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ACTA ARITHMETICA
XIII (1967)

Reducibility of polynomials
and covering systems of congruences
by

A. ScHnzeL (Warszawa)

The following problem has been proposed by Professor P. Turin
in an oral communication:
Does there exist a constant O such that for every polynomial f(z)

n
a0 " (a; integers, a, % 0), there is a polynomial g(z) = Y bya™ "
i=0

s

i

I
o

n

(b; integers) irreducible over the rationals and satisfying 3 |b;— a;| < 0
i=0

This problem, apparently very difficalt becomes simpler if one re-
moves the condition that the degree of ¢ should not exceed the degree of f.
Then it seems plausible that for polynomials f(x) with f(0) £ 0 the value
of C can be taken 1, i.e. for a suitable n and a suitable sign the polyno-
mial +a2"-+f(x) is irreducible.

I have treated the irreducibility of #"+ f(») in [3] and T have proved
(Theorem 5) that for every polynomial f(xz) with rational coefficients
such that f(0) 540, f(1) = —1 and f(x) s 1, there exist infinitely many
n's for which 2"+ f(z) has exactly one irreducible factor that is not a
cyclotomic polynomial (the precise formulation of the theorem says a
little more). The example

fol) = 3 (324 8a° 4 627 + 9a° + 8"+ 30® + 65+ B)

shows that 2"+ f{z) may have cyclotomic factors for any «. In this exam-
ple, however, the coefficients of f(x) are not integers. The aim of the
present paper is to investigate the irreducibility of z"--f(x), where f(x)
has integer coefficients and to show its connection with the so called
covering systems of congruences.

A system of congruences a; mod . is called covering if every integer
satisfies one of the congruences (cf. [1] and the papers quoted there).
The precise formulation of the results is given below, but their most
striking consequence is that if there are no covering systems with dis-
tinet odd moduli > 1 (the conjecture of Seltridge), then for every poly-
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nomial f(z) with integer coefficients such that f(0) £ 0, f(1) = —1
2"+ f(x) is irreducible for infinitely many #.

i

THEOREM 1. The following two propositions arve equivalent.

A. For every polynomal f(x) with integer coefficients such that f(0)
#0,f(1) # —1 and f(x) = 1, there exists an arithmetical progression N
such that if veN then o” + f(x) is irreducible over the rationals.

B. In every finite covering system of congruences a;mod m; (m;>1) at
least one of the quotients m;m; equals ¢* (g prime, a = 0), a; % a; mod m
and either ¢ >2 or m; = 1 mod 2 or a; = a; mod (m;/2).

TuEOREM 2. There is an tmplication C —B — D, where C and D
are the following propositions.

C. In every finite covering system of congruences a;mod m; (m; > 1)
either there are two equal moduli or there is a modulus even.

D. In every finite covering system of congruences a;mod m; (m; > 1)
at least one modulus divides another one.

Notation. Z is the ring of integers, ¢ the field of rationals, a
monic polynomial means a polynomial with the highest coefficient - 1.

Xu(®) is the nth cyclotomic polynomial, £, is a primitive nth root
of unity. For any polynomial f(x), Kf(«) is the factor of f(z) of the greatest
possible degree whose no root is 0 or a root of unity and whose leading
coefficient is equal to that of f(x).

Leaia 1. Let Fi(n), a(w)eZ[2] (1 =1,2,...,7). If the polyno-
mials Fy(z) (¢ = 1,2, ...,7) are monic and relatively prime in pasrs modulo
every prime, then there exists a polynomial f(3)eZ[x] such that

1) J(=) = a;(p) mod Fy(x),
2) degree f(z) < degree ]1[ Fi(z).
=1

Proof. For each ¢ <r consider the polynomials
r
Fuz) and  Gio) = Fi(a)™ [[ Fulw).
il
Since they are monic and relatively prime mod 2 they are relatively prime

over ¢ and there exist polynomials Ui(x), Vi(z)eZ[2] such that

degree U; < degree @;,  degree V; < degree I';

and .
Fi(@) Us(m)+Gi (@) Vi(2) = R; + 0.

