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ACTA ARITHMETICA
XIII (1967)

A problem of Erdos concerning power residue sums
by

P. D. T. A. Exiriorr (Nottingham)

Let & be a positive integer. Let p be a positive rational prime. If p
satisfies p = 1(mod%), we define ng(p) to be the least positive residue
which is not a k-th power (modp). For other primes we define ng(p) to
be zero.

Some years ago, in answer to a question of Mirsky, Erdos [5] proved
that

(1) an(p) ~e—2

=i logz

as & — oo, for a certain constant ¢. Moreover, he conjectured that a result
of this type held for any k.

It is the purpose of the present note to prove that this expectation
is justified.

TEEOREM 1. For each integer % > 0, and constant a which satisfies
a <46V we have as © — oo, the asymptotic relation

2 (m(P))" ~ Ok,

logaz’
= og®

where Crq is a constant. In particular, if % is an odd Drime, we can enpress
Cra by

Ck,n = S’k—'rq’a_'
r=1

In this sum g, runs over all the rational primes.

The author would like to reecord his thanks to Professor Heilbronn
and Dr. Cassels for their helpful advice. We note that this result has
also been stated by Barban ([1], pp- 61, 62) without proof.

The proof of the theorem fallg naturally into three parts. We need
various lemmas. Before stating the first of these, we recall that two fields
B, F are said to be linearly disjoint over a common subfield &, when any
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finite set of elements of F which are linearly independent over G remain
so over F. Tt is well known (Zariski and Samuel [13], § 15, pp. 109), t].mt
this condition is symmetric in ¥ and F. We now prove a result, which
though of a type well-known in algebraic geometry, seems not to be
readily available in the literature.

LA 1. Let B, T be two extensions of o field G, one of which q,s finite
and normal. Then B -and F are linearly disjoint over @ if and only if their
common subfield is G.

Proof. We can assume, without loss of generality, that F is a finite
normal extension of G, of degree n. o

Suppose first that B and F are not linearly dlS]Ol.nt over.G. Then we
can find elements a;, 4 = 1, ..., m, of E, which are linearly independent
0vé1‘ @, but linearly dependent over F. Thus there are elements J;,
¢ =1,...,m, of F, not all zero, so that

m
Z }.1;(11; =5 0
i=1

Let 0 be an element generating F over G. Then for each value of ¢
satisfying 1 < ¢ < m, we can find members ¢; in &, so that

n—-1
a; = Z Ciz g
j=o0

Olearly these two relations imply that

(2)

3)

1

S’o"ZcM=o.

j=0 i=1

(4)

Now not all of the coefficients of the powers of 6 in this equality are zero.
For otherwise, the linear equations

m
Z%mi =0, j=0,1,...,0—1,
im

in the variables #;, 1 =1,..., m, have a non-trivial solution in @ Such
2 solution would imply, by (3) and (4) that ay,..., am, were linearly
dependent over &, contrary to assumption. Thus we see that 0 is the root
of an irreducible polynomial f(x), defined over ¥, and of degree at most
n—1.

Let g(#) be an irreducible polynomial defining 6 over @. Since
iz a normal extension, g(») splits completely in X into factors z—fi,
4 =1,...,n, say. The result which we have just proved shows that f()
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divides g(x) in F(x), so that we can assume, without loss of generality,
that

8

fay =[] e—pa,

=1

I1<e<n—1.

Consider now the elementary symmetric functions of the g;, i = 1,...,s.
These cannot all He in @. For otherwise f(x) would be defined over @,
and so g(x) would be reducible over @, contrary to assumption. Let ¢
be a symmetric function of these f;, which does not lie in ¢. Then clearly
¢ lies in both F and F, so that

Gc@oc)sEnPF.

This proves one half of the lemma. This result is all we shall need,
but for completeness we give a short proof of the remaining half of the
lemma.

Suppose now, therefore, that ¥ and F are linearly digjoint over @,
but that we can find an element o, lying in £ and F, but not in @. Then
1, a are linearly independent over @, but not over F. This eontradicts
our initial hypothesis.

Hence the lemma is proved. :

In what follows we shall use @ to denote the field of rational numbers.

