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On natural numbers having unique factorization
in a quadratic number field, II

by

W. NArkIEWICZ (Wroclaw)

0. In [5] we considered the problem of distribution of natural num-
bers having a unique factorization (resp. whose all factorization have
the same length) into irreducible factors in a quadratic number field in
regidue classes (modk) where % is a given natural number, relatively
prime to the diseriminant of the field. The purpose of this note is to remove
the restriction on %. Note that in the announcement [4] of the results
of [5] the condition on % was omitted due to an oversight. The result of
this note shows nevertheless that the theorems stated in [4] are true
without any restriction.

The crucial pointin [5] where the assumption (k, d) = 1 was used (by d
we shall denote the discriminant of the field in question) was Lemma 11.
It turns out that this lemma fails without this assumption, however, we
shall prove a substitute for it (see Lemma 3 below), which makes it possible
to derive the results needed. Moreover it will be necessary to use a modifica-
tion of the tauberian theorem used in [5] (Lemma 6), which ean be derived
from the generalization of Ikehara’s theorem due to H. Delange ([1]).

1. At first we shall state the tauberian theorem on which our proof
will be based:

LemmA 1. Let a be a real number, not equal to zero or a negative integer,
let q be a non-negative integer, let a,, ..., a; be complexr numbers with rea;
<a(i=1,2,...,q) and let fy, 1, ..., By be non-negative integers. Finally
let @y, a,, ... be a sequence of non-negative real numbers such that the series

f(s) = Zw‘ ann~*

converges in the open half-plane res >1 and assume that the following equality
holds for res > 1:
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with ay(s), ...,
ap (1) 0.
Then for x tending to infinity

2 Oy, ~ ao

n<e

ay(s), b(s) regular in the closed half-plane res >1 and

I'(a) 'z (logx)* (loglog )P,

This lemma can be deduced from the tauberian theorem of H. De-
lange ([1], th. I) in the same way as theorem IV of that paper was de-
duced there. One has to observe only, that the function A(z) oceurring
in th. I of [1] needs not to be real, as assumed there, which fact can be
easily seen from the proof of the said theorem.

2. Now we shall prove the result which will replace in our arguments
the Lemma 11 of [5]. First we shall introduce some definitions and nota-
tions: For any set P of rational primes we shall denote by wp (%) the number
of distinet primes from P dividing #, and by Q2p(n) the number of primes
from P dividing n, each prime counted according to its multiplicity. The
Galois group 0, of K = @(d'?) acts in an obvious way on the classgroup
H of K and the orbit defined by X eH is clearly (X, X~'). Let £(X) = 2
if X* = B, the unit class, and let s(X) = 1 otherwise.

Let & be a given natural number. We shall divide all ideals relatively
prime to (k) (the ideal generated by %) into classes as follows: two ideals
belong io the same class if and only if they belong to the same absolute class
and their norms are congruent (mod k). The classes so defined form. a group
under multiplication and moreover each such class contains the same
number, say O(k), of ideal classes (mod (). (Cf. [5], p. 12). Let Jyyony Iy
be the classes so defined.

For any absolute class X let N(X) be the set of residues (mod %),
relatively prime to %, which can be represented by norms of ideals from
the class X. By |N.(X)| we shall denote the number of elements in N 1(X).
It is easy to see that this number is determined by & and the field in
question, and does not depend on X. Let k((k)) be the number of classes
(mod(k)). Observe that the absolute unit class B contains | N (B))
classes J, each containing C'(k) classes (mod(%)). This shows that

) h((k)) = C(k) | Nu(B) b

We shall also use the following classical result:

Lemnas 2. (See e.g. [2], [3]). Let | be an ideal in K and W let be an
ideal class (mod f).

Then the following equality holds for res > 1:

D (Wpy

b

=% (f) re40)
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where the sum is taken over all prime ideals in W, h(f) is the number of
classes (modf), and g(s) is regular for res > 1.

Now let X be an arbitrary absolute class and let y be a non-prineipal
character (mod%). Define
A(X, ) = SH@DRTINET D 1)

geNp(X)

&

We prove the following

LEMMA 3. Let K be a quadratic number field. Let X, ..., X; be ideal
classes belonging to disjoint orbits and none of them equal to the unit class E.
Let for i =1,2,...,t, P; be the set of all rational primes whose decompo-
sition tnto prime zdeals in K s of the form p = PP, with P, e X; and p,e X7 1,
and let 4,, ..., 4; be given non-negative integers, not all of them equal to
zero. Finally let k be a given natural number and y a non-principal characier
(modk). If f stands for one of the symbols Q, w then the series

Z z(@m)n~*

(where the sum is taken over all nwhich satisfy fp,(n) = 4; fori =1,2,...,1)
defines in the half-plane res >1 a regular function Hy(s, y) which satisfies
the following equality:

(s, ) = (s—1) Zg,(s )[rog 25 +o00

where ¢ = —Z‘A(X._,x),1 =4, +...4+4; and the functions g,(s), ..

., 6:(8), 9(s ) are regular in the closed half-plane res =1. (By the symbol
g(s) with or without indices we shall here and in the sequel denote functions
regular for 8 = 1, not always the same).

Proof. For every absolute class X we have, using Lemma 2

Zx(:p)p"*’= 2 1(g) 2 p°
P;A%Tb geNR(X) 17=Np;gémodk)

=@ D e Y W

X) X
) Npage(modk)

. (%
=@ 30y e

o1 Y (8)}
9eNi(X)
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Ck) _, }
= .20 1
{h((k»e Mk(x)x(g) 08— +9¢(s)
— — T - 1 1
o G AC R NPT ST e
geNg(X)
= A(X, y)lo ! + .
= s )log—— +g(s).