Let TUi(w) = w; Ui (), Vi(z) = v; V:(z), where u;, v; are integers and
Ui (), Vi(z) are primitive polynomials,
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If R;/(u;, v;) has any prime factor p, we have either
Ug (iR
or »pt —.
(s, ;) (2t v;)
Without loss of generality we may assume the former. Since F;(x) and
Gi(x) are relatively prime mod p, it follows from

u; v B
: P () U () LGy ()~ T () = i
(3) Fi(x) ) (@) +G () ) V() G o
that
T '”"‘q; ; UTt) = 0 (mod p, Gi(a).
iy Ui

Since u; # 0 and G(x) is monic, the degree of U;(z) 13 less than the
degree of G;(x) also mod p, thus we get a contradietion.

Therefore, R;/(u;, v;) has no prime factors; equals ¢ = 1 and it
follows from (3) that
1 mod F;(z),

(4)
0 mod G (z).

Now, put

Gul) Vi) =

&
(g, v;)
v
®) Zai (g, ;)
i=1
where g(z)e@[«] and
”
degree f(x) < degree n Fi(x).
=1

(@G V@) = g@) [ [ Pty +5(@)

N
Since []F;(z) is monie, f(#)eZ[z]. By (4) and (5) (1) holds.
i=1

Remark. Without the condition (2) the lemma is true also if poly-
nomials F;(z) are not monic, but the proof is much more complicated.

LeMMA 2. If q is a prime, then X, (z), X,(z) (m <) are relatively
prime mod q except if nfm = g* (a > 0), in which case
(6) X (#) = X (@)™ (mod g).

Proof. Let m = ¢"m,,n = ¢'n,, where gtm,n,.

We have by the properties of eyclotomic polynomials

Xy, (2

(M msz(WﬂE%mWmeM)w>n
WLl 4
and similarly
' an (mqv) P
(8) Xo(z) = ;—(0;1...—1)' =X, (z) (mod g) (»=1).
Ty
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If n,#m,, the polynomials X,, (2), X, (z) are relatively prime over @,
and both divide #™™ —1. Thus their resultant B divides the discriminant
of zM™ —1 and since n,m, == 0 mod ¢ we get B = 0 mod ¢. Hence X, (x)
and X, (z) are relatively prime mod ¢ and by (7) and (8) the same is true
about X,,(z) and X, (). If n, = m,, (6) follows from (7) and (8) after
taking into account the case u = 0.

Levya 3. For every odd ¢

>1 and integer a =1 the polynomial

9) Do (8) = 3[ e (@) — Xo(@™ )]

belongs to Z[x], is monic and relatively prime mod every prime to X,p.(x),
where B < a.

Proof. We have
(10) Keg (@) = Xo(—2" ),

thus unc( VeZ [©]. If ¢ = 1, Dyo () = 1, thus the lemma is true. If ¢ >1
and ¢* is the produect of all distinet prime factors of ¢, we have

Xo(1) = X (a7) = 0P —p(c*)a"O~" 4,
whenece
Do) = p(ct)a® PO

and Dye (x) is monic. Since

a—-1

- go—1
‘Xc(w ) = ”Xﬁc(fv)y
p=0

it follows from Lemma 2 that Dy, (x) and X () (f < a) are relatively
prime modulo every odd prime. In order to prove that they are rela-
tively prime mod 2 consider their resultant R. We have

R = [ [Dye(2),
where ¢ runs through all primitive roots of unity of degree 2°¢c. By (9)
and (10)
- 9= w(iﬁc ” X, cZ““

When { runs through all primitive roots of unity of degree 2¢, e

' runs
@(2%) times through all primitive roots of degree c. Therefore,

R = 29" X,(— )|,
LT xo(—2)
Since
Xo(@) = [] @—2),
(d,6)=1
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we have
(,QIX“(":i) =(yﬂ)=l(:z-+—zz) = 2’<°)M]ﬁ7)=l<cz+zi).
Thus e
r= [] @+ey® = [] @2y =a* modz,

(v8,6)=1 (’,:6,6): 1

where d is the diseriminant of X,(x). Since d is odd, R iz also odd and the
proof is complete.

Leava 4. Let f(z) be a polynomial satisfying the assumpitions of
Proposition B. Let e, be the greatest integer e such that —f(») = g(x)°,
g(@)eZ[x].

