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1. The asymptotical determination of the number of twin primes
not exceeding # amounts essentially to the investigation of the sum

Syla) = D Am) Aln+2)

ngL
or more generally for even D to

Sp(a) = D A(m)A(n+D).
n<w
.D)=1
Several interesting results “of approximative character” have been

achieved since Brun; but the only method which could produce at least
a plausible heuristical asymptotical formula for Sp(z) itself was Hardy-
Littlewood’s circle method. Their formula (see [1], p. 42, conjecture
B) asserted that for fixed even D and # — oo the relation

p—1

(1) So@)~Bua | [

o|D
P>2

holds with (%)

1
(1.2) B, = 2“(1- Tp—_l);)'

P>2

(1) Or equivalently denoting by =p(z) the number of prime pairs p;, pp with
p1—ps = D not exceeding x,

x —1
np(x) ~ By ———log% %———2 .
PID
P>2
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Recently I observed that a much shorter heuristical deduction of (1.1)
can be given which gives rise to new-type sieve methods. Starting namely
from the formula

(1.3) A(m)=——2(k),u(k)logk (=>—7w>

Im

x
,u(k)log'% for m >1)

we get at once

4
Sp(z) = — Z(n]/l(n) Z(,c),u(k)logk = — Z(k),u(/c)logk Z(n) A(n)
ngr ki(n+Dy kw4 D ngr
(mD)=1 (%, Dy=1 ne=~Dmod e
(n,D)=1
—
~ = Dwpmlogh Y, A(n).
sck,D)=1 N
<x4-D n=—Dmodk

Replacing the inner sum heuristically by /(%) one gefs heuristically

S ~ _ B
(@) w{ K;:IS“’

(*,D)=1

y(k)logﬁ}
pk) I

But as the proof of Lemma ITT will show rigorously the sum in brackets

which gives the formula (1.1) of Hardy-Littlewood at once. In principle
the argument could be remedied by using for D A(n) instead of x/p(k)
an egact prime-formula of Riemann-type but this seems hopelessly
complicated. Instead of doing so I realised in the first paper of this series

(see [3]) that “sieving on the generating Dirichlet series” leads at once
to the formula (s =o+it, 0 >1)

A(n)A(n+2) log2- A (241
14 LT A og2-A(2" "+ b
(;- ) KZNZQL) n’ + Z(l) TR e T Zn)_g'
nodd 12t N2 nw_& n
- u(k)logh - r
o b o) 2(—2, k)= (s, %, g)
i?ﬁ( ) (k) xn;%‘) L
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and this offers several possibilities for a more elegant treatment and
various conclusions. So I used the formula (1.4) to show that the infini-
teness of the twin primes depends only upon “small” zeros of the Diri-
chlet L(s, k, x)-functions; it turned out on this way recently that among
these zeros only those “near to the line o = {” have a sigmificance
for the problem. As I remarked in my paper [4], this “function-
theoretical sieve” method can be applied to a large class of “indefinite”
problems of the additive prime number theory a typical of them being
the twin prime problem. To formulate it in a general form (which is
far from being most general) let the integers =, ..., x be restricted to
the sets A, d,,..., 4; respectively and let f(x,...,m) = f(z) be
any integer-valued function for which the number A(v) of the solutions
of the equation

(1.5) fe)y =», wed;, j=1,2,..,1,
is finite, even the estimation (2)
(1.6) hv) < ™2

holds. Let h(») be in addition such that for all positive integer B’s the
function-theoretical behaviour of the functions

(1.7)

("B)=1

ig at our disposal; this is the case e. g. when h(») —apart perhaps from
a numerical factor—is multiplicative, an example being f = z}+ w3,
the sets A; being identical to all integers. Let us consider with a positive
integer N > B the function

det

3 k)log (N /k -
w8) Ks(s,B)E > _pRlgN/E) 2(— B, 1)Gn(s, b, 2)
&S o (k) ()
< zmod k
(k,Bj=1

(2) ¢ will stand throughout for positive tconstants (not necessarily the same)
whose numerical values are irrelevant, B, B,, ... stand for positive constants whose
numerical values matter. The characters belonging to modulus % will be denoted
(as in (1.4)) by x(n, k), the corresponding L-function by L(s, k, %), their non-trivial
zeros by g = g(k, ) = p-+1iy. p is always a prime, the O-and o-signs refer to NV — co.
The empty sum means 0, empty product 1. z(l) stands for the number of positive

divisors of .” 3™ means that the summation is to be extended to primitive charac-
xmodk
ters modk only. expsx stands for e”.
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for ¢ > B,+1. The series (1.7) ean be inserted here and this gives

(1.9)
h(v) Nf1
= k)log —
Ky(s, B) E(y) 3 #(0) g — lip(k) me(v E)y(—B k)}
(#B)=1 k<N xmod &
(k,B)=1
_\ k() 1 N
i Z(k) uik)log i’
(*B)=1 k<N, k|(v+B{
(k9)=(k,B)=

We may observe that the restrictions
(kyv) = (b, B) =1

are automatically satisfied; e.g. p|k and pl» would imply p|B, i.e. (v, B)
>1, which is excluded. Hence the inner sum is for » < N— B owing to
(1.3) equal to A(v+ B) and hence for ¢ > B,+1

h(») A(v-+B ¢,
Kx(s, B) = Z(v)—(v%‘)——]— —.
c= A

Hence, any of the coefficient formulae for general Dirichlet series applied
to coefficients with v < N—B eliminates the c,, s at once and gives an
integral representation of

th(v)A (»+B)

< N-B
(,B)=1

which, in very general cases, for N — oo is

~ ng)logp hip— B)NlogNZ(M)

Bp<.

where the last sum represents obviously the number of solutions of
(1.10) p=f(®,...,%)+B, p<N.

