢, >0, ¢, c.2,

we may set

G— €6 —3¢1 = 22&130”Pginqgﬂin W%Ei” i,
where the p; denote primes such that
(—=13|p) =1 and p =1 (mod4);
the g; satisfy

(=18]g) =1 and ¢ =3 (mod4);
similarly

(—13|@) = —1 = (—13]%), =1= —x(mod4).

In order that v shall not be zero, it is necessary that the exponents of the ¢, =,
and x; shall be even, as indicated, and that the =; shall occur in (¢, 6;) to
even exponents = 0. With these conditions holding,

22
v=40+0) [ [ty tyit 8 [] 1480 [] (1 +20),

where oy = 2y, 6; and y; is the exponent to which Ps occurs in (g, 61).
TeEOREM 4. To find the number v of integral solutions of
CoF 6,0 = (ao+ ay 0)+ (by+ b1 0)?,
where

Q=(_1+'37)/27 6y >0, 00201/2,
we may set

=00 —96 =237 [ [ it [ [ i [ [ wi¥i [ ] o,
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where the p; denote primes sueh that

(=37|p) =1 and p =1(mod 4);
the q; satisfy

(=37lg) =1 and ¢ =3 (mod4);
similarly

(=37|n) = —1 = (—37|#), ==1= —x(mod4).

In order that » shall not be zero, it is necessary that the exponents of the g:, m:,
and %; shall be even, as indicated, and that the s; shall occur in (cy, ¢,) to
even exponents = 0. With these conditions holding

v =40+0) [ [A+pd+pto) [[ 1+ [] 1+e,
where o = 2y;+06; and y; is the exponent to which p; occurs n (¢4, ¢;).

4. In this part we shall make use of the following notions and results
from [4].

Two representations of m in the form f = [a, b, ¢] = ax?2+ bay+ cy?
will be called equivalent if they are transformable one into the other by
integral unimodular automorphs of f. The class of all representations
equivalent to a given one will be called a set of representations. The number
of sets of representations of m in f will be denoted by f(m).

For any d (= b2—4ac) there are a finite number h of (primitive)
classes of forms, say O, Cy, ..., Ch_,. Representative forms from these
classes are denoted respectively fy,fi,...,fa_1. The system of repre-
sentative forms will be designated S. The sum of the numbers of sets
of representations of n in the A forms will be denoted by S(n), so that

8(n) = fo(n)+Fi(m) ... +Fns(n).

THEOREM. Let a, b, ¢ be integers of g.c.d. 1, set d = b2—4ac and sup-
pose & % 0. Then all integral wnimodular automorphs of [a, b, c] are
given by

(9)

x = §(t—bu)xy— cuy,
Y = ousy-+F(¢-+bu)y,
as t, u range over all solutions of
P—du? = 4.

X @, y and x,, ¥, are related by (9), we say #,y and &, ¥, are equiv-
alent representations on f. All #,y equivalent to a given one comprise
a set. The g.c.d. of # and y is the same for all #, y of a set. Sets in which
%,y have g.c.d. 1 ave called primitive sefs.
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Let f'(m) denote the number of primitive sets of representations
of m in f = [a, b, ¢]. The number of primitive sefs of representations
of m in S is

' (m) = fo(m)+f; (m) ...+ iy (m).
Also,
S(n) and 8'(n) are factorable,
and
81y =8(-1)=871) =8(-1) =1.

For any prime p > 2,

§(p%) = 14+(d|p) it ptd,
S(p%) = a1 it (dp)=1,
={{1+(-D% # (@|p) = -1,
=1 if  pld but pfdif p>20r d=0 or

4(mod 16) it p = 2.

In this section we shall treat the case of 4 < 0, ie., v24Au? is an
indefinite form. As noted before, the number of solutions of (1) in integers
is infinite if not zere. If (1) has an infinite number of solutions, they
may be divided into a finite number of sets of solutions. Following Pall’s
suggestions in [2], we proceed to examine how this might be done.

It we take ¢,+¢,0 =1, we have v*+Au? =1, ie., we have to
solve the Pell equation
(10) e Aur =1

with @ =1+(41)/2. Let »;,u,; be the least positive solution of (10).
If 2, =1 (mod 4), the same will hold for all positive solutions w, since
the general solution with #; and u; positive satisfies the recursion formula
Bp1 @yt upthy. I 2, %5 1 (mod 4), then @, = a}+ 44} =1 (mod 4), and
only the values 23 with % even will furnish integral values of 1in #;, =14
+(4)/2. In either case the number of values of I so obtained is infinite,
and since d, (the g.c.d. of 1, 0,1) is 1, eight representations as a sum of
two squares correspond to each value of I (four representations if » = 0,
2=1,1=0). .