There exists a constant Do(f) such that if n > Dy(f), (v, €) == 1 and

v==0mod4 in the case flw) = 4h(w)’, h(v)eZ[a], then K (2’4 f(x))
is irreducible over Q.
Proof. Put in Theorem 2 of [2]: F(y,?) = y+f(2), n =», m = 1.

By that theorem there exists an integral matrix M = [vl K l] with
the following properties:- Yo e

(11) 0<u<G), 0<Kwm<OF) (i=1,2),

(12) [»,1] = [u,v]M  (u,v integers > 0),

(13) i y2"24-f(y"12"2) = const F (v, 2)2 Fy(y, 2)2... F,(y, 2) is a de-

composition of 1224 f(y*12"2) into factors irreducible over @,
then either

K (o +f(2)) = const KF, (2", ") 1EF,(a", a°)2.. . KF,(a®, o)
is & decomposition of K (" +f(»)) into factors irreducible over ¢ or
v < Cy(F).
Cy(¥F) and C,(F) are constants independent of ».

We take Dy(f) = max {C,(F), C,(F)} and assume » > Dy(f), (», 6,) = 1
and v 5= 0 mod 4 if f(2) = 4h(@)*, h(z)eZ[2].
It follows from (12) that

(14)
thus by (11)

v = U0, 1= g u+u,

Wt =1, uyv=0 or ju=20, uv=1.

In view of the symmetry we may assume the former. Thus u, = 4 =1
and either v =0 or u, = 0. If » = 0, then » = v, < Dy(f) against the
assumption. If g, = 0,

Y24 f(y1e?) = y12"0 4 f(2)
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By the theorem of Capelli (cf. [3], 1. 6), the last polynomial can be
reducible over @ only if

(18) —f(2)#™" = k(2)?, where p|v, and k(2)eQ(2)
or
(16) Fle)e™ = 4k(z)*, where 4|v, and k(2)eQ(2).

Since f(0) = 0, (13) implies that p|e, and p|v,, thus by (14) (v, &) %1
against the assumption. Similarly (16) implies that f(z) = 4h(2)*, h(2)eZ[2)
and » = 0 mod 4, again contrary to the assumption. Thus y"12"2- f(y*12"2)
is irreducible over Q and by (13) K (#"+f(#)) is also irreducible, g.e.d.

Proof of Theorem 1. Implication A ->B. Assume B is false,
thus there exists a finite set S of integral pairs (m, a) with m > 1 and
with the following properties.

(17) TFor every integer » there exists a pair (m, a)eS such that »
= ¢ mod  (the system @ mod m, (m, a)8§ is covering).
(18) It (m,a)e8, (n,b)eS and njm = ¢" (¢ prime, a > 0), then either

=amodm or g =2, m=0mod2 and b = amod 2.
« P
Let 8, be a subset of § irreducible with respect to property (17).
If (m, a)eSy, (0, b)eSy, (i, a) 5= (n, b) and m|n, then b 5= amod m;
otherwise, Sy\{(n, b)} would also have property (17). Property (18)
is hereditary, but in view of the last remark it takes for S, the following
simpler form.

If (m,a)eSy, (n,b)eSy, (m,a) s~ (n,b) and n/m =g¢* (¢ prime,

m
a>0), then ¢=2, a>0, m=0mod?2, bzalnod7 and

b %= a mod m.

Divide the set §; into classes assigning two pairs (m, a) and (n, b)
to the same class if n/m = 2° (¢ > 0 or < 0). We obtain the decompo-
sition of §,

(19) 8, =

r
U Oi:
=1
and the pairs in any class ¢; can be represented in the form (2%¢;, ay)
(j=1,2,..., k), where ¢; is 0odd and %; = 1,2%¢;, >1 or

0 <an <ap<... <ag = a

(20)
2
@ = ag,, m0d 2% ey, gy == iy, 0d 2% ¢;

A<i< k).
For each 4 such that k; >1 consider the system of congruences

k=1

g(@) = 0mod [ [ Xy, (a),

Fa=l

(21) g(#) = — "k mod Dy, (x).
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By Lemma 3 for each j <k, Xy, () is relatively prime to Dyei, ()
ki—1
mod every prime, thus the same is true about [] Xysije, (). By Lemma 1
j=1 N
for each 7 such that k;>>1, there exists a polynomial g;(z)eZ [z] satis-
fying the system (21).
Now, put for each i <r:

gs (@) + 2%

(22) filw) =1 Dy, (@) Loty () — ™, i Ry > 1,
_mail’ if =1,
and consider the system of congruences
ki
(23) f(®) = fi(z) mod ”1 Xy (o) (i=1,2,...,7).
A