Sinc&;—if we use appropriate coefficient formulae—the singularities of
the integrand are among those of the Gg(s,k, y)-functions which are
in turn, in very general cases, meromorphic on the whole plane, the con-
tour-integration technique is fully applicable. This description of our
general sieving process does not contain (1.4) literally, but it would be
very easy to modify it so as to include (1.4) in it. We ghall apply also
this method systematically in later papers of this series; here we ghall
confine ourselves to prove the following
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THEOREM I. For the number mp(N) of prime pairs (p,, p,) with-

P—ps =D, p.<N, (D even)
the representation
e
' log* N I o p—2

p>2

(111)  wp(N) = {14+0(z(M)} B

_1+0(1og) Py el
log’ NV Wl ® 7 (k)

(k,D)=1
- Ne— e
E —D,k
% y)" (=D, %) (e(@)) {Q(l—l—g /logN)[‘(N)‘“gN]“}

xmod {7l <logN-exp(3/2¢(N))

holds.

Here B, the Hardy-Littlewood constant in (1.2), D < %:\T—’
0og .1
is positive and tends to 0 with 1/x arbitrarily slowly but so that

&(x)

&(2)Vlogw — oo.

The O-sign refers to N — oo uniformly in D.

This explicit representation holds of course without conjectures.
In the main term one can recognise at once the heuristical Hardy-Little-
wood formula in (1.1). One could prove also here (somewhat less strongly
than before) that one could drop from the critical snm in (1.11) every-
thing except the contribution of the zeros “near to o =4%". Theorem I
of this paper (and the theorem in paper [3]) seem to be the first ones
of this type in the literature. Another thing which gives significance to
such explicit formulae “of Riemann type” is the fact that several
problems can be reduced to averaging of (1.11) with respeet to D and
owing to the structure of the formula (1.11) this leads to character-sums
non-trivially estimable. Since after the relation (1.4) (and some facts
from the proof of Theorem IT) the proof of Theorem I is easy, we shall
postpone it to an appendix.

2. As I observed recently (see [4]), another function-theoretical
sieve-method can be devised to investigate “definite” problems of the
additive prime number theory typical of them being the binary Goldbach
problem or the representability of the integer N in the form P42+
As given in [4] 4 is possible to construct a function which can be developed
into Dirichlet series in two ways, both convergent (even absolutely) in a half-
plane o> ¢ the corresponding coefficients being thus equal. In one series
the coefficient of N~° is “essentially” the number of different representations

Acta Arithmetica XITL1 B
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of N in the required form, in the other series the corresponding coefficient
s an asymplotical representation of it

In particular, as regards the binary Goldbach problem, I stated l.c.
without proof a theorem which in a slightly more general form runs ag
follows

TuROREM IX. Let M2 < N < M (N even) and »(N) stand for ihe
number of binary Qoldbach decompositions of the even N. Then the “eg-
plicit” formula

N —1
(2.1)  wy(N) = {l—i—O(E(N))}mBl n(m%"_';?'
e

1+ 0(1/V1og W) 2 w(k)log (M [k) o
log> M (&) o (k)
(k,N)=1
_ Ne__ ne/ro
.
“%:’@ 2N, k) Z(QU‘)) ) o(1+ o/log )P PO T

17i<log M exp(3/2¢(M)
holds (3).

Here again B, is the Hardy-Littlewood constant-in (1.2) and &(x)
is positive and tends to 0 with 1/» arbitrarily slowly but so that

a(m)VBgTa—? - .00.

The O-sign refers of course to M — oo

In the main term one recognises again the heuristic formula for the
number of the binary Goldbach decompositions given by Hardy and
Littlewood in. their paper [1] (in particular in p. 32, Conjecture A). Tt is
perhaps not uninteresting to note in advance that “the singular factors”

-1 —1

mz—z - B mﬁ—z

2|D,p>2 DIN,p>2

in our theorems do not arise from singular series in Hardy-Littlewood's
sense; no disseetion of the line of integration occurs at all. Also such Rie-
mann type explieit formula for the Goldbach problem seems to me unno-
ticed so far. Here the assertion that this formula gives a clearer ingight
into the essence of the problem is even more plausible than before since
in several important problems “the averaging with respect to N?” means
for our critical sum estimation of character-sums, sometimes with con-
secutive integer arguments, for “long” intervals which can be performed

(3) The thefjrem could have been stated replacing everywhere M by IN; how-
ever for “averaging” purposes this form is more suitable.

hm@
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non-trivially. We shall give here a detailed proof of Theorem II without
referring to the general frame of the method in [4], and return to its.
applications in subsequent papers of this series.

In accordance to what was said on the twin prime problem also here
can be asserted that the truth of the (binary) Goldbach conjecture de-
pends exclusively on the “small” zeros of L(s,k, y) functions notably
on those “near” to the line ¢ = }. This follows from a suitable modif-
ication of Theorem IT and we shall return to it in a later paper of
this series.

