Über das Produkt inhomogener Linearformen

von

PETER GRÜNER (Wien)

Herrn Prof. E. Hlawka
zum 60. Geburtstag gewidmet

Einleitung. Sind

\[L_1 = a_{11}y_1 + \ldots + a_{1n}y_n, \]
\[\ldots \ldots \ldots \ldots \]
\[L_n = a_{n1}y_1 + \ldots + a_{nn}y_n, \]

n reelle, homogene Linearformen, ist \(d > 0 \) der Absolutbetrag der Determinante und sind \(c_1, \ldots, c_n \) beliebige reelle Zahlen, dann besagt eine Vermutung von Minkowski, daß es ganzzahlige Werte der Variablen gibt, so daß gilt

\[\prod_{k=1}^{n} |L_k + c_k| \leq d2^{-n}. \]

Dabei ist das Gleichheitszeichen nur in einem bestimmten Fall erforderlich. Für \(n = 2 \) bewies Minkowski den Satz selbst. Darüberhinaus wurden bisher nur die Fälle \(n = 3 \) und \(n = 4 \) bewiesen. Für allgemeines \(n \) kann man sich der Vermutung auf mehrere Arten nähern (vgl. Cassels [593]).

Im ersten Teil dieser Arbeit folgen wir einem neuen, von Bombieri [62], [63] eingeschlagenen Weg. Sei im folgenden \(\epsilon \) stets eine natürliche Zahl. Bombieri zeigt, daß man bei passender Wahl von \(\epsilon \) aus einem hinreichend großen Intervall

\[\prod_{k=1}^{n} |L_k + \epsilon c_k| \]

durch ganzzahlige Werte der Variablen kleiner als eine beliebig vorgegebene positive Größe machen kann. Wir werden einige Verschärfungen seiner Ergebnisse angeben.

In der Menge aller Systeme von Linearformen der Form (1) kann man ein Maß einführen. Im zweiten Abschnitt werden wir zeigen, daß für \(n = 2 \) nach Ausschluß einer Menge vom Maß 0 die Konstante \(\frac{1}{4} \) durch
\[\frac{1}{7} \text{ ersetzt werden kann. Dabei sollen auch unsymmetrische Ungleichungen betrachtet werden. Ein weiterer metrischer Satz bezieht sich auf den Fall } n = 5. \]

In den letzten Abschnitt formulieren wir die Vermutung für Punktgitter und zeigen, daß für hinreichend hohe Dimensionen nach Aus schluß einer Gittermenge, deren Siegelsgesetzen kleiner als \(e^{O(n)} \) ist, die Konstante \(2^{-n} \) gröbnerordnungsmäßig durch \(e^{-n} \) ersetzt werden kann.

Sind \(S \) und \(T \) zwei Teilmengen des \(\mathbb{R}^n \), dann ist \(S \cap T \) die Menge aller \(\frac{1}{2} \cdot \text{mit} \ v \cdot S, v \cdot T \). Ist \(\mathbb{R} \), dann ist \(S \cdot T \) die Menge aller \(\frac{1}{2} \cdot \text{mit} \ v \cdot S \).

I. Bemerkungen zu zwei Sätzen von Bombieri. Wir betrachten zunächst nur Systeme von Linearenformen mit \(d = 1 \). Von Bombieri stammen folgende Resultate: Ist \(0 < c < 1 \) fest gewählt, dann gibt es für ein passendes

\[h < [c^{-1}] + 1 \text{ bzw. } e^{-2} \text{ falls } e^{-2} \text{ ganz} \]

zu jedem \(s > 0 \) ganzzahlige Werte der Variablen, so daß gilt

\[\prod \left(L_k + h \alpha_k \right) < e + e. \]

Ferner gibt es ein \(h < 2^{d^{-1}} \cdot \), so daß für jedes \(s > 0 \) die Ungleichung

\[\prod \left(L_k + h \alpha_k \right) < \frac{1}{2^d} + e \]

durch ganzzahlige Wahl der Variablen erfüllt werden kann. Nach einem bekannten Satz von Tschebotareff [34] kann man die Ungleichung (1) für \(e > 2^{-n} \) schon für \(h = 1 \) durch geeignete Wahl ganzzahliger Werte der Variablen erfüllen.

Satz 1. Ist \(c \) mit \(0 < c < 2^{-n} \) gewählt, dann gibt es ein

\[h < 2^{d^{-1}} \cdot e^{-1} \cdot \]

so, daß für passende ganzzahlige Werte der Variablen gilt:

\[\prod \left(L_k + h \alpha_k \right) < e. \]

\(e < w \cdot n^{-1} \cdot 2^{-n} \cdot \text{log} 3 \), dann kann man diese Ungleichung schon für ein

\[h < 2^{-n} \cdot e^{-1} \cdot \]

durch ganzzahlige Werte der Variablen erfüllen.

Es ist möglich, bei Beschränkung von \(e \) auf noch kleinere Intervalle, die Konstante \(2^{-n} \) in (3) durch kleinere zu ersetzen.

Im Beweis dieses Satzes verwenden wir eine Methode von Woods [58] und folgenden einfachen

Hilfsatz 1. Liegt der konvexe, symmetrische Körper \(S \) vom Volumen \(V \) zwischen den beiden parallelen Stützflächen \(E_0 \) und \(E_1 \) und ist für \(\frac{1}{2} \leq a \leq 1 \) \(E_0 = (1 - a) E_0 + a E_1 \), dann gilt für das Volumen \(V(S) \) des zwischen den Ebenen \(E_0 \) und \(E_1 \) gelegenen Teils \(S' \) von \(S \)

\[V(S') \geq a V. \]

Beweis. Aus dem Satz von Brunn (vgl. Hadwiger [57], S. 177, Nr. 13) ergibt sich folgendes: Ist \(0 < \lambda < 1 \) das \(\lambda \)-dimensionale Volumen von \(E_0 \cap S \), dann ist \(e^{\lambda \cdot \text{volumen}} \) konkav in \(\lambda \). Da \(S \) symmetrisch ist, folgt daß \(v(\lambda) \) seinen Maximalwert für \(\lambda = \frac{1}{2} \) annimmt und für \(\frac{1}{2} \leq \lambda \leq 1 \) monoton fällt. Es ist

\[\int_{\lambda}^{a} (v(\lambda) - V) d\lambda = \left\{ \begin{array}{ll}
0 & \text{ für } a = \frac{1}{2}, \\
0 & \text{ für } a = 1;
\end{array} \right. \]

\[\frac{d}{da} \int_{\lambda}^{a} (\lambda) - V) d\lambda = v(a) - V \]

monoton fallend in \(\frac{1}{2} \leq a \leq 1 \). Deshalb ist \(\int_{\lambda}^{a} (v(\lambda) - V) d\lambda < a \) konvex für \(\frac{1}{2} \leq a \leq 1 \) und daher wegen (5) nicht negativ. Daraus folgt (4):

\[V(S') = \int_{\lambda}^{a} v(\lambda) d\lambda = \int_{\lambda}^{a} v(\lambda) d\lambda + a V - a V = \int_{\lambda}^{a} v(\lambda) - V d\lambda + a V \geq a V. \]