By Lemma 2 the moduli are relatively prime in pairs mod every
prime, thus by Lemma 1 there exists a polynomial £, () eZ [x] satis-
fying (23) and such that

r kg
(24) degree f,.(z) < degreen ”Xz"fici(m)-
i=1 j=1
We claim that
(25)  fraa(@) = —a""mod Xpii(w) (1 <i<r, 1<j< k).

This is clear by (22), if k; = 1. On the other hand, if %; >1,

a;—1

ga;—1
Xy (@) = [ [ Zopey (),
f=0
thus
Ei—1
2Dy, () = Xyoio, () mod H Xyiz,, ()
F=1

and it follows from (21) (with ¢ replaced by i), (22) and (23) (with f re-
placed by f..,) that

lg—1
frg1(@) = 2k modn Xz, (%),
(26) o7
Sfraa(®) = —a%mod Xyig, (@),

MBY (20) aw, = ay mod 2°9~%¢; bub ag, + a; mod 2%¢;, hence a*%k:
= 777 mod Xy, (@), a™%i == 07 mod Xy, (), thus

(27) 2%k = — g% mod X,eis,, (w)

Anta Arithmetica XIIT.1

1 <j < k).
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Now (25) follows from (26) and (27). Pub

(28) 1 = max{l, 2—fr.1(0), —fra(1)}
and consider the polynomial
r ok
(29) NOES MO 1—[ X i ().
i=1 j=

By (20) 2%%e,>1, thus we have
fo(o) =fr+1(0)+t>2; fo(l) >fr+](1)+t>0

and the polynomial f,(z) satisfies the assumptions of Proposition A. On
the other hand, by the choice of §, and (19) for every integer » > 0 there
exists ¢ < and j < k; such that

v = a;; mod 2“7‘701.‘
Hence
# = a™ mod X, ()

and by (25) and (29)

(30) & +fo(2) = 0 mod Xy, (x).

However, by (24) and (28) fy(#) has the degree equal rto that of
ki s . e .
ﬁ [ Xsii, (@) and the leading coefficient positive. Since ' k;>1, the

i =l
Eelgjlzele of o’ +fo (%) is greater than that of X,u (¢) and it follows from
(30) that «"+fo(x) is reducible. Thus we have proved more than was
necessary, namely the existence of a polynomial f(z) satisfying the
assumptions of Proposition A and such that o”-+f(#) is reducible for
ally > 0.

Implication B — A. Let f(x) be a polynomial satisfying the as-
sumptions of A and let ¢, be the greatest integer ¢ such that

—f(@) = gl@), g(x)eZ[x].

Consider first the case, where f(z) = 4h(2)*, h(x)eZ[#]. Then let 7, be
the least number » such that (r,2¢) =1 and r > Dy(f). The arithmeti-
cal progression N: 247, (t=0,1,...) hag the property asserted in A.
Indeed, if v N then » > Dy(f), (v, ¢) =1 and » == 0 mod 4, thus, by Lemma
4, K (o +f(w)) is irreducible. But no root of unity, {,, say, can be a zero
of #"+f(»), since it would follow that

Lnt 4h ()t =0,
which iz impossible.

wm = 0mod 4,
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Assume now that f(z) # 4h(x)*, h(x) €Z[z]. Let P be the set of all
pairs (p, 0), where p is a prime and p|e, Let I be the set of all pairs
(¢, a), where 0 < o < y and

(31) Lt f(E) =o0.

M is finite. Indeed, it follows from (31) that f(Z,)f(5;Y) = 1, thus g, is
a root of the equation a;df(m) flah—a? = 0, where d is the degree of
f(#), and we get p(u) < 2d. Since f(1) = —1 we have p>1forall (u, a)eM.