3. For the proofs of our theorems we shall need a number of aux-
iliary propositions. Let

(8.1) a>1, x>0, =3, J§=¢(>14) and integer
and
def 1 mw d
fs — e — e (U
(3.2) (s, 8, 0) = Bla) 2 — (&){ e

Besides the evident relation

(3.3) D(x) =0 for O0<a<1

we need
LeMMA I. For oll ¢ =0 @(z) is non-decreasing and

(a) 0 < Blo) <1,
(b) for = > exp(24d/w) we have
1—exp(—68/5) < B(2) (< 1),
(¢) supposing for integer N > ¢ also o <1og2N we have

N
N7%
o) <
For the proof we remark that for # > 1 we have

8
d+1 (wlogx)’
(3.4) O@) =1+ “’61 (@Pw O, = 1—exp(~a)10gm)Z—T—.

° =0

Since we have for all real s
é » 1 r
1—e " E 7—=———fe‘ll"dﬂ,
! 8!
Pl 0
(3.4) gives for v >1
wlogz

1
qs(m):—f e an,

(3.5) =
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which, using also the relation @(z) = 0 for 0 <2 <
nicity and (a) into evidence. In case (b) we have

wlogw > 26
and thus

et dA

wlog®

1
(0 <) 1—B(a) = -

;@

1 - —A 48 63 —18
<’an R an z—az?‘f (LFr)e ™ dr.
1

26

Since for # > 1 we have

log(l+7) <rlog2, (L42)e" <e ™

we geb
5

b 5 § 8
i —_—— 2 —_— —
4319@( 4:(S)< exp( 4)<exp( ‘))

which proves (b). Finally from (3.5) (roughly) indeed

1—(x) <

log 2N

v 841
@(N_1)<ar 1f Pdi< N * < N

4. Let N >¢, further

(£1) 152310 2
loglog N
and
9 daf
(42) fm, )= 7
plm

the summation being extended to the different prime factors of m only.
Then we need the simple

LmymA I The inequality
max f (m, 1) < 6logloglog N

l<m<

holds.

For the proof we remark first that the maximum in question is obvi-

ously attained also for a square-free m = m, and further this m, has
evidently the form

My = 2+3-5-T-11-...-p,

1, puts the monoto-

hm@
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where r is defined by

2:3 ..., SN <2 CPrg
Since for N >c¢ we have as well-known
1 1 loghN log v
—logN < p, <2logh, 2 L r LY
) 0g 4 r og ) loglog ¥ ¥ Toglog ¥

and for ¢ >c¢

2%
< Togz
we get for N >¢

Py

max f(m, 1) = ZP f v m(e) = o7 A | w(@)e do
1<m<N "
?,
logt—*¥ T gie?
4 2 f @ < O(1)+2¢logl
< loglog N 2 zlogw dw < 0(1)+2elogloglog ¥
< Glogloglog N
indeed.
Putting with the above 4
logp

(4.3) folny ) detZ(m}T—"‘f

Pl

(summation extended again only over the different prime factors) we
get for N > ¢ by Lemma IT,

(4.4) max fy(m, A) < 3log N max f(m, A) <log*N.

1<m<N 1<m<N

Defining further for z = w -}ty the function D(m, 2) by

(m, zdei[jl 1/p

im

(4.5)

(product extended only to different prime factors of m) we get from Lemma.
II for N >¢ and

1
4.6 ————— <2
(46) ! loglog N v
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the inequality

(4.7) max |D(m, )| < max D(m, 2) < ¢ max expf(m, ») <c(loglog N)’,

1<m<N 1<m<N 1<m<N
Further we have
aD(m, % v logp X
—%j%=wwﬂn2pt1<wmmmmw

pim

and hence, in the range (4.6), using (4.4) and (4.7), we get for N >¢
max
1<m<N

5. We shall need further

LevvA I For 1 <m < M integer, m even, we have (*) for M >¢
the imequality (B; in (1.2))

(4.8)

d.D(m, 2)
dz

&

< log*N.

k)log (M [k -1
E kw_ L p_2{<010g—1ﬁM.
=P p(k) o D P
(km)=1 P>2

For the proof we consider the function ¢, (¢) defined for z > 0 by

u(k) -

(5.1) 0 o)

(Fe,om)

This can be written as

and hence

(5.2)

1 uw—nﬂ“} 1
ol L(z+1,m, 1) n(p){ 1*1/pz+1 L(z+1, m, x) v

(p,m)=1

(#)

where Uy(z) (and later U,(2),...) is regular for, say, # > — %, and here
the inequality

(5.3)

1
S SIGEI<o

(*) I m is od‘d the product must be replaced by 0, as is clear from the proof;
we shall not need it. We put no stress in obtaining a possibly good error-term.

icm®
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holds. (5.1) and (5.2) give for & >0

u(k)logk

(5.4) _
(k,m)=(lk) (]7(70)

k—z

= gm(?2) = Pm(?) (10g’l7m(z)),

U,(2) { r
= U, (&) — ——(2+1,m, %)
L(z+1,m, 1) TR
1 ! U
_ Ul(z)( ) 5(2)
L(z+1,m, xo) L(z+1, m, xo)
1 1 ! Ua(2) 1
=0 z
@ (C(z+1) gm 1~1/p"“) et ,,[J(w 1—1/p™
{'(2+1) Us(z)  dD(m,241)
= — U,(8) —————=D(m,2+1)+ .
Us(2) det
——i] +1) = .
+ fei1) (m,z-+1) =g(2)
We remark further that (m being even)
(5.5)
1 1 P p—1
U,(0) ——— = {1— }2 = B, .
l;[(p) 1—1/p (p’lll(p) (p—1)2 ﬂp~1 o p—2
p>2 D>2
Starting from the integral
1/log M+ilog?0 a1
1 . M43y
(5.6) gy = VY e,
a1t .8 2
1flog M—ilog=" M
the series representation of ¢(2) in (5.4) gives
og M +ilog2®
. o u(k)logk 1 1/log M +ilog?® 21 1 (J’I+%)sdz
L= — sreer . - =z
(h,m):gk) ¢ (k) Imi 1/log M—71log?0 bt # k
)logk , logk  k~ifeEM
- ) &)(kkg”%_o(log_mM)Zk) gk Ay
k<M, (fe;m)=1 (k) @ (k) ‘log 2 i

k
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and hence routine reasoning gives

~  ulk)loghk 17

7 = — E 22T 40 M).