Beweis des Satzes 1. O.B.d.A. sei \(d = 1 \). Sei für \(h = 1, 2, \ldots \)

\[m_k = \inf \left\{ L_k + h \alpha_k \right\}, \]

erstreckt über alle ganzzahligen \((u_1, \ldots, u_n) \). Wegen \(c < 2^{-n} \) ist \(1 < 2^{d^{-1}} \cdot e^{-1} \cdot \). Für \(m_k = 0 \) gilt daher der Satz nach (6) mit \(h = 1 \). Sei nun \(m_k > 0 \). Um den Satz zu beweisen, genügt es zu zeigen, daß für ein \(h \) welches (2) erfüllt \(m_k - c \) ist. Nach (6) gibt es eine Folge von ganzzahligen \(n \)-Tupeln \((u_1, \ldots, u_n) = u \), so daß gilt:

\[\prod_{i=1}^{n} L_i(u_i) + h \alpha_i \geq m_i, \]

mit \(0 \leq \alpha_i < 1 \), \(\alpha_i \to 0 \) bei \(r \to \infty \).

Nach der Definition (6) von \(m_k \) gilt für jedes \(h \) und alle ganzzahligen \(n \)-Tupel \((u_1, \ldots, u_n) = u \) wegen (7)

\[\prod_{i=1}^{n} L_i(u_i) + h \alpha_i \geq m_i m_k, \]

bei \(0 \leq \alpha_i < 1 \), \(\alpha_i \to 0 \) bei \(r \to \infty \).
Da mit \(u + \lambda u \), alle ganzzahligen \(n \)-Tupel durchläuft, folgt
\[
\prod \left| \frac{L_0(u + \lambda u) + \lambda u}{L_0(u) + c_k} \right| \geq \frac{m_k}{m_1} (1 - \varepsilon_k),
\]
oder
\[
\prod \left| \frac{L_0(u) - \frac{1}{L_0(u) + c_k} + h}{L_0(u) + c_k} \right| \geq \frac{m_k}{m_1} (1 - \varepsilon_k),
\]
für alle ganzzahligen \(u \) und jedes \(k \). Sei \(\mathcal{A}_k \) das, den Linearformen
\[
\frac{L_0}{L_0(u) + c_1}, \quad \ldots, \quad \frac{L_n}{L_n(u) + c_n}
\]
entsprechende Gitter. Da \(L_1, \ldots, L_n \) die Determinante 1 haben, erhält man aus (7) für die Determinante \(\det(\mathcal{A}_k) \) von \(\mathcal{A}_k \):
\[
\det(\mathcal{A}_k) = \prod \left| \frac{1}{L_0(u) + c_k} \right| = \frac{1 - \varepsilon_k}{m_1}.
\]
Da \(\mathcal{A}_k \) berücksichtigt v symmetrisch ist, folgt aus (8), daß \(\mathcal{A}_k \) für jeden der Bereiche
\[
\prod |x_k + h| < \frac{m_k}{m_1} (1 - \varepsilon_k), \quad \prod |x_k - h| < \frac{m_k}{m_1} (1 - \varepsilon_k), \quad h = 1, 2, \ldots
\]
zulässig ist. Insbesondere ist \(\mathcal{A}_k \) zulässig für
\[
\prod |x_k + 1| < 1 - \varepsilon, \quad \text{und} \quad \prod |x_k - 1| < 1 - \varepsilon.
\]
Da \(\varepsilon_k \to 0 \) bei \(r \to \infty \), enthält \(\mathcal{A}_k \) für alle hinreichend großen \(r \) keinen von \(v \) verschiedenen Punkt im Würfel
\[
|x_k| < (1 + (1 - \varepsilon_k))^{1/n}, \quad k = 1, \ldots, n
\]
(siehe Woods [58], Seite 632) und damit jedenfalls keinen von \(v \) verschiedenen Punkt im Würfel \(\{x_k| < 1, k = 1, \ldots, n \} \). Da die Determinanten der Gitter \(\mathcal{A}_k \) nach (9) nach oben beschränkt sind, so gibt es nach dem Auswahlzustand von Mahler eine konvergente Teillfolge der \(\mathcal{A}_k \), die gegen ein Gitter \(\mathcal{A} \) strebt. Nach (9) gilt
\[
\det(\mathcal{A}) = \frac{1}{m_1}
\]
und man zeigt genauso wie Woods, daß \(\mathcal{A} \) für jeden der Bereiche
\[
\prod |x_k + h| < \frac{m_k}{m_1}, \quad \prod |x_k - h| < \frac{m_k}{m_1}, \quad h = 1, 2, \ldots
\]
zulässig ist.