Lemwa 2. Let 1, k be positive rational integers. Let ¢ be a rational number
which is not a power of a rational number, and for which —t is not o square

1
of a rational number. Then Vi can be contained in the cyclofomic field

E__
Q(l’ll Jonly if 1=1 or 2. If 1 =2 then t must also be made up from. squares,
and primes which divide F.
Proof. By considering the prime factors of I it is clear that we need

only consider the cases when t does not lie in @, and [ is either an odd
prime or 4.

7 1 k__
It Vi and so Q(V%) lies in the Abelian extension Q(V1), it follows

1
from Galois theory that Q(ﬁ) must be a normal extension of Q. In par-
ticular therefore, the polynomial &' —1, which has a linear factor in that
extension field, must split completely into linear factors over it, so that

7
the element § = exp(2=4/l) must also be contained in the field ‘Q(ﬁ).

‘Thus we have the situation,

1 1_
Q Q1) = Q).

Since we are assuming that I is a prime power, and t is not, then #'—%
must be irreducible over @ (Zariski and Samuel [13], Chapter 2, theorem 7).
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1 1_
Thus the degree of Q(ﬁ) over @ is I. Since Q(I/l) is of degree ¢ (1) over @,
we see that ¢(I) divides I, so that I must be even.

It remains therefore only to deal with the case I = 4. In this case
it is easy to see that ¢ = 4, and #*—t must split into (22— V1) (2 +V7)
over the field @(¢), where each guadratic factor is irreducible over @ (i).
Thus, the fields @ (¢) and Q(l/t) must coincide, and so therefore do their
non-trivial automorphisms defined by ¢ - —4¢, and Vi — — Vi From
what we have said there must be rational numbers a, b so that

i=a+bVt.
Under the automorphism Vi —Vt we obtain that
—i=a—>b I/LT,
so that ¢ = bl/;, and ¢ = — b~ This final result is contrary to hypothesis,

and our lemma is therefore proved, save for the final assertion. Before prov-

1_ L
ing it we note that we could have chosen a real value of Vt, so that Q(Vt)
would be real and therefore could not contain the complex number {. We
have preferred the above proof since it is in some ways more natural,
and is in a form suitable for generalization.

For the proof of the final assertion we note that we may clearly

assume that ¢ is a squarefree integer. The discriminant of Q (V1) is then
4t if t = 2 or 3(mod4), and ¢ if ¢ = 1(mod4). The rational primes which

k_

divide this discriminant ramify in Q(V?), and so in Q(l/l).

LeMMA 3. In addition to the definitions of Lemma 2 let g be odd, and

k_ 1

let gy, ..., §» be rational primes. Then the degree of the field Q(l/l; l/gl,

D .
LV over Q is To(k).

Proof. We consider the fields
k__
E; =@ 1/1 1/—1,.. l/gl = Q1.

Let us suppose, for the moment, that we have shown the result for K;,
1 <4 <s. Then the result holds for K;,, unless, by Lemma 1, K; and

i=1,...,7,

|
Q(l/qu) have a common subfield which properly includes @, L say.

It is clear from what we have said that the polynomial #’— g,
must then be reducible over L, and so in particular there are integers
Uy 31, 0 < tgyy <1, 80 that

[—
u(l/q'i+1)ti+l
lies in I, and, therefore, so does (Vg.,)"+.
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But by our hypothesis we can find ¢, j =0,1,...,1—1, in K,_,
so that

[ -1 1
(5) Vo)t = Y (Vg
=0
Clearly, the automorphisms of K; which leave K;_, fixed, are given by
1

1
/I /T
o, Vg =V,

P o=

Since the polynomial a:l—gﬁi;ll is left invariant by each of these auto-
morphisms o,, there is an integer u, 0 < u < 1, so that

1 1
o {(V @)1} = ¢ (Vge)fien,
Thus, by equating the two expressions for .;“‘(lz/z_;;)‘iﬂ, we see that
1 g -1 1
(D atVay) = 3 ol Ve,
and therefore " =
(*— =0, j=0,1,...,1—1.