(8.7) Jy © o) +0(log )
km) =1

Let further be
1/log M +4ilog® M

log M M+ 47 .
(5.8) gy = 2g - _(__..é)—q;m(z) dz.
T 1/log M~1ilog20 11 #
(5.1) gives again as before
I, = pk) - 1og M+ O(log ™ M)
) =) (k)
(km)=l
and hence
k)log (M [k
(5.9) Td= PO 0t
=" plk)
s

Using the representations (5.2) resp. (5.4), we can apply Cauchy’s
theorem to the parallelogramm with the vertices

+ilog2 M,

20
Tog M ~ Toglogar T'og” M-

Since this parallelogramm lies for I >¢ in the zerofree domain of
L(z+1,m, ), the only singularity in the inside is the pole of first
order of g(z) at # =0 with the residuum

1 p—1
g(0) = T,(0) —— =38R £ -
! ﬂ(”) 1—-1/p lmm ®p—2

p>2

using (5.5). As is well known, on the periphery of our parallelogramm
we have for M >¢

{'(24+1)
{(z+1)"

< (loglog M)°, _[C(Tlm < (loglog M)°;

these, combined with (4.5), (4.8), (4.7) and (4.8), give for the remaining
parts of the contourintegral the upper bound

O(log—mM)log“M-l— 0 (M—l/loglogM)logsM

which completes the proof of Lemmg IIT.
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We shall further need the
LeMma IV (). For square-free odd & the estimation

Z(m, k)cl—efi Z*Z(m, k)

ymodk

<(m—1,k)
holds.
For the proof we remark that if

bE=pipe...Pry P1<Py<...<pp

g; is a primitive root modp; and, further, if
m = gimodp;, 0<&<p—2, j=1,...,1
then for fixed »’s with
0y <pi—2, j=1,2,..,1

the characters belonging to mod#% are given by

xlm B) = exp {27”'(;:511 toet p?jll )}

Since they are primitive characters if and only if

1<y <p—2, i=1,2,..,1,
we indeed have

1
D iv; 5
Zim, k) = ”Z(m,])j) - ” Z ST e
j=1 =

=1 l#=1

= i—2) = — p=1 s 7).
[, o= [[,@=2< ][], v=1m-10

&=0 Dj)(m—1) 2] (m—1)

6. Now we turn to the proof of Theorem IL. Tet M > ¢, further,
let , w; and & be functions of I to be determined later; here we restrict
them only by

(6.1) 3<ow<logM,

(6.2) 3loglog M < w, < 0,991log M,
(6.3) é = l/logM and integer,
(6.4) §lw = o(1)

and for the even N

(6.5) M N<M.

(5) This lemma was also needed in [4]; we include it for the reader’s convenience.
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Let § == g4-if, o > 2, further, let 5 be such that
(6.6) l<yp<o—1;
we start with the function

(k) log (3 b)
PR .
E<M

6.7)  Fyu(s) = —

e oW

1 _ I 1—
x{ Zm——. L(s—w,k,x)—f(w,k,x) ‘,Hdw}

o (1 w]w)

’

- L .
Owing to (6.6) we can replace both L(s—w,k,y) and —L—(w, kyx) by
their respective Dirichlet series and integrate termwise. This gives

(6.8) Fils Z u{k)log (M |k Zm) Z(v) ns

() =(»:k]

1 (nfp) — (ne= "1 »)"
X{WZ x(v k)yy(n, k)} ‘f————————’——w( _‘L.w/;r”TrM dw.

The last integral can be evaluated by using Lemma I; what we actually
need is only that it is

(a) =0 for »>n,
(6.9) (b) Tbetween 0 and 1 for v < n, )
(e) between 1—exp(—:—,6) and 1 for ne~“t <y nexp(—26/0).

Denoting the value of the integral in (6.8) by b(n, »), we get from (6.8)

. AR
(6.10) Frls) = Z L
OR
where
(6.11) Z’m E)log (M k) Z( ()b (n, ).
(ke (=1
n=rmod k

This representation shows at once that the series (6.10) converges (even
absolutely) in a half-plane o > c.

7. We investigate in particular ay. (6.11) gives, taking also in account
Lemma I (e)

(11)  ay= M ABBN,») . ulk)log(M[k)+0(1/M),

icm®
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which can be written as (ay - ay), where

(7.2) ay = D, A0 2( )

w(k)log(M]k),

i
Eyfli%;zl (kN(T\}k:)) 1
(1.3)  ay = Zm/l(v)b(N ») ”Z(k) (k) log (M [k)+ O(1/ ).
=1 R

We consider the inner sum in (7.2). Since owing to (v, N) =1 and
%|(N —») the restrictions (%, N) = (k,») = 1 are automatically satisfied,
this is owing to N—» > 2 equal to

Z‘k k)log(M k) = A(N —»)

lu(N—v)
and hence
(7.4) Gr= D, A AN =9, ).
vSN~2
(. N)=1

Ag to ay in (7.3), the inner sum cannot exceed absolutely (roughly)

log M-z (N—w)
and hence, using also (6.9)
lay! < 2log M max = (1) 2 AW).
<l<M S
(»,N)>1
But this lagt sum is equal to

ym 08P LJ(A) = L BP logyp < log -z (X)
pA<r 2N

and hence for M > ¢

lan] < 2log?Mmax ()2 < M.