Wir fahren nun den Beweis indirekt. Sei für alle \(h < 2^{(1-n)/2} \) \(m_k \gg \varepsilon \) Dann ist \(\mathcal{A} \) jedenfalls für folgende Bereiche zulässig.
(13a) \[
\prod |x_k + 1| < 1, \quad \prod |x_k - 1| < 1,
\]
(13b) \[
\prod |x_k + h| < \frac{\varepsilon}{m_k}, \quad \prod |x_k - h| < \frac{\varepsilon}{m_k}, \quad 2 \leq h < 2^{(1-n)/2} - 1,
\]
denn diese Bereiche sind Teilbereiche der in (12) angegebenen Bereiche. Sei \(\mathcal{X} \) durch die folgenden Ungleichungen definiert:
(14a) \[
|x_k| < \frac{c_k^{1/n}}{m_1^{1/n} \sqrt[2]{2}}, \quad k = 1, \ldots, n,
\]
(14b) \[
\sum_{k=1}^{n} |x_k| < \frac{c_k^{1/n}}{m_1^{1/n} \sqrt[2]{2}}.
\]
Wegen \(m_1 \gg \varepsilon \) ist
\[
2 \frac{c_k^{1/n}}{m_1^{1/n} \sqrt[2]{2}} \leq \sqrt[2]{2}.
\]
\(2K \) liegt daher im Würfel \(|x_k| \leq \sqrt[2]{2}, k = 1, \ldots, n \). Dieser Würfel und damit \(2K \) liegt aber — abgesehen von \(v \) — in der Vereinigungsmenge der beiden in (13a) angegebenen Bereiche (siehe Woods [58], Seite 633), für die \(\mathcal{A} \) zulässig ist. Daher ist \(\mathcal{A} \) \(2K \)-zulässig. Nach (14b) liegt \(2K \) im Bereich
\[
\sum |x_k| < \frac{c_k^{1/n}}{m_1^{1/n} \sqrt[2]{2}}
\]
und daher nach der Ungleichung vom arithmetischen und geometrischen Mittel im Bereich
(15) \[
\prod |x_k| < \frac{\varepsilon}{m_1}.
\]
Sei \(N = [2^{(1-n)/2} - 1] \), dann ist
(16) \[
N + 1 > 2^{(1-n)/2} - 1.
\]
Sei \(\varepsilon = (1, \ldots, 1) \) und
(17) \[
B = K \cup (K + \varepsilon) \cup \ldots \cup (K + N\varepsilon).
\]
Angenommen, es gäbe zwei voneinander verschiedene Punkte \(\psi, \chi \in \mathcal{K} \)
mit \(\pi \cdot \psi \cdot A \), dann ist \(\psi \cdot \mathcal{K} \cdot + \) und \(\chi \cdot \mathcal{K} \cdot + \) für passende \(l, m \) mit
\(0 \leq l, m \leq N \). Ist \(l = m \), dann ist \(\pi \cdot \psi \cdot \mathcal{K} \cdot + \), im Widerspruch dazu, daß
\(A \cdot 2 \mathcal{K} \cdot + \) zulässig ist. Ist \(l \neq m \), dann gilt \(\pi \cdot \psi \cdot \mathcal{K} \cdot (m-l) \) mit \(|m-l| \leq N \),
im Widerspruch dazu, daß \(2 \mathcal{K} \cdot (m-l) \) nach den bei (15) gemachten
Bemerkungen im Bereich
\[
\prod |x_k - (m-l)| < \frac{c}{m_0}
\]
liegt und \(A \) für den Bereich, der mit einem der in (13) angegebenen Bereiche
übereinstimmt oder — im Fall \(m-l = \pm 1 \) — in einem dieser Bereiche enthalten ist, zulässig ist. \(B \) enthält daher keine zwei, voneinander
verschiedenen Punkte, deren Differenz in \(A \) liegt. Daran folgt nach dem
Satz von Blichfeldt
\[
\tilde{d}(A) \geq V(B).
\]
Wegen \(m \leq c \) gilt nach (14b) \(\pi \cdot 2 \mathcal{K} \cdot l, l = 1, 2, \ldots \)\(D \) konvex und
symmetrisch ist folgt \(\mathcal{K} \cdot + \mathcal{K} \cdot + \mathcal{K} \cdot + \mathcal{K} \cdot = \mathcal{O} \) für \(l \neq m \). Daran ergibt
sich nach (17)
\[
V(B) = (N+1) V(K).
\]
Der Würfel \(S \):
\[
0 \leq x_k < \frac{c l_0}{m_0 l_0 m_0} \quad k = 1, \ldots, n
\]
hat die Ebenen
\[
E_k: \sum x_k = 0, \quad E_{k,l}: \sum x_k = \frac{c l_0}{m_0 l_0 m_0} \quad k = 1, \ldots, n
\]
as parallele Stützebenen. Sei \(S' \) der Teil des Würfels \(S \) der zwischen
\(E_k \) und
\[
E_{k,l}: \sum x_k = \frac{c l_0}{m_0 l_0 m_0} \frac{n}{2}
\]
als parallel gelegen ist. Aus dem Hüllsfaktor 1 folgt
\[
V(S') \geq \frac{1}{2} \left(\frac{c l_0}{m_0 l_0 m_0} \right)^n \geq \frac{c}{m_0} 2^{-n(l+m)}/2.
\]
\(S' \) ist nach (14b) der im ersten Oktaedern gelegene Teil von \(K \). Daher ist
\[
V(K) = 2^n V(S') \geq 2^n \frac{c l_0}{m_0} \frac{1}{m_0}.
\]
Aus (19), (16) und (21) erhält man
\[
V(B) \geq \frac{1}{m_0}.
\]
Nach (18) ist dann \(d(A) \geq 1/m_0 \), im Widerspruch zu (11). Es muß also
für ein \(\delta \leq 2^{-n(l+m)}/m_0 \) sein. Damit ist der erste Teil bewiesen.

Beim Beweis des zweiten Teils benützen wir den folgenden Satz von
Hlawka [50]: Es seien im \(\mathcal{E}^n \) linear unabhängige Vektoren \(a_1, \ldots, a_n \)
und eine positive Zahl \(V \) vorgegeben. Dann gibt es stets ein Parallel-
epiped \(P \) mit dem Volumen \(V \), mit dem Mittelpunkt im Koordinatenursprung \(a \), dessen Seitenflächen die Normalenrichtungen \(a_1, \ldots, a_n \), haben, so daß die Anzahl der verschiedenen Gitterpunktpaare \(\pm a \neq a \), welche
in \(P \) liegen höchstens \(A_n V \) ist, wo
\[
A_n = \frac{1}{n} \left(\frac{n!}{m_0} \right)^n
\]
ist. Ein Gitterpunkt ist hier ein Punkt mit ganzzahligen Koordinaten,
also ein Punkt des Fundamentalgitters \(A_n \).