It is clear from this that ¢; = 0 unless § = u, and therefore

[ 1
Vo) = 6, (Vg™

It follows from this that we can find integers ¢

= u, not both zero,
and in absolute value less than I, so that

+15

1
V(g aliz)
lies in K, ,.

Continuing this process, we see that if the lemma does not hold,
then we finally arrive at integers ¢;, satisfying 0 <t; <l fori=1,...,s,
80 that ; = 0, and

at).
lies in K,

Vi
E_ =1
= Q1)
Let 1 = ¢°, and suppose, as we clearly may, that not all of the integers
t; are divigible by ¢. Our construction shows that ¢ > 1 must hold, and
clearly, the note which we have made shows that the product

8

A

I 1 %t
=1



Pem


136 P. D. T. A. Elliott

is not a gth power of a rational number. We can therefore apply our

previous lemma, and we see that we must have that both I and ¢ have

the value 2. This contradicts our initial hypothesis that ¢ is odd, and

80 the lemma is proved. :
If 7is a power of 2, then the situation is a little more complicated.

Let us consider the particular case : :

E 1_
L=Q(1) ~QWq).

If L+ @, then L iy a normal extension of @, and the polynomial wl—-ql,
which is irredueible over @, splits into m conjugate irreducible polynomials
over L, where m |l Thus, we can find a power of 2, 2° say, with ¢ >1,

k,
so that ¢2° lies in Q(¥1). By Lemma 2 this can only happen if ¢ = 1,
and ¢, is a divisor of .
This. case, if it ocours, means that the polynomial o’— g, splits into
two conjugate polynomials over L, each of degree 11, so that L is a quadratic
extension of . Since L would then contain Vg¢,, the only possibility for

L #Q, is Q(VE). This situation can aectually occur, for it is well-known

a
(see for example Weiss [12], 7-3-1, p. 260), that the field Q(l/l) containg
the quadratic subfield

QV{(—1)Fm@=T gy

E_ 1
Thus we see that the degree of the field Q(I/I, l/ql) over @, is lp(k)

AR x
unless Vg, lies in Q(I/I), when it is $lp (k). In the former case; the algebraic
infegers

(6)

i
Ve, §=0,1,..,n—1,

E_ o1 3
are a field basis for Q(I/l, l/gl) over Q(I/I), with # = 1. In the latter case
we have a similar result with » = 1.

When considering the field

E_ 1 [
QU1,Vg,,Vg,)
we proceed as in the proof of Lemma 3, and show that either
k 1 1
VL, Ve) ~ QUVg) =@,

28
or we can find integers a, b, 0 < b < 2° and ¢ > 1, so that l/(ngl‘“) lies

k_
in Q(l/l). Thus, by Lemma 2, g, must also be a divisor of k.
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Indeed, proceeding on the lines of Lemma 3, we can prove, by in-

II—‘
ducting on r, that the only possible common subfields of Q(V ¢,) and

k/_ 1 Z
Gr1=QV1; Vg, .., V)
are @ and Q(I/E). Moreover, if at the rth stage this actually oceurs,
then a field basis for the compositum over @,_, is

1
(I'fé;)yy j=0,1,..., 3L

We now differentiate between two possible cases. Firstly we consider
the case when k is divisible by 4. By what we have already noted, the

k__ LON
field Q(l/l) contains Q(l/l) when ¢,|k, and this field in turn contains
V(—1)@@1g . Moreover, the algebraic integer i is also contained in
E__ -
Q(l/l), and so therefore is V ¢-. Putting these results together, we see that
the degree of @, (with an obvious definition) over @ is
27 (k),

where { denotes the number of primes ¢;,¢ =1, ..., », which divide %.

The second alternative which we mentioned arises when 2 divides
k exactly. We can apply the arguments which we have just used, but
we need a little more caleunlation to determine the quadratic subfields

k_
of Q(V1). In the application we are interested in, we can take I = 2 when
k is exactly divisible by 2, and we shall here limit ourselves to this case.
More especially, we show that the degree over ¢ of

x
ul —
ErZQ(11§1g1;"'7]/gr)y r=20,1,2,...,
is 2“‘+”¢(k), where ¢ now represents the number of the primes ¢;, which
divide k, and also satisfy ¢; = 1(mod4). We give a proof by induecting
on % the number of primes. )

Suppose that we have proved the result for up to r—1 primes g¢;,
the case r = 0 being trivially true. Then if