<M
This and (7.4) give
ay = Z(y N—9)b(N, ») -+ O (M0);

N)=1
since the contribution of prime-powers p* with « > 2 cannot exceed
2log* M-0 (VM log M), we get

D rany 10871108 (I, 1)+ OV Mlog M)
Dy+Pg=N
(p5,N)=1

and also

(7.5) ay = Zwl’pi)logpllogpz'b(N, py)+ OV Mlog* M).

Dj+Pg=N
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8. In order to get a more elegant form for ay, we remark first that
(6.2) and (6.9)(b) give at once
M

(8.1) Z(m oy 108D 108D: D(N, 1) < log®N-Ne™t < Togdl”
pymg=N

minpy<Ne™ 1
Further, according to Schnivelman’s theorem () (and (6.9) (L) and (6.4))

wl
BN log* N 1
(8.2) Z(Mz} logpilogps-b(N, pa) < log Z o)

Dy +DPg=N Dy+Py=N
L)
mﬂxp).>_zvexp(_g,[_u_) 11mxpj>Nuxp(—2 )

5 1 5 —
<eN—H (1+—)<CM_HL
me ®) P wp]N p—

P>2
Replacing further in the remaining part of the sum in (7.5) 0(N, p;) by
1 the error is, owing to (6.9)(c) and (6.3), easily

P— 1

——6]5 T
(8.3) log" N - IOUN log“’M 27Ilv
n>2

Collecting all these we geb

1 é p—1
= LO(M) | +— I - .
(8.4) ay _Jmmg)logpllogpa o( )(log T w):mN =

n>2
9. Next we proceed to obtain another Dirichlet series for Iy (s)’
convergent (even absolutely) in some half-plane o > ¢. For a character
z(n, k), let k* be its conductor and x*(n, k*) the corresponding primitive
character; then for a square free &, as is well known,

] * k*
w, k1) = Lo, 1, 2 | | (1——1‘—(%%)
n _’i
™

Py +Dg=N

and hence

r 2 (p, k*)logyp
9.1 w, k = i* Y-+ _..._’_______
(9.1) ( ) 2) T (w, &, £* (y) 0, )
kv

(5) See e.g. XK. Prachar [2], p. 51, Satz 4.4. Actually we have used here a
slightly stronger form of the theorem — one could prove it mutatis mutandis — namely
that the number of binary Goldbach decompositions of N with maxp; > N —y can-

t — il
not exceed ¢ logﬂN I;VI(H— P) if Nj2>y > NVlogh.
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Then we write

(9.2) Far(8) = P (8)+ Fara(s),
where by (6.7) (with the notation of p. 63)
p(k)log (M/k) .1
(03) Fals) =— Y| o= M )
P o (k) % ®) L0 Omi
g L’ 71— e—-mlw
L(s—w, I i*
% I (=) L 0, 15 2 g w(l+wfo)
()
and
wu(k)log (M [F) J * 1
(9.4)  Fyn(s) = '—kgﬂ;(k) (%) ,:‘%';Uﬁ) x,,,g:("‘) 5 X

1 g ‘ \} r(p, logpl
X ({L(S*w779;x) w(1+w/w) J*IIT/(?J) P —x(p, k)
) 7%
o

10. Let us consider Fy,(s) first. Writing the inner sum in brackets

in the form
p k*
‘27 ) og® Z ,

and putting it into (9.4), we get

oo

log M) * "
FM2(3)="k M(k) T e > e (1%) 2(%* 2/ ®) ~§—/ "' 1)

k*|k 2*mod k* i A==
I
2 rin, k) 1 f (nfp* Y (1— e~ 1) e
o f o ) T ey G-
i m 2t T (141w /[w)
This gives using (6.9)(a)
(2)
\7 ¢n
(10.1) Fan(s) = Z(nﬂ?”
where
(10.2) ¢ =
_ w(k)log(M[E) O Z Z*
= — (k)———k) A(k*) Z(m ogp b(n,p* ) Z(mp~ W),
kkf)i{l phan *modk*

p'iaT
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This representation shows at once that the serieg in (10.1) converges
(absolutely) in a half-plane o >o¢. For the estimation (-)f |e$§’|.we apply
Temma IV. Owing to (p, k*) = 1 we have for all ¢ primes dividing &*

‘n_fp”]' —1=0modg = ‘n—ﬁz = O0modgq

and hence
|l (B)] \ PR
( 2T N— k).
(10.3) || < log2M E(k) () gm Em 2“)( p*y k)
K<M kxlk PN pleN
k,Ny=1 p[ :.