Sei \(A \) ein beliebiges Gitter mit \(d(A) = 1 \) und seien \(E_1, \ldots, E_n \) die
\(n \) Koordinatenebenen. Es gibt eine Transformation \(\tau \) mit \(\det \tau = 1 \), so
daß \(A = \tau^{-1} A \) ist. Seien \(a_1, \ldots, a_n \) Normalvektoren der Ebenen \(\tau E_1, \ldots, \tau E_n \).
Sei \(V = 2^n c \). Nach der im Satz 1 angegebenen Schranke für \(c \) ist
\[
V \leq \frac{n}{(n!)^2} 2^{n(l+m)}/2
\]
und damit \(A_n V < 1 \). Es gibt also ein Parallelpeid \(P \) vom Volumen \(V \)
und \(c \) als Mittelpunkt, dessen Seitenflächen die Normalenrichtungen
\(a_1, \ldots, a_n \), haben, also parallel zu \(\tau E_1, \ldots, \tau E_n \) sind und in dem \(A_n \)
braucht \(c \) enthält. Wendet man \(\tau^{-1} \) an, so ergibt sich: In dem, bezüglich \(c \) symmetrischen Parallelpeid \(\tau^{-1} P \) mit zu \(E_1, \ldots, E_n \) parallelen Seitenflächen,
ist kein von \(c \) verschiedenen Punkt von \(A \) enthalten. \(\tau^{-1} P \) hat die Form \(|x_k| < l_k, k = 1, \ldots, n \) für passende Zahlen \(l_1, \ldots, l_n \) mit \(2^{l_1} \cdots 2^{l_n} = V = 2^n c \). Durch eine geeignete Transformation \(\sigma \) von Diagonalgestalt
mit \(\det \sigma = 1 \), kann man \(\tau^{-1} P \) in den Würfel \(|x_k| < 2^{l_1}, k = 1, \ldots, n \)
überführen und \(\sigma A \) für den Würfel zulässig.

Nun zum Beweis des zweiten Teils. Sei \(A \) das, durch die Linearformen
\(L_1, \ldots, L_n \) erzeugte Gitter. Es ist \(d(A) = 1 \). Daher gibt es eine Diagonaltransformation
\[
\sigma = (s_1, \ldots, s_n) \quad \text{mit} \quad \det \sigma = s_1 \cdots s_n = 1,
\]
so daß σA für
\begin{equation}
|a_k| < 2^{k/m}, \quad k = 1, \ldots, n
\end{equation}
zulässig ist. σA wird durch die Linearformen s_1L_1, \ldots, s_nL_n erzeugt. 2K' sei der Bereich
\begin{align}
|a_k| < 2^{k/m}, \quad k = 1, \ldots, n, \\
\sum |a_k| < 2^{m/n} \cdot n = \sigma^{1/n}n.
\end{align}
Eine analoge Volumenbestimmung wie bei K — wir wenden den Hilfssatz mit $\alpha = 1/3$ an — ergibt
\begin{equation}
V(K') \geq 2^{n-c}c.
\end{equation}
Da σA für den Bereich aus (22) zulässig ist, ist σA erst recht 2K'-zulässig. Wir betrachten die Konstanten c_1, \ldots, c_n. Sei $c = (c_1, \ldots, c_n)$. Ist $c \not\in 2K'$, dann gilt nach (23b) $\sum |s_k c_k| < \sigma^{1/n}n$ und daher
\begin{equation}
\prod |s_k c_k| = \prod |s_k c_k| < \left(\frac{\sum |s_k c_k|}{n}\right)^n < c.
\end{equation}
Also ist für $u = (0, \ldots, 0)$
\begin{equation}
\prod |L_k(u) + c_k| = \prod |c_k| < c.
\end{equation}
In diesem Fall gilt auch der Satz mit $\lambda = 1$. Sei nun $c \not\in 2K'$ und sei $N = [2^{1-c}c^{-1}]$. Dann ist
\begin{equation}
N + 1 > 2^{n-c}c^{-1}.
\end{equation}
Außerdem ist wegen der Konvexität und der Symmetrie von K' da $c \not\in 2K'$ für ganze Zahlen l, m
\begin{equation}
(K' + lc) \cap (K' + mc) = \emptyset \quad \text{für} \quad l \neq m.
\end{equation}
Es sei $B' = K' + c_1 \cup (K' + lc) \cup \ldots \cup (K' + Nc)$. Dann ist nach (26) $V(B') > (N + 1) V(K')$ und daher wegen (24) und (25) größer als 1. Nach dem Satz von Blichfeldt enthält B' zwei, voneinander verschiedene Punkte p, q, deren Differenz in A liegt. Sei $p \in K' + lc$ und etwa $l < m$. Der Fall $l = m$ ist ausgeschlossen, da sonst $\delta - \psi \in 2K'$ — im Widerspruch dazu, daß σA 2K'-zulässig ist. Also $l < m$. Dann ist $\delta - \psi \in 2K' + (m - l)c$. Wegen $0 < l < m$ ist $1 < m - l \leq N$.
\begin{equation}
\text{Es ist}
\end{equation}
\begin{align}
\delta - \psi - (m - l)c \in 2K'.
\end{align}

Über das Produkt inhomogener Linearformen

Da $\delta - \psi \in A$, gibt es ein ganzzahliges n-Tupel u, so daß $\delta - \psi = (-s_1L_1(u), \ldots, -s_nL_n(u))$ ist. Dann ist nach (27), (23b) und der Ungleichung vom arithmetischen und geometrischen Mittel
\begin{align}
\prod |L_k(u) + (m - l)c_k| &= \prod |s_kL_k(u) + (m - l)c_k| \\
&< \left(\frac{\sum |s_kL_k(u) - (m - l)c_k|}{n}\right)^n < c.
\end{align}

Die Behauptung gilt also mit $\lambda = m - l$. Damit ist auch der zweite Teil des Satzes bewiesen.

2. Metrische Sätze für $n = 2$ und $n = 5$. Ordnet man die Elemente einer reellen $n \times n$ Matrix $\tau = (a_{ik})$ lexicographisch, dann kann τ als Punkt im R^n aufgefaßt werden. In der Menge aller reellen $n \times n$ Matrizen führen wir ein Maß durch das Lebesguesche Maß im R^n und eine Topologie durch die Normdefinition
\begin{equation}
||\tau|| = \left(\sum a_{ik}^2\right)^{1/2}
\end{equation}
ein. Die singulären Matrizen, die eine abgeschlossene Nullmenge bilden, sollen im folgenden ausgeschlossen sein. Jede Matrix von der in Einleitung (1) angegebenen Form werde die Matrix $\tau = (a_{ik})$ zugeordnet. Da diese Zuordnung umkehrbar eindeutig ist, übertragen sich die Begriffe Maß und Topologie auf Linearformen.

Satz 2. Sind $m \geq 1$ und $c > 0$ gewählt, dann haben für fast jedes Paar L_1, L_2 von Linearformen die Ungleichungen
\begin{equation}
-\theta < (L_1 + c_1)(L_2 + c_2) < \frac{m}{\theta} (d + c)
\end{equation}
für alle reellen c_1, c_2 unendlich viele ganzzahlige Lösungen. θ ist dabei der Absolutbetrag der Determinante von L_1, L_2. Die Paare von Linearformen, für welche die Ungleichungen (2) nicht für alle c_1, c_2 ganzzahlige Lösungen haben, bilden eine abgeschlossene, nirgendwo dichte Menge.