H i ~nQ(Vg) =T

we have to show that L is Q(V E) if g, divides k and satisfies ¢, = 1(mod4),
and is @ otherwise. Now since 2 divides % exactly, the discriminant of

E__
Q(l/l) is not divisible by 2 (Weiss [12], 7-5-8, p. 266). Hence 2 does
T E_ E__
not ramify in Q(V1). Thus if Q(Vg,) lies in @(V1), then ¢ = 1(mod4)
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must hold, since otherwise the diseriminant of Q(I/E) would be 4¢,, and

[
2 would ramify in Q(l/l). Conversely, if ¢, = 1(mod4) is satisfied, then
k__ —
1(g,—1) is even, and Q (V1) contains Q(¥q,).

k__
We now show that I is contained in Q(l/l), and the stated result
will then be immediate. For, if L is not @, and the polynomial z*—g¢,
is irreducible over H,_;, then

H,_, (l/a) € H,_, (1‘/&:;:) ’

and these fields must coincide. By comparing their diseriminants we see
that we must have ¢ = ¢,_,;, and this contradicts our initial hypotheses.
Thus #*-—g, is reducible over H,_,, and

L=H_, QW) S H o~ QUVe).
Stepping down through the primes ¢;, we see that L does in fact lie in

k__
QY1)

Summarizing our results we can state the following result.
E__ 1__
LEMMA 4. If 1 is @ power of 2, then the degree of the field Q(l/l; l/gl,

?
...,I/Z) over @ is ¢(k)U (k) where c¢(k) is bounded below by a constant
depending only upon k. In particular, c¢(k) is 2~ with ¢ equal 10 the number
of primes q; dividing k, when 4[k. If 2 divides k exactly and T = 2 then we
get a similar result, with a t which counts those g; dividing k& and also satisfying
¢; = 1(mod 4).

LemMA 5. Let 1,1, ... 1, be the factorization of k into prime powers.
For v distinct rational primes ¢, ..., ¢r, let K, denote the field

k4 h & Iy [ Iy
N — _ - —
Q(]/lﬂ/%: crey l/qﬁ Vi eony ‘/975 "‘5‘/41) ceny I/QT)!
and let n, denote its degree over Q. Thewn we have the estimate
Ny = 27 (k)

where t is zevo if & is odd, and otherwise has the values in Lemma 4.

Proof. Let K, i=1,2,...,s, denote the fields corresponding
to K,, but containing only the I,th, I,th, ..., I, th roots of the g;. If we
prove at the ith stage that

Lyl k

Vg) = Q(/'1)

then the result will follow from Lemmas 1 and 4.

kU1l
M B~ Q0T Va, .o
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To prove this result we first note that the L. IL. side clearly contains
the R. H. side. Denoting the L. H. side by L, we see that if I containg

k_ k__
Q(l"'l)‘ properly, then its degree over Q(V’ 1) divides both the degrees
of EY and the field
E_ L Ligr

Q(]"l; Vl&:) ] 1/41')

E
over Q(Prl_). This can only occur if 7., has a factor in common with one
of thel;,j =1,..., 4, and by our choice of the I; this cannot happen.

Thus the lemma is proved.

Leyma 6. Let B, F be normal extensions of G. Then a prime ideal splits
completely in the compositum of B and F if and only if it splits completely
in B and F.

Proof. For a proof of this result we refer to Hasse [6] I Erl. 17, p. 50.

Leywa 7. Let B, F be algebraic number fields, and let 6 in F generate
F over B, with f(z) = 0 as its dg’im"ng equation. Then with finitely many
exceptions, the prime ideals p of B split completely in F if and only if f(a)
is completely reducible when considered in the residue class ring B [p.

Proof. For a proof we refer to Weiss [127, § 4-9, p. 168.

Leava 8. Let S(; gy, ..., ) denote the number of rational primes P,

not exceeding @, for which gy, ..., g are all k-th powers residues (mod p).
Then we have the relation

— Y140

T Np<z

1
S(m5915-"1%’) =—

where the prime ideals p are counted in the ring of integers of K,, as defined
earlier in Lemma 5, and n, denotes the degree of K, over Q.