Introducing %, and %k, as new summation variables by

B =5y, K[k =k,
we have
k = kiks, (k17 ko) = 1

and hence from (10.3)
. N\’ s (Toa) | e (Reo) | -
(10.4) 6] < log*M L Z (N—p", k)
(klkzdfl’k” o (k)@ (ks) %T’gv(p)jglél)

Ty kg N)=1

Ky
ko=0modp

)| R (s

. . Rlnd St AN M (¥ & B

< log2M E(kl) T §(p) D N2 Tl Z(kz) (k)
<M P<N - preN

The last sum is owing to (p, kofp) =1

1 k e loglog M log®* M
_ Wk I#(ka)l<_}j]r gkg <o
p—1 ksalg,ﬁ) o (ks) P "s<1‘é 3) 3 P
(Fg,0)=1

and hence from (10.4)

1 (N—p*, k)
169 < clog*M — B

2
= clogar 121 3 W—_fk).
il WN( ) leM( 1) oy

Again the last sum cannot exceed

Ly ky) dkg

1 1
Z(d a Ny = log M- ¢ (N —p*) < exp (o T_(%g_%)
zl[(N—:o")J kg M 0giog
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and thus
log M 1JlogN log M
(10.5)  [e¥| < exp (cv-— ) —[h-—] < ex (c————— .
loglog M MZN(I’) p | logp =& loglog M

11. Next we investigate the function Fj,(s) in (9.3). Shifting the
line of integration to the line Rew = — 0,99, we get
(11.1) Fan (8) = Farg(s)+ Fanals),

where F3,(s) consists of the residual terms and

k)log(M [k
aL2) Fu) =- Y LOERD
k<M (P( )
1 ) N g 1—e 1™
X Z - f L(s—w, k, x)— (w, ¥*, y*) ——————— duw
% ) & 2 ) TEATL T A (I fw)H
Replacing L{s—w, k, z) by its Dirichlet series, we get
: (4)
e
11.3 Fanls) = > =
( ) F a14(8) Ly 7
‘where
k)1 k
(11.4) o) = Zk ﬁ(_)% e
P @ (k)
(ke,m)=1
o 1 r PO (1 — e ¥
% (&) Z(x‘)xm’ 2 g f -i_(w’k*’x*) w(l+w/ )"‘“)1 ho.
Wk yemmod ks AT By @
Trivial estimation shows again that the series (11.3) converges (abso-
lutely) in a half-plane ¢ > ¢. In particular (putting w = — 0,99 +4v),
we get
201099 1
(11.5) ) gz(-zv) logM Zk — X
=z o)
dv

s .
T(——O,QQ—I—?:’D, K, 1) o+l

D D |
R Loy L) f
0

Tk x*mod &+

1
S
w [0}

13+ |

Splitting up the range of the integral into

fof+]

0 i w2
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we obtain respectively
1
f < clog M,
[}
S M
f < f Mdv < clog M -log?w < clog®M
v
1 .

and

oo QOl *
f<cf-0gfvd'v<alogM;
v

2
o2 o2

hence, using also (6.2) and (6.1),

M

(" 0,9999 4 .
(11.6) 6] < e M log* M < clo 3

12. Now we consider FM‘.,,(s ) from (11.1). The residual terms are
due to poles at

w=1 w=40, w=y

(see the footnote on p. 63). The contribution of poles at w =1 ig obvi-
ously from (9.3)

1 u( Iog M k) dof
(121) oy 2 I(s—1, &, 3= Fh(s).
This can be written as
22 S
- ™
with
(12.3) S I e w M B pi)log(ME)
¥ v atilin it
1o " Lo gk
(k,m)=1

which shows at once that the series in (12.2) converges (absolutely) for
o >¢. In particular, for n = N Lemma IIT gives

-1 —9 u
BN — BN —¢ P
N L 1—|—1/a) ) ]N-(ﬂ)p—l +0 Top I

»>2

and thus from (6.2) and (6.4)

1 -1
(12.4 oY = {1 0( ) 0(———)}3 N ==,
) + + logM J|7F {i@p—2

P>2
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13. Next we consider the contribution of the poles at w = 0. They

occur only if ¥* >1 and 4*(—1,%*) = +1; hence the contribution of
these poles is from (9.3)

k)log (M [k
(13.1) —w, D ﬁ(_)._%b(__/_) . *‘
k<M( ) (k) k* ke A x‘(-—l,k')z(x-)-)l

ke=1

L(s, b, 7) = F(s),

which can be written as

e
13.2 2
(13.2) T

with

k)log (M [k —
(13.3) £V = —w, E y ”(—)—%(-—Q E o E*‘ 1*(n, k¥
kg]lf(v) (p( ) k'[k.( ) z*modk(z)

(kmy=1 ke>1 2~ LEY)=+1

This again shows at once that series (13.2) converges (absolutely) in a
half-plane ¢ > ¢. Considering again %%, the inner sum in (13.3) can be
written as ()

14+ %(—1, k*
(N, k*)ﬂ(q_’__) ,
(") 2
x*mod k*
and hence its absolute value cannot exceed (in the notation of Lemma IV)
HZ(N, &)+ Z(—N, k).

This shows—also by (6.2)—

u(k)]
@) ] 1, k* *
lex?] < log* MkZm o(k) ('f‘) e S+ =L
M
But since
k);um (N£1,K) < (N£1,k)z(k),
+]
we get
log M lu(¥)]
B < —= k) +(N—1,k)}.
) exp( loglogM) S‘m o LB (T—1, )
Since
2 d
Smresins St 5
s 7al el dI(N:bl())(p( )"<M/‘§ 7l
1 log M
2 —_—
¢(loglog M) 2(:1) Z(T)r <e P( 10g1°gM)’
aN£1)’ r<M

(") Simplified by Mr. I. K4tai and Mr. I. Kérnyei.