Die Aussage über die Dichte in diesem Satz stammt von W. Schmidt.

Satz 3. Alle Aussagen von Satz 3 bleiben richtig, wenn man anstelle von (2) die Ungleichungen
\begin{equation}
0 < (L_1 + c_1)(L_2 + c_2) < \frac{d}{2} + \epsilon; \quad 0 < L_1 + c_1, 0 < L_2 + c_2
\end{equation}
nimmt.

Dieser Satz steht in einem ähnlichen Verhältnis zu einem Satz von Davenport und Heilbronn [47], wie der vorhergehende zum Satz von Minkowski.
SATZ 4. Gilt die Vermutung für die Dimensionen \(2, \ldots, n-1\), dann gilt sie in der \(n\)-ten Dimension jedenfalls für fast alle Systeme von Linearformen.

Da die Vermutung bisher für die Dimensionen 2, 3 und 4 bewiesen wurde, stellt dieser Satz eine Aussage für \(n = 5\) dar. Das folgende Ergebnis stammt von W. Schmidl [80] (Cor. 8, S. 517). Da die Abbildung \(\tau \to \tau'\) Nullmengen in Nullmengen überführt, kann man es in folgender Weise ausdrücken.

HILFSSATZ 2. Sei \(a > 1\) und \(S\) eine Boromein-Menge des \(\mathbb{R}^n\) mit unendlichem Volumen. Dann enthält für fast jedes \(\tau\) das Gitter \(\tau A_n\) unendlich viele primitive Punkte in \(S\).

Ein Gitter \(A\) überdeckt den \(\mathbb{R}^n\) durch einen Bereich \(T\) (unendlichfach) wenn das System

\[
T + A = \{T + a, a \in A\}
\]

den \(\mathbb{R}^n\) (unendlichfach) überdeckt. Die Aussagen: es gibt unendlich viele (bzw. keine) Lösungen von (2) oder (3) für jedes Paar \(c_1, c_2\) (bzw. für mindestens ein Paar \(c_1, c_2\)) und \(\tau A_n\) überdeckt den \(\mathbb{R}^n\) unendlichfach (bzw. nicht) durch die Bereiche

\[
T': -\frac{d}{2m} < a_1 x_s < \frac{d}{2} (d + \varepsilon)
\]

oder

\[
T': 0 < a_1 x_s < \frac{d}{2} + \varepsilon; \quad 0 < a_1, 0 < x_s
\]

sind äquivalent.

HILFSSATZ 3. Die Menge der Matrizen \(\tau\), für welche das Gitter \(\tau A_n\) den \(\mathbb{R}^n\) durch einen offenen Bereich \(T\) überdeckt, ist offen.

Fragen, die mit diesem Hilfssatz zusammenhängen sollen in einer späteren Arbeit behandelt werden.

 Beweis des Hilfssatzes 3. Sei \(\tau\) eine Matrix, so daß \(\tau A_n\) den \(\mathbb{R}^n\) durch \(T\) überdeckt. Die Vektoren

\[
b_k = (b_k(1), \ldots, b_k(n)), \quad k = 1, \ldots, n
\]

bilden eine Basis von \(\tau A_n\). Das kompakte Parallelepiped

\[
P: t_1 b_1 + \ldots + t_n b_n, \quad 0 \leq t_k \leq 1, \quad k = 1, \ldots, n
\]

wird durch das System der offenen Mengen \(T + a, a \in \tau A_n\) überdeckt. Es gibt daher schon eine endliche Teilüberdeckung

\[
T + a_l, \quad l = 1, \ldots, N, \quad N > 1.
\]

Über das Produkt inhomogener Linearformen

\[
a_l = w_1 b_1 + \ldots + w_n b_n, \quad l = 1, \ldots, N
\]

und

\[
u = \max |a_l|.
\]

Es ist

\[\varepsilon > 1.\]

Man wählt nun \(\varepsilon > 0\), so daß jeder Punkt von \(P\) eine \(\varepsilon\)-Umbgebung besitzt, welche ganz in einer der in (6) angegebenen Mengen liegt. Wir zeigen, daß für jede Matrix \(\tau'\) mit

\[
\|\tau - \tau'\| < \frac{\varepsilon}{2m}
\]

\(\tau' A_n\) den \(\mathbb{R}^n\) durch \(T\) überdeckt. Sei \(\tau'\) eine solche Matrix. Für

\[
b_k' = (c_k(1), \ldots, c_k(n)), \quad k = 1, \ldots, n
\]

gilt

\[
|b_k' - b_k| < \frac{\varepsilon}{2m}, \quad k = 1, \ldots, n
\]

nach (1) und (9). Daher ist für

\[
a_l' = w_1 b_1' + \ldots + w_n b_n \tau A_n, \quad l = 1, \ldots, N
\]

nach (7) und (8)

\[
|a_l' - a_l| < \varepsilon/2, \quad l = 1, \ldots, N.
\]

Sei \(P'\) das Parallelepiped

\[
\tau b_1' + \ldots + \tau b_n' \quad \text{mit} \quad 0 \leq t_k' \leq 1, \quad k = 1, \ldots, n.
\]

Ist \(\tau' = \tau b_1' + \ldots + \tau b_n' \tau P\), dann ist \(\tau = \tau b_1 + \ldots + \tau b_n \tau P\) und es gilt nach (10)

\[
|\tau - \tau'| < \varepsilon/2, \quad \tau' \text{ liegt samt seiner } \varepsilon\text{-Umgebung in einer der Mengen aus (6), etwa } T + a_l.\]

Aus (11) und (12) folgt \(\tau T + a_l\). Es überdeckt also das System

\[
T + a_l', \quad l = 1, \ldots, N
\]

\(P'\). Damit überdeckt \(T + \tau' A_n\) erst recht \(P'\) und daher den \(\mathbb{R}^n\).
Beweis des Satzes 2. Auf jeder der folgenden Bereiche:

\(S'': 0 < x_2 x_3 < \frac{d}{16}, \quad x_1 > 1, \)