Proof. If p is a rational prime satisfying p = 1(mod %), then p splits

k_
completely in the cyclotomic field Q(Vl) into @ (%) conjugate prime ideals.
Let a typical one of these be p. Then if p is counted in S(z;¢qy, ..., )
we can find rational integers y;, so that

q; qu(modp), j=1,...,7,

from which
(8) ¢ =yf(modp), j=1,...,r.

Sinee p is 0{d_egree 1, any primitive root (medp) is also a primitive
root (modp) in Q(’{/i-). It follows immediately from this that, if (8) is

E_
satisfied by integers y; of Q(I/l), then it ig also satisfied by rational in-
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tegers y; . Moreover, ¢;is a kth power (mod p) if and only if it is an Ith power

(modp) for each prime-power I which divides k exactly.
1

Let I be an odd prime power exactly dividing k. Then l@: generates

E_ 1 E__
Q(l/l, l@) over Q(V 1), and is an integer of the former field. Thus, by
Lemma 7, with f(#) = #'—¢y, ¢, is an Ith power residue (modp) if and

[ -
only if p splits eompletely in Q(l'/l, l/ql), save for finitely many prime

ideals p.
— k_
If now I is a power of two, and Vg, does not lie in Q(l/ 1) the same

_ B_
proof applies. If, on the other hand, Vql does lie in Q(l/l), then a basis

k_ 1 E__
for Q(l’/l, l/gl) over Q(l/l) is given by

L
(1/91)7; g

We now take f(z)= ml"z—l/a in Lemma 7, and see that ¢, is an Ith
power (modp) if and only if 2" —Vg, is completely reducﬂ)l_q _(mod ),

[
and this happens if and only if p splits completely in Q(l/l, 14 ¢1). Once
again we must allow for finitely many exceptions for p.

Carrying ount these operations for the primes ¢y, ..., ¢., we see from
Lemma 6 that S(z;q,,...,¢) counts ¢(k) times essentially all those

%,
primes p of Q(I/l) which satisfy Np < z, and which split completely in
the ring K,. In other words, the rational prime ideals generated by the
primes p counted in S(x; ¢y, ..., ¢,) split completely in K,.

The statement of the lemma is now immediate, the error term allowing
for the finitely many primes p from which exceptional prime ideals p

[

of Q(V 1) may arise, and also for the fact that the sum on the R. H. 8.
of the equation may count ideals of degree exceeding one. For clearly
the number of these does not exceed

n,,(21+ 21-;-,..) = 0(z'R).

<z pi<z

As it is stated the error term is of course not necessarily uniform
with respect to the primes ¢;, 7 = 1, ..., r. Such uniformity can be effected
at the cost of a little complication provided we introduce some ‘small’
additional terms into the error term. We shall say a little more concerning
this later, but do not need it for our immediate application.
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Lexma 9. For any algebraic number field K, we have the asympiotic
relation
T

1~
¥oZe logz

as x - oo.

Proof. This result is, of course, the well-known Prime-Ideal Theorem.
For a detailed account we refer to Landau [8].

We can apply this result to Lemma 8, and obtain, as # - co, the
relation

1 z
(9)

n, loga

S(5 g1y ey @)

We shall need this later in the case when % is an odd prime.

This completes what we need for the first section of the proof. For
the second we need some further definitions. In what follows we shall
denote the principal ideal generated by an element g, in the appropriate
ring, by [ul.

From now on until further notice we shall assume that & is an odd
prime.

Let o = exp(2nifk), and A = 1— . An algebraic integer a, of the

k__
field Q,(l/l), is said to be primary if [A]f a, and if we can find a rational
integer w, so that
a = w(mod[42]).

We now recall the definition of the Eisenstein symbol.

k
If p is a prime ideal of Q(I/I), and p{[Aa], then there is a unique
rational integer v, which satisfies 0 <o <%, and

» 1
d = ¢’(modp), =7 @p—1).
We define the Eisenstein symbalbf a(modp) to be

-

Thus, for prime ideals of first degree, when it is defined the symbol has
the value 1 if and only if a is a kth power residue (mod p). More generaily,

3
if b is an ideal of QG/I), and [1a], b have no proper common ideal factors,

(&~ L6

pib
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where the product is taken over the prime ideal divisors of b. We need
the following result concerning this symbol.

k

LeMMA 10. If t # & 98 a rational prime, and a in Q(VI) is primary,
so that the ideals [a], [r] are coprime, then

(7. = (o)
[a]/ /s

Proof. A proof of this reciprocity law, due to Eisenstein, is given
in Landau [9], Satz 1032, p. 303.