Acta Arithmetica XTIIT.1 6
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we get
log M
33 < —— .
(13.4) ¥t < exp (0 loglog M)

14. Next we consider the contribution of the p’s to F,(s). This
is obviously

w(k)log (M [k) Zv
— —_— L(s k S ),
=" e (k) zm—%:,({x) (e(n)) (s—e k%) o1+ ofw)*? it ()
and can obviously be written as

- (3:3)

R
(14.1) _>.,(n) e
with
(14.2)

Eylog (M |k _ — e 18
) =~ albilog (M k) (s 7“)2 .
=4 (1) o(k) [ ey o(L+ ofw)t

(}a n) 1

This shows again that the series in (14.1) converges (absolutely) in a half-
plane ¢ >e¢. This gives for n =N

(14.3)
n(k)log (M k) _ 1 goe
) = — E #(k)log (M k) ¥k g L=
g Al »(k) z;g;(ax)x( ’ )2(9(1)) o(1+ o/w)’ "
(%, N) 1

Next we estimate trivially the contribution of ¢’s with
(14.4) Iyl > oM,
This cannot exceed absolutely the gquantity

4 Mlog M 2 2 N
9 ¢ (k) Ll Ly (145 f)eR

Imodk
logv
1_{_1,2/(0 [CES)E

g2
2(») ¥ " *logy

»>aoM3/20

< cleogzM
Ma/za
< cleogzM-w"“

3
< oMog Mlogw- 3 " < oM logt U0
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using (6.3) and (6.1). Hence
. (B [E) ~
(14.5) 68V = — Zk #B) ——~gk ! Z (N, k)%
ksM( ) ( ) xmodl‘cx)
(kN)=1

e
X D i + OV I gt

Ivi<
Now we have in a half-plane o > ¢ the identity

Far(s) = Faga(8)+ Fara(s) -+ FShs(5) + FGa(5)+ FGh(s),

and all these developable into Dirichlet series convergent here.
Hence by the uniqueness theorem we have

oy = -4 eff 6§+ o8 1P,

Collecting the corresponding expressions, we get

p—1 [ 1 )
y == V - - Tree ar I
s Y logpilogps = BiN g(,,)p_g {1+0(w)+ O(logM)}

N
Py +Po=N ot

pR)log(ME) 1 — T
y(k} o(k) Liw* (N, H) S a(x)) ) o(14ofw)’ T’

<M xmodk 3/28
(i Nym1 |,[<¢uMI

As to the left side we have evidently

D ouy 08 D1108Ds < v:(N)log" N .

Dy +Pp=N

On the other hand we have

Dowplogpilogp: = 3 logpilogp,
pr+pa=N P+Py=N
mmp,;Nllog-N
loglog NV
>1og' N (1—8 Sl ) fn(an)— Z'(pwz)
€ Dy+D5=N
mm:p7<N/log2N
loglog M M
N)log*N (1—9 } —_ .
va(H)log log M | *Togit
Hence
loglog M M
logp;logp =v(N)10gN{l—} O( )}—{—0( )
pﬁ%‘_(fvw) e log M log )’
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putting it into (14.6) we get
N p—l{ (6) (loglogM 1

L7 5, (N) = 0 SO0 —=— )

(14,/) 12(2\) BIlngN (1’)17 ) + longI j
7J>2
1~1—o u( 10g M/k - 1—e ¢
N,k Ne——
log* M 2 Z(Z)Z( 1 E) Z(g(x)) o(1+g/a)*t
LN) z zmodk pl<wM3/28

Until now ¢, w and w; were restricted only by (6.1)-(6.2)-(6.3)-(6.4).
Let ¢(z) > 0 and tending for # — co monotonically to 0 arbitrarily slow-

ly but so that

lim e(m)l/iag—; = oo,

L-+00

(14.8)

Then if we choose

(14.9) w=1logM, w, =0,99l0gN, & =/[e(M)logM]
(14.7) takes the form
(N 1og2N Hmp__z {14+ 0(s(20)} —
B 1+o(1) u(k)log (M [k)
log  &m  g(k)
(#,N)=1
_ Ne— el
X X(N’k) e(M)log M]+1
Zék o(1+ /log M)FCDToE M

Ipi<log M exp(a/";(M)

which proves Theorem II.

Appendix

15. For the proof of Theorem I we start from the function for ¢ > 1
(D positive even)

- o u(k)log (N + D) /k
(15.1) Hy(s) = Ll ] i N V7 —D, % k,
N %%’g o mZ Z(— > e k).
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Substituting the Dirichlet series we get as previously

A AN+ D
(15.2)  Hy(s) = y(n) ($_)+

n<N
(n,Dy=1
A(n) N+D d
- Zn s Z(l») (k)lg~~;+ e
( D) (1) 0 w &
ﬂ: =

3 'n)c k,D) 1
it ¢ D)

Writing Hx(s) in the form
p(k)log (N 4 D)/k)

(15.3) Hy(s) = —
kL w (k)
(k,D)=1
(k)log((N + D) /L)
XZ’”‘ D -D, 7\)——(6 1) m ek
¢ [F x*mod A* szg)-;-ll)

(0, K)logp aer

x C (=D, K LA 208D et i (8) - Hoa (s
%‘(m) Do B (=D, 1) o Ty ) )+ Haal)

Z*mod k* *
=
we start from the integral
(15.4) I=14+1I,
where, with « >1,
TS — WaS
(15.5) If=—2%(&)f—s%l-;-—7£§%flm(s)ds, j=1,2,

and 6;, w,, v, are restricted at present only by

(15.6) 3 < v, <logh,

(15.7) d; > 3loglogN'  and integer,
é

(15.8) L0,
(o

(15.9) 3loglog N < w; < 0,9910g NV,

< ; N
(15.10) 2D TogoF

and they will be determined exactly later.