\(S'_2: k \cdot \frac{e}{8} < x_2 x_3 < (k+1) \cdot \frac{e}{8}, \quad x_1 > 1, \quad k = 1, 2, \ldots \)

wendet man den Hilfssatz 2 an. Da die Vereinigung abzählbar vieler Nullmengen wieder eine Nullmenge ist, so ergibt sich, daß für fast alle \(\tau A_0 \) und jede größte primitive Punkt in jedes der Bereiche aus (13) enthält. Sei \(\tau \) eine solche Matrix. Wir zeigen, daß \(\tau A_0 \) den \(\mathbb{R}^d \) unendlichfach durch \(T' \) (siehe (4)) überdeckt. Sei \(k' \) so gewählt, daß

\[\frac{m_0}{2} d < k' \cdot \frac{e}{8} < (k'+1) \cdot \frac{e}{8} < \frac{m_0}{2} (d+e) \]

ist. Sei dann

\[p_i = (p_{i1}, p_{i2}) \epsilon A_0 \cap S_k', \quad i = 1, 2, \ldots \]

nicht primiv. Gibt es für unendlich viele \(p_{i1} \) eine obere Schranke, dann liegen sie in einem beschränkten Teilbereich von \(S_k \) unendlich viele Gitterpunkte. Das ist unmöglich, daher ist

\[\lim_{i \to \infty} p_{i1} = + \infty, \quad \lim_{i \to \infty} p_{i2} = 0. \]

Sei

\[a_i = \begin{pmatrix} t_i & 0 \\ 0 & \frac{1}{e_i} \end{pmatrix}, \quad a_i > 0, \quad \det a_i = 1 \]

so gewählt, daß für ein passendes \(q_i = (q_i, q_1) \) gilt

\[a_i p = (a_i p_{i1}, a_i^{-1} p_{i2}) = (q_i, q_2). \]

Wegen \(p_i \epsilon S_k \) der Definition von \(S_k \) in (13) und (14) ist

\[\frac{m_0}{2} d < p_{i1} p_{i2} = q_i < \frac{m_0}{2} (d+e). \]

Da \(q_i \) ein vorkommender Punkt von \(\sigma \tau A_0 \) ist, überdeckt \(\sigma \tau A_0 \) den \(\mathbb{R}^d \) durch das Rechteck

\[R_i = [x_1 + x_2] \leq q_1, \quad [x_1 - x_2] \leq d \cdot \frac{d}{2q_1}. \]

Daher überdeckt \(\tau A_0 \) den \(\mathbb{R}^d \) durch

\[P_i = a_i^{-1} R_i, \quad [x_1 + x_2] \leq q_1, \quad [x_1 - x_2] \leq d \cdot \frac{d}{2q_1}. \]

Wegen (16) und (17) liegt \(P_i \) im Bereich

\[[x_2] \leq p_{i1}, \quad [x_2] \leq p_{i2}. \]

Nach der Ungleichung von arithmetischem und geometrischem Mittel liegt \(P_i \) im Bereich

\[-\frac{d^2}{16q_1} < x_2 x_3 < \frac{q_i^2}{4} \]

und daher nach (17) in \(T' \). Man erhält also eine Folge von Bereichen

\[P_1, P_2, \ldots \subset T', \]

vom denen jeder den \(\mathbb{R}^d \) durch \(\tau A_0 \) überdeckt.

Die beiden folgenden Aussagen sind äquivalent: \(A \) überdeckt den \(\mathbb{R}^d \) durch einen Bereich \(T \) (unendlichfach) und zu jedem \(\epsilon \mathbb{R}^d \) gibt es ein \(c \epsilon T \) (unendlich viele \(c \epsilon T \)), so daß \(c = c_T(A) \) gilt. Dabei bedeutet
\[c = b(A), \quad c = b(A). \]

Sei nun \(c \epsilon \mathbb{R}^d \) und sei erstes \(c \) zu keinem Punkt einer Koordinatenachse \(\tau A_0 \) kongruent. Da \(\tau A_0 \) den \(\mathbb{R}^d \) durch \(P_i \) überdeckt, gilt

\[c = c_T(\tau A_0) \quad \text{für ein} \quad c_T P_i \subset T'. \]

Da \(c = (c_1, c_2) \) auf keiner Koordinatenachse liegt, ist \(|c_2| > 0 \) und daher nach (15) \(p_{i2} > |c_2| \) für \(i \gg i_2 \). Da \(P_i \) in dem in (18) angegebenen Bereich liegt, ist

\[c = c_T(\tau A_0) \quad \text{für ein} \quad c_T P_i \subset T'. \]

Nach (19) ist
\[c_i \neq c_j. \]

Man erhält auf diese Weise eine Folge von Punktken

\[c_1, c_2, \ldots \epsilon T' \quad \text{mit} \quad c_i = c_T(\tau A_0), \quad c_i \neq c_j \quad \text{für} \quad i \neq j. \]

Sei zweitens \(c \) kongruent zu einem Punkt auf einer Koordinatenachse, etwa

\[c = c_T(\tau A_0), \quad c_j = (c_{j1}, 0). \]
Seien \(t_i = (r_{1i}, r_{2i}) \in \tau \mathbb{A} \cap S' \), \(i = 1, 2, \ldots \)
primitiv. Dann gilt wie oben für die \(p_i \)
\[\lim_{i \to \infty} r_{pi} = +\infty. \]
Daher ist \(r_{pi} > 0 \) für \(i > 0 \). Sei \(i > k \). Dann ist nach (13)
\[0 < (c_n + r_{pi})(0 + r_{pi}) < 2r_{pi}r_{pi} < \varepsilon/8 \]
wegen \(t_k \in S' \). Also ist
\[c_i = c_{i} + t_i \cdot 2s' \subset T' \text{ mit } c_i = c_i(\tau \mathbb{A}), \quad c_i \neq c_j \text{ für } i \neq j. \]

Die beiden Fälle zusammen ergeben, daß \(\tau \mathbb{A} \) den \(\mathbb{R}^2 \) endlichfach durch \(T' \) überdeckt. Damit ist der erste Teil gezeigt.

Die Menge der Matrizen \(\tau \), für welche \(\tau \mathbb{A} \) die Ebene durch die offene Menge \(T' \) überdeckt ist nach Hilfsatz 3 offen. Das Komplement dieser Menge ist abgeschlossen und hat nach dem Beweis des ersten Teiles des Satzes jedenfalls das Maß 0 und ist daher nirgends dicht.