The obtained equality leads us, after a short computation similar
to that done in [5], p. 12-13, to the following eqmality (where we write
for shortness £;(n) in place of Lo, (n)):

2"'7 LI zfz(ﬂ)x (n)
£t n’
1 00 n 1
_ X . .1
= (s—1)""* ( z"{ — ¢ ;(8) A (X;, y)log’
!J 1;7 g“gnz() (&, z)'log —1

(el <1,6=1,...,1)

from which the statement of Lemma 3 for f = Q follows immediately

by equating coefficients. The proof for f = w follows the same line. (Cf. [5],
p. 13).

) The behaviour of the series corresponding to the principal character
%o is described by

LeMMA 4. Under the assumptions of Lemma 3 we have

+g(s)

,
Hys,20) = 3t~ = =17 3 gy(6)1og ——
=

n =0

where 1 i y ; )
e the sumt 18 ewtended over all n’s with fQi m)=4d; i=1,2,...,1),

- -1y -
e =1—h ié‘e YX), r =dy+...+ 4y, 9, g1y .ny g are regular for

res 2'1 and g.(1) # 0. Moreover the function g:(8) does not depend on
Ty i.e. s the same for f = Q and = o.

This result iy contained in the proof of Lemma 8 in [8]. Cf. in partic-
ular the equality (10) there.
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LeMMA 5. Under the assumptions of Lemma 3 we have for (k,j) =1
the following equality, holding for res >1:

—8

n

PO
[4
gr(s) -0 r 1 B 1 —ay
= —1)"°1 - h;(s)logh —1)7% .
o) (s—1)"°log pea j; ;(s)log s——l(s )" 4-g(s)

Here v, o and g,(s) are the same as in Lemma 4, g, By, ..., fy are non-
negative integers, @i, ...,ug are complex nwmbers satisfying rew <o
ard Ry, ...y by, g are regular for res > 1.

Proof. As evidently

n = g7 (k) D) Hy(1, )
n=j(mod k) %

T M=4; (i=1,2,...,1)

the equality asserted in the statement of the lemma follows from Lemmas 3
and 4. The only thing which has to be proved is the inequality

i t
(3)  re(— AT, p) <1k X  for  x #
=1 q=1

Let 6 e Ny (X;) be fixed and consider the mapping v Np(Xi) — Np(F)
defined by w;(g) = g6~ % (The inverse here is to be understood as the
inverse in the group of residue classes (modk), relatively prime to k).
Clearly y; is one-to-one and onto, hence we get

N oale) = > xlgshals) =2(8) Y x(9)

PR o) 9N RXy) 9N ()

which implies

D (g
9N (E)

%

i i
N A(Xs, z) = INR(B) TR Y (80 67H (X
=1 1=1

If the character y is not principal on Ny (E), then (as Nx(F) is a group),
theright hand side of the last equality vanishes, and so (3) follows trivially.
Assume thus that the character y is principal on Nz (E). In this case we
get from the least equality :

t 3

D) A, ) =1 (8067 (X).

=1
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Observe now that this implies
! ¢
re(— 3 4(X;, 7)) < irl_;:e-wxi).
i=1 i= .,
If (3) were not true, then we would have
i t
B ENE) 21—t Ze“l(Xi),
=1 i=
ie.
. 14
(4) eHX,) = /2.
i=1

But if the class-group H has s elements X = F with X2 — B, then
we have s+ (h—s—1)/2 orbits # (B, E) and the sum of e~ (X)) (where X
ranges over all clagses = ¥ belonging to disjoint orbits) is equal to s/2+
4 (h—s—1)/2 = (h—1)/2 < h[2, whence (4) is impossible for any choice
of the orbits X, ..., X;. The lemma is thus proved.

The last lemma together with Lemma 1 implies that for (1, k) =1

Nn <o n=j(modk), Jo,(n) = 4; (i =1,2,...,1)
~ ¢ HE)N(n <ol (n, k) = 1,fo,(m) =4; (i =1,2,...,

a result, which under the restriction (k, d) = 1 is contained in Lemma 12
of [51. Now we can use the same arguments as presented in [57] (pp. 15-22)
to get the desired conclusions. We state now the final results which can
be obtained in this way:

TemOREM I. Let K be o quadratic number field with the class-number
ho#1, and let k and j be natural numbers with (ky7) = 1. If Fy(w) s
the number of natural numbers not exceeding , which are congruent to j(modk)
and have in K a unique factorization, then Fys(2) ts asymptotically equal to

O(k, K)o (logloga)™ (log )t/
where M s & non-negative integer and C (k, K) is o positive constant, whose
precise values are described in [4], [B].
THEOREM II. Let K be a quadratic Sield with h 5= 1, 2 (*) and let & and
J are natural numbers with (, J)=D. If Gyy(w) is the number of natural

numbers not exceeding @, which are congruent to j(modk) and whose all
Sactorizations in K have the same length, then either Gy;(m) is zero (inm the

(1) The cases h = 1, 2 are not interesting,

( as in those cases all factorizations
of a given number in K have the same length.
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case when D has factorizations of different lengths) or Gy (x) is asympioti-
eally equal to
C4(k, K, D)a(logloga)™ (logan) #5010,

where N is a non-negative integer, C’l(.k, K, D) is a positive con,-'smm;‘..mztd
S(D) is a natural number, not exceeding the 71‘1:{’)11‘1787.' g of ez}en mw;m Tants
of the class-group, whose precise values are described in [4], [5]. In the case
D =1, 8(D) is equal o g.

We want to use this opportunity to note tvh'a’c in the statement of Theorem II
in [5], the factor 71— was omitted by an oversight.
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