16. Using the Dirichlet series representation of Hy(s) in (15.2) and
also Lemma I, we get (with the notation (6.8) but with &, instead of 6
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and similarly with the w’s)

(16.1) I= Z A()A(n+D)b(N, n)-+

+ Z(n)/l(n)b(N,az) 2” wlie)lo

ng<N
(X n) P [k D)) 1

N+D
g
11

(n,D)>1
The second sum in (16. 1) is absolutely, as is easy to see,

1110
< clog?(N - Zw) Z(a)l < cN

PN

max ‘L'
1<Z<N+D

In the first sum of (16.1) Schnirelman’s theorem implies, together
with (15.8)
4y p—1
2 A(n) A+ DYb(N, n) < N~
= (1) 2B p—2
1 D>2
Nexp (-2 T)<n<N »|D
(n,D)il
and evidently from (15.9) and (15.10)
Zm A@n) A{n+D)b(N,n) < clog?N-Ne=® < o2
nLNe— %3 lo gN
Hence we got from (16.1)
1
1= logplogpa b, 22)+ O () | -4 }[]p
" % @17 vEe logN p—2
1J>2

[
Ne™ D3<paN axp(— 2 i)
@2

and on using (15.7) and (6.9)(ec)

~1/s 1
162) I= S  logpilogp,t- 0 (Y l I-p_(_l_ .
2o gp-logps+0( )p]D =2 o, Tog ¥
pl—pq+D »>2

17. Next we investigate I, in (15.4). This gives as in 10

L=- Y #Osl N+D/’~ L) —D, ) x
* £ ) ? i
I(c<11;7)+.(10) k*|k ) x*modlgz )
k)log((N—}— D)/k)
X - I
2(2’) gp4§d"(/‘) ’ ’1’) . Zk) (/)(70)

[+ vt

E3

XZ(,,.) 2@) ogp Z b, 2] D =D )
p! = 2 <N+Dt 2*mod k*
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o
-1

Using Lemma IV and (6.9)(b), we get

B e

*k

i ]
Dy @D E.

(7) k)
¢ ( ]J;‘\ZVTD

(DY

1L} < log®(N+ D)
r<

2
77 T

The next steps are quite analogous to those in 10 (after (10.3)) and result

logN )

(1‘1.1) T&g—@ .

I} <C exp (c

Next we consider 7,. Shifting the line of integration to the line Res
= —0,99 let the contribution of the residua resp. of the integral be I,
resp. I,. For I, we get from (15.1) and (15.5)

(17.2) 1]
£3\09 1 ;o log{(N+D)(2+v)}dv
gc'(-?) log(¥+D) Za— (k) E f(1+v){1 —1/w,) +vﬁ/ci}5ﬁ DE
It k<N+D)¢ xmodk 2 2
. T 1 [ logNv 673\07
< eNlog¥ {IogzN—}——TVf —-U?I_H wgl“dv} (F)
gma 0,99 .N
< eNlog3 N [— = 0f|—"c
S (N) (logN)
owing to (15.9) and (15.6). Collecting (16.2), (17.1) and (17.2), we get
61 1 p—1
17.3 1 = V .
(17.3) ZW) ogpslogp, = Ig+0<1\>{ + 1OgN} L=
Dy<N, 01 =05 D p\z .

18. Finally we consider the residua. The contribution of the poles
at § =1 is

181 yo 17" (k) log((N + D) /k)
T )T e
(.D)=1
Ca p— _i_}
- ,[!“’) P— {1+0 ( (og) _H)(logl\’)

plD

owing to Lemma III, (15.8) and (15.9).
The contribution of residua at s = 0 is

O uf log N—LD k *
} %) (k) b 5W(k') Z(x') £ (=D, s
]E<12;3+.£1 ? x*mnod k*

k*>1 x*(~1,k*)=+1
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the reasoning in 13 gives mutatis mutandis for the absolute value of
this expression the upper bound

. (k)
clog2 N 2 S’(M){(DH B+ (D—1, &)},

ok (k) @(k)

. log v )
P loglog ¥}’

using also (15.10). Finally the contribution of the nontrivial zeros is

u{k)log((N +k)/D) Z 2 e(1—emese)
o et w(k) (”) {etn) 1+ o1+ ofwp) 7T
("D)=1

The reasoning in 14 gives mutatis mutandis that the contribution of
o’s with
[¥] > w, (N 4 D)1
is O,
19. Let ¢(x) be positive tending to 0 for # — + oo monotonically
arbitrarily slowly but so that
(19.1) e(z)Vlogw — 4 oo,
Then choosing
w; = 0,991og NV,
0, = [e(N)log V]
(19.2) ! gD
w, =log N,
N > max (¢, Dlog"D)

the requirements (15.6)-(15.10) are fulfilled and

2( )Ing)llong

DN
7’1=?72+D
=1 k)log (N + D)/
= o)y 22 L Jlog (W + D)JE)
p1D p—2 k<N+53k) o (k)
D>2 (k,D)=l
- Ne—. Ncuoo
X 1(—D, k) ‘
ximodt o ' 2 (e@)  g(1+ gflog N)M)los NI +1

Iyl logNexp(a/ze(N)

Then the proof can be completed as in Theorem IT.
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