Beweis des Satzes 3. Die Beweise der Sätze 2 und 3 sind recht ähnlich. Wir unterdrücken daher hier die Details. Im Bereich
\[S: 0 < s_1, s_2 < s, \quad s_1 > 1 \]
enthält nach Hilfsatz 2 für fast alle \(\tau \tau \mathbb{A} \) endlich viele primitive Punkte. Sei \(\tau \) eine solche Matrix und
\[p_1, p_2, \ldots, \in \tau \mathbb{A} \setminus S \]
primitiv. Dann ist
\[\lim_{i \to \infty} p_{pi} = +\infty, \quad \lim_{i \to \infty} p_{si} = 0. \]

Sei \(P_i \) das Polygon samt seinen Eckpunkten, dessen Eckpunkte die folgenden Punkte (in dieser Reihenfolge) sind:
\[
(0, 0), \quad \left(\frac{d}{2p_{pi}}, 0 \right), \quad \left(\frac{d}{2p_{pi}} + p_{pi}, p_{si} \right), \quad \left(p_{pi}, p_{si} \right),
\]
\[
(0, 0), \quad \left(\frac{d}{2p_{si}}, 0 \right), \quad \left(\frac{d}{2p_{pi}} + p_{si}, 0 \right), \quad \left(0, \frac{d}{2p_{pi}} \right). \]

Die Strecken von \(\left(\frac{d}{2p_{pi}}, 0 \right) \) nach \((0, 0) \) und von \((0, 0) \) nach \(\left(0, \frac{d}{2p_{pi}} \right) \)
werden nicht zu \(P_i \) gerechnet. \(\tau \mathbb{A} \) überdeckt den \(\mathbb{R}^2 \) durch \(P_i \) und es ist \(P_i \in T' \). \(P_i \) liegt im Bereich
\[0 < s_1 \leq \frac{d}{2p_{si}} + p_{si}, \quad 0 < s_2 \leq \frac{d}{2p_{pi}} + p_{pi}. \]

Zu einem \(\varepsilon \in \mathbb{R}^2 \) gibt es ein \(\varepsilon \in \mathbb{R}^2 \), mit \(\varepsilon = c_i(\tau \mathbb{A}) \). Für alle \(i \geq i_2 \) ist wegen (20), da \(P_i \) in dem in (21) angegebenen Bereich liegt \(c_i(\tau \mathbb{A}) \). Es gibt dann ein \(c_i(\tau \mathbb{A}) \), mit \(c_i(\tau \mathbb{A}) \) und \(c_i \neq c_j \) usw. Man konstruiert wieder eine Folge von Punkten und erhält schließlich, daß \(\tau \mathbb{A} \) die Ebene durch \(T' \) endlichfach überdeckt. Den zweiten Teil des Beweises überträgt man wortwörtlich, wobei anstelle von \(T' \) zu nehmen ist.

Beweis des Satzes 4. Wendet man den Hilfsatz 2 auf die Bereiche
\[S_k: \quad |x_1 + \cdots + x_n| < \frac{1}{k}, \quad k = 1, 2, \ldots \]
an und verwendet, daß die Vereinigung abzählbar vieler Nullmengen wieder eine Nullmenge ist, dann ergibt sich, daß für fast alle \(\tau \tau \mathbb{A} \) endlich viele primitive Punkte in jedem \(S_k \) enthalten. M.a.W. für fast jedes System von Linearformen hat die Ungleichung
\[|L_1 \ldots L_n| \leq \frac{1}{k} \]
für jedes \(k \) endlich viele nicht trivial ganzzahlige Lösungen. D.h. für fast jedes System von Linearformen
\[\inf |L_1 \ldots L_n| = 0, \]
wobei das Infimum über alle ganzzahligen Werte \((u_1, \ldots, u_n) \neq (0, \ldots, 0) \)
zu erstrecken ist.

Nach Birch und Swinnerton-Dyer [56] (Lemma 7, S. 32) gilt folgender: Ist die Vermutung von Minkowski bis zur \((n-1)\)-ten Dimension richtig, dann gibt es in der \(n \)-ten für alle Systeme \(L_1, \ldots, L_n \) von Linearformen für welche (22) gilt.

Zusammen mit dem obigen Resultat ergibt dieser Satz die Richtigkeit unserer Behauptung.

Bemerkung 1. Ist \(f \) eine Distanzfunktion, so daß der Bereich \(f < 1 \)
unendliches Volumen hat, dann zeigt man ganz analog, daß für fast alle \(\tau \)
das homogene Minimum von \(f \) bezüglich \(\tau \mathbb{A} \) gleich 0 ist.

Bemerkung 2. Es ist zu vermuten, daß man nach Ausnahme einer Nullmenge die Konstante \(2^{-n} \) in der Vermutung durch wesentlich kleinere Konstante ersetzen kann — wahrscheinlich durch Konstante \(\leq 2^{-2n} \).

3. **Ein Satz für großes \(n \).** Wir betrachten nun nur Gitter und Matrizen mit der Determinante 1. Ist \(A \) ein Gitter, dann versteht man unter der \(\tau \)-Umgebung von \(A \) die Menge aller Gitter
\[\tau A \text{ mit } |\tau - 1| < \tau. \]

Dabei ist \(\tau \) die Einheitsmatrix. Damit wird die Menge der Gitter des \(\mathbb{R}^n \)
zu einem topologischen Raum. Auf diesem Raum kann man nach Siegel ein Maß \(\mu \) einführen, so daß der Gesamtraum das Maß 1 hat.
Äquivalent zu der in der Einleitung angegebenen Formulierung der Minkowskischen Vermutung ist die folgende: Jedes Gitter A überdeckt den R^n durch den Bereich
\[|x_1 \ldots x_n| \leq 2^{-n}
\]
und das Gleichheitszeichen ist nur in einem bestimmten Fall erforderlich.

Satz 5. Ist $n > N$, dann gibt es eine messbare Menge \mathcal{G} von Gittern mit
\[\mu(\mathcal{G}) > 1 - e^{-3.278n},
\]
so daß jedes $\mathcal{G} \in \mathcal{G}$ den R^n durch den Bereich
\[|x_1 \ldots x_n| \leq \frac{n}{n-1}
\]
überdeckt. Weiters gibt es zu jedem $\mathcal{G} \in \mathcal{G}$ eine r-Umbgebung mit
\[r = \frac{1}{\sqrt{n}} \left(\frac{e}{2} - 1 \right) c_n,
\]
so daß jedes Gitter aus einer solchen Umgebung die Vermutung erfüllt.