We first consider the case A4 = —4k. For any ¢,-+c¢,p, consider
& particular solution Iy, u, of

(11) (2kby+ ¢o)* —4Touy = ¢} +4kc?

for which I, >0 and (¢, ¢;, I,) contains no prime factor 4#-+3 to an
odd exponent. For any r, s such that r*—4ks? = 1 and r = 1 (mod 2%)

’
the expressions

2kl+ey = 7 (2Kl + o)+ rksu,,
U = 8(2kly+¢p) +ru,

(12)
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determine another solution I, u of (11). We say that such solutions are
in the same set. Since & = 1,2, or p, (g, €1, I,) = (g, €1, 1); hence (¢4, ¢, 1)
contains no prime factor 4n+3 to an odd exponent. Each set contains
a subset of solutions 7, u of (11) for which I > 0. It is these subsets which
are of interest to us. The values of d, = (¢, ¢;, 1) are the same for all
solutions in a set. Thus, 2r,(d,) representations as a sum of two squares
correspond to each value of 1>0 with u £ 0; ry(d,) representations
correspond to each value of 1> 0 with » = 0. Each member I, « with
120 of a set of solutions of (11) produces 27,(d;) (or r,(d,)) solutions
of (1). Hence, for each set of solutions of (11) with non-negative values
of I, there corresponds 2r,(d,) (or r4(d,)) sets of solutions of (1). An ex-
amination of (9) with d = 16k, ¢ =1, b = 0, ¢ = —4k shows that solu-
tions of (11) determined by (12) are in the same set in the sense of [4].
We can find the number of sets of solutions of (1) by finding the number
of setis of solutions of (11) with the results in [4] and the value of d, asso-
ciated with each set. For each solution I, » of (11), there corresponds
a solution v, % of (5) with v = 2kl+¢,. With each solution », u of (5)
are associated the three other solutions —v, —w, v, —u and —v, 4 if
% #0 {only —o, % if w =0). The solutions v, w and —wv, —u of (5)
are in the same set in the sense of [4]; likewise v, —u and —v, u belong
to the same set. The number of sets of solutions of (11) can be determined
from the number of sets of solutions of (5).

For the case 4 = —4k+1, the same procedure can be carried out
with the obvious modifications.
For the case 4 = —8, we obtain the following result.

THEOREM 5. To find the number N of sets of integral solutions of

Co+26V —2 = (@t a,/ —2)2 4 (b4 D,V —2)2,

ci-+8e? = 2° ” plitti [ [ gifs [ n st

where the p; denote primes of the form 8n-+1 and y; is the exponent to which p;
ocours in (cy, 61), the q; are primes of the form 8n--5, the r; are primes of
the form 8n-1T, and the s; are primes of the form 8n+3. In order that N
shall not be zero, 4t is necessary that the exponenis of the q;,v; and s; be
even, as indicated, and that the s; shall ocour im (4, ¢1) to even emponents
= 0. With these conditions holding,

N =4[ @+8) [ Ate) [] Aty L+t &)

where Ly =1 and {, =2 if a >0.
The method of proof here is quite similar to that of Theorem 1 except
for the prime 2.

we may set
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We now state the general result for 4 = —4p, p and odd prime.
THEOREM 6. To find the number N of sets of imiegral solutions of

coF26V —p = (8g+ aV —p)r+(by+ bV —p)2,

e . 26 o
A dpd? = Qapbnp%h—%-ﬁlnqgﬂlnn;{sm”%im,

where the p; denote primes such that

we may set

(plps) =1 and p; =1(mod4);
the ¢; satisfy

(plg:) =1 and g; =3 (mod4);
similarly

(plm) = —1 = (plw), m=1=—x(mod4).

In order that N shall not be zero, it is necessary that the exponents of the
a;, @, wnd %; shall ocour in (¢q, 61) to even emponents = 0. With these con-
ditions holding,

N =4l [J QL+ [ [(Lten [[ (14 (1+9i+ 69

where y; denotes the power of p; dividing (¢, ;) and, where &, and 0, are
determined as follows:

b+1  if =1 (mod 4),
1 if  p=3(mod4) and b is even,
b = 2 if  p =3 (mod4) and b = 20+1 with o even,
0 if p=23(mod4) and b = 20+1 with ¢ odd;
1 if p=3(mod4), a=0,2 0ra=3,
1 for  a=10,2, and p =1 (mod 4),
Lo=( a—3 for a>4 and p =1 (mod8),
1 for " a>4, a even, p =5 (mod 8),
0 for  a>=4, a odd, p =5 (mod 8).

For the cases 4 = —4k+1 = —p, where p = 3 (mod 4), we can
prove the following theorem by our method.

TeEOREM 7. Let g = (—14+V —p)/2. To find the number N of
sets of integral solutions of

G010 = (ag+ ay0)*+ (bo- by 0)%,
we may set

b - ) ) )
63— 000, + kel = 2% HP?”%HQ%“H W%EIH ”12‘%7
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where the p; denote primes such that

@lp) =1 and p; =1 (mod 4);
the q; satisfy

Ple) =1 and ¢ =3 (mod 4);
similarly

(Plm) = —1 = (p|=x), m=1= —x(mod4).

In order that N shall not be zero, it is necessary that the exponents of the
iy g, and x; shall be even, as indicated, and that the x; shall occur in (€q, €4)
to even exponents = 0. With these conditions holding,

N =46 [@+8) [0t [ [ @ty Lyt

where y; denotes the power of p, dividing (cy, ¢;) and 6, =1 if b is even,
0y =2 i b =20+1 and o is even, and 0, = 0 if b = 26+1 and o is odd.

Once a practical reduction technique for binary quadratic forms
with coefficients in a quadratic ring becomes available, it will be inter-
esting to see whether the discriminants of the rings for which #2-+y2
ig in a genus of one clags turn out to be those for which Pall’s method
succeeds.

The author would like to point out that some of these results are
cognate with those of Nagell in [5] but were obtained by an entirely
different method.
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