We claim that the system of congruences amod m, where
(m,a)eP w M does not satisfy the condition for covering system asserted
in B. Indeed, suppose that

(m,a)eP v M, (n,b)eP o M,
%

™

(32) ® (g prime, a >0), b= amod m,

(33) g>2 or m=1mod?2 or biamod—?—-

“

(m, a)eP, (n, b)eP is impossible in view of (32).
Oonsider first the case (m,a)eP,(n,b)eM. By the definition of
P,m is a prime and

—f(@) = k@)", k@)Z[z].
On the other hand, by the definition of M
ttf(Ga) = 0.
Thus, we get k()™ = & and
(34) k(L) = Chns (B,n) = (b, n).

k(&y) is a primitive root of unity of degree mn/(8, mn), but k(Cn) €Q(Ly),
thus by a known theorem (cf. e.g. [2], p. 536)

where

_mn 2 ‘ 2(8, mn)
(B, mm) | (2,m)’ (2,n)
and
ax 28
49 | @, n)

Since by the first part of (32) m|n, it follows from (34) and (35) that
b = 0 mod m, which contradicts the second part of (32).

Consider next the case (m, a)eM y (n,b)eP. Then since » is a prime
and m >1, it follows from (32) that n = m, thus we can interchange
the roles of m and »n and apply the preceding case. :
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Congider finally the case (m, a)eM, (n,b)ed. We have
2+ f(x) = 0 mod X, (),

(36) 2’ +f(@) = 0 mod X, ().

Since by Lemma 2, X, () = X, (2)"™" mod ¢, we get from (36)
‘ 2’ —a* = 0 (modq, Xn(@)).
Since # and X, (x) are relatively prime modgq, it follows that

(37) 2" —1 = 0 (mod g, X, (w).

Put 4 = |b—a| = ¢"4,, where ¢t 4, We have

8

(38) 2 —1 = (e"1—-1)" = nXd(m)qd mod 4.

dldy
It follows from (37), (38) and Lemma 2 that for some d,]|4, and
some fi =0,
m

.__=(1ﬂ,

Z X (@) = Xoy ()"0 mod ¢,
L

and ,
Xy (#)" = 0(mod g, Xy () ™*),

The last congruence implies

(39) ¢ >0 _ .

If g = 0 or ¢ > 2, it follows from (39) that & > g, thus 4 = 0 mod m
and b = o mod m contrary to (32). If § >0 and ¢ = 2 we get from (39)

m

that § > f—1, thus 4 = 0 mod L; and b = amod P contrary to (33).

By the proposition B, the system amod m, where (m,a)eP o M
is not covering, thus there exist numbers D, and r, such that if »
=rymod D, then » == amodm for any (m,a)eP o M.

Let 7, be the least integer » such that » = r, mod D, and r > Dy (f).
The arithmetical progression N: D t-- 7o (t=20,1, ...) has the property
asserted in A. Indeed, it »eN then » > Dy(f) and (v, ) = 1, hence by
Lemma 4 K (m”—[— f(m)) is irreducible. On the other hand, no root of unity

can be a zero of &4 f(#), since this would imply (m y V— i [o_:[]) eM for
a suitable m.

Proof of Theorem 2. The implication B — D being obvious, it is
enough to prove C —B. Assume B is false, thus (compare the proof of
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Theorem 1, implication A — B) there exists a covering system a; mod 2%,
(1<ig<r,1<j<k), where ¢; are odd and distinet and for E>1
(20) holds.

Consider the system of congruences
(40)
(41)

ap,mode; (1 <i<r, ¢;>1),

Gy mod 2% (1<j<k), where ¢; =1.

If C is true, system (40) is not covering, thus there exists an inte-
ger v, such that

vy % oy, mod ¢, for any @ <r with ¢; > 1.

On the other hand, system (41) is not covering, since by (20)
1

@y (L <J < kyy) are distinet and 25;;—; < 1. Thus there exists an inte-
7 0

ger v, such that

vy 5= Ay mod 2% for any j < ks .

o

By the Chinese Remainder Theorem there exists

r
v; mod I l ¢,
Y = i=1

v, mod 2%.

By the choice of y; and »,, %, does not satisty any of the congru-
ences (40) and (41), thus system (40), (41) and a fortiori the system
a; mod 2*%¢; is not covering and we get a contradiction.

Remark. The implication C — D was first proved in a similar way
by J. L. Selfridge.
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