Ist A ein Gitter mit der Determinante 1 und T ein messbarer Bereich, dann versteht man unter der Dichte $\delta(T, A)$ das Volumen des von $T + A$ überdeckten Teils eines Grundparallelepips von A. Aus dem Satz 10° von W. Schmidt [59] (S. 212) ergibt sich unmittelbar der

Hilfssatz 4. Ist T ein beschränkter Bereich vom Volumen $V < n - 1$, dann gibt es zu jedem $\varepsilon > 0$ ein $N(\varepsilon)$, so daß für alle $n > N(\varepsilon)$ gilt
\[\int \delta(T, A) \, d\mu = 1 - e^{-\varepsilon^2 (1 - R^n)}
\]
mit
\[|R^n| < (2n)^{n-1} \varepsilon^n e^{-\varepsilon^2 (1 + e) - \varepsilon}.
\]

Hilfssatz 5. Überdeckt A den R^n durch einen Bereich $2K \subset S$, liegt $2K$ in $|x| < m$ und ist δ der gewöhnliche Abstand von $2K$ vom Rand von S, dann überdeckt τA den R^n durch δ für alle τ mit
\[|x - \tau| < \frac{d}{m}.
\]

Beweis. Aus der Cauchy-Schwarzschen Ungleichung folgt für jedes $\tau \in R^n$
\[|\tau| = \left(\sum \tau_i^2 \right)^{1/2} \leq \left(\sum \frac{\tau_i^2}{\mu(G)} \right)^{1/2} = \frac{|\tau|}{\mu(G)}.
\]

Über das Produkt inhomogeter Linearformen

Sei τ eine Matrix mit $|\tau - \delta| < d/m$, dann ist für $\tau \in 2K$
\[|\tau - \delta| = |(\tau - \delta)| \leq |\tau - \delta| < m \frac{d}{m} = d,
\]
d.h. aus $\tau \in 2K$ folgt $\tau \in S$ und damit $\tau K \subset S$.

Überdeckt A den R^n durch $2K$, dann überdeckt τA den R^n durch $2K$ und daher durch S, sofern $|\tau - \delta| < d/m$ ist.

Beweis des Satzes 5. Ist x Lösung der Gleichung $xe^{\varepsilon x} = 1$, dann ist $x > 0.278$. Daher ist für $n > N$, (2)
\[20e^{-\varepsilon^n} < e^{-3.278n}.
\]
Wir wenden nun den Hilfssatz 4 mit $\varepsilon = 1$ an. Sei $T = K$ ein konvexer symmetrischer Bereich vom Volumen $V \geq n$. Sei $K' = (x_0/V)^{1/n} K$. K' ist ein in K enthalten, konvexer, symmetrischer Bereich vom Volumen $V'. v > n$. Sei $n > N = \max(N_1, N(1))$, dann ist
\[\int \delta(K', A) \, d\mu > \int \delta(K', A) \, d\mu = 1 - e^{-\varepsilon^2 (1 - R^n)}
\]
mit
\[|R^n| < (2n)^{n-1} \varepsilon^n e^{-\varepsilon^2 (1 + e) + \varepsilon}.
\]
Also ist
\[1 - e^{-\varepsilon^2 (1 - R^n)} > 1 - 10e^{-\varepsilon^2} > 1 - \frac{1}{4} e^{-3.278n}
\]
nach (2). Daher ist
\[\int \delta(K, A) \, d\mu > 1 - \frac{1}{4} e^{-3.278n}.
\]
Da $\delta(K, A)$ integrierbar ist, ist die Menge G der Gitter A mit $\delta(K, A) > \frac{1}{4}$ messbar. Es ist $0 \leq \delta(K, A) < 1$. Daraus folgt
\[1 - \mu(G) + \frac{1}{4} \mu(\text{Kompl.} G) \geq \int \delta(K, A) \, d\mu > 1 - \frac{1}{4} e^{-3.278n}.
\]
Da der Gesamtraum das Maß 1 hat, ist
\[\mu(G) + \frac{1}{4} (1 - \mu(G)) > 1 - \frac{1}{4} e^{-3.278n},
\]
oder
\[\mu(G) > 1 - \frac{1}{4} e^{-3.278n}.
\]
Ist $A \in \mathcal{G}$, dann folgt aus der Konvexität von K und aus $\delta(K, A) > \frac{1}{4}$, daß A den R^n durch $2K$ überdeckt (siehe z. B. Rogers [58], S. 211 unten). Sei speziell K der Bereich
\[\sum |x_0| \leq \frac{1}{4} \sqrt{n+1}.
\]
mit \(V = n \). Dann gilt für \(G \) die Ungleichung (3), \(2K \) liegt in
\[
\| e_1 \ldots e_n \| n! \leq \frac{u}{n^{n/2}}.
\]

Daher überdeckt jedes \(\alpha \in \mathbb{G} \) den \(\mathbb{R}^n \) durch diesen Bereich. Auf unserem speziell gewählten Bereich \(2K \) wendet man den Hilfssatz 5 mit \(N \) sei der in (1) definierte Bereich. Es ist
\[
d = \sqrt{n} \left(\frac{1}{2} - \frac{1}{n} \right) \leq \sqrt{n} \left(\frac{1}{2} - \frac{1}{n} \right) \mu, \quad \mu = \frac{u}{n^{n/2}}.
\]

Damit ist nach der Stirlingsehen Formel
\[
\frac{d}{\mu} = \sqrt{n} \left(\frac{1}{2} - \frac{1}{n} \right) = \sqrt{n} \left(\frac{1}{2} - \frac{1}{n} \right) \alpha_n, \quad \alpha_n \to 1 \text{ bei } n \to \infty.
\]

Ist \(\alpha \in \mathbb{G} \), dann überdeckt \(\alpha \) den \(\mathbb{R}^n \) durch \(\mathbb{N} \) für alle \(\tau \) mit
\[
|\tau - 1| < \frac{d}{\mu} = \tau = \sqrt{n} \left(\frac{1}{2} - \frac{1}{n} \right) \alpha_n, \quad \alpha_n \to 1 \text{ bei } n \to \infty,
\]
erfüllt also die Vermutung von Minkowski.
Für die ausführliche und genaue Korrektur danke ich dem Referenten recht herzlich.

Literaturverzeichnis

Birch, B. J. und H. P. F. Swinnerton-Dyer

Bombieri, E.

Cassels, J. W. S.

Davenport, H. und H. Halberstraß

Hadhiger, H.

Hlawka, E.

Rogers, C. A.

Schmidt, W. M.

Tschesche, N.

Woods, C. A.

Reçu par la Rédaction le 1. 8. 196.