This is enough for our needs, but it is perhaps worth including the
following result, as it enables us to give more complete results later on.

k_
LeMMA 11. Let a be an algebraic integer of Q(l/l), and let v denote the
k__
trace of (kA)~*(a— 1) taken from Q(V1) down to Q. Then if a=1(mod[k1]),

we have that
() -
fal/w

Proof. This result is proved by Hasse [7].

‘We need some more definitions.

Let K be an algebraic number field. If K is generated by the element 6,
then § may have some real conjugates 6;, ¢ =1, ..., d. Let a be an integer
of K. Clearly, under a mapping 6 — 0;, a is taken into a real number.
If this number is positive for each value of 4, we say that 8 is totally positive,
and write a & 0.

Let { be an ideal of K. Two ideals ¢, b of K are said to be equivalent
(modf), if (a, f) = (b, f) = [1], and if, furthermore, there are two integers
a,f of K, which satisfy the conditions,

[ala = [4]D, B e 0.

In such a case we write ¢ ~ b(modf). As is well known, the above defi-
nition divides the ideals of K into a finite number of equivalence classes,
and we shall denote this number by % (f).

We now need a further result concerning ideal classes, and we use
the same terminology.

Luvma 12. The number of prime ideals p of K satisfying Np < z, and
belonging to a particular ideal class (rodf), is, as @ — oo,

o= f=1(modf), a& 0,

1 ]

o) 35 Toga
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Proof. This result, which is not necessarily uniform with respect
to f, is proved by Landau ([8], Satz LXXXYV, p. 112). By taking f = [1]
we see that this lemma ineludes Lemma 9.

‘We now apply these results to give a preliminary estimation for
S5 g1y vy Gr)-

For the time being, let N, = [klg, ... ¢] and let no ¢; be k. We first
show that the set of values

g .
(p )k’ J

when they exist, depend only upon the ideal class (mod %,) to which p
belongs. k_
For, if p; ~ p,(mod IN,), we can find integers ¢, & of Ql/l, so that

(21 =[81py, CZ=06=1(modN,), (0, &% 0.

Now the integers £, § are clearly primary, and so we may apply Lemma 10
to show that for each j,j =1,...,7,

=1,..

o1

% 4 )
10 = =1,
(o (i), = (e
since { = 1(mod[¢]). Similarly we can prove that for each j,
%
—_—] =1
([5])k

Thus, we have the relations

()= G, = (sl = ()
Pile P[]/ P2[6]/x P, i

If now, one of the g; is %, then we apply Lemma 11 in place of Lemma
10. Thus, in place of the step (10), we see that by taking ¢ = ¢in Lemma 11,
we have that p satisfies y = 0 (mod [%]), and

()=
(1l

The step (11) can therefore still be made.
Henee if % is an odd prime, we have for §(z; g4, ..., ¢,) the estimate
1
k—1 ;7 Niz 1+EB
Y~a(modR,)

for a certain error term R. Here a runs through a set of representatives
from certain ideal classes (mod R,). Let us now estimate R in detail.

(11)

(12) S(x§gly"'7%‘) =
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During the argument we assumed that the prime ideals p which
we were dealing with did not divide Ag;, ¢ = 1, ..., 7. Thus we can account
for those p which are go ruled out, by taking a term. O(r) in R. Moreover,
in the R. H. double-sum of (12), we have possibly included prime ideals
which are not of degree 1. In order to allow for these R must contain
a further error of not more than

Zw‘ 2 1 = 0(z').
f=2 Ny=pl<x

Thus, we see that we may take R to be O(r-+a'%).
We now apply Lemma 12 to (12), and obtain as # — oo, the result

S{@; @uy oo @) ~5— 1271 10“

Now we have already shown in (9) that

1 *

S gy -y 4r) ~ o Toga’

where, by Lemma 5, n, = (k—1)%k". Comparing these two estimates we
see that

(13) D1 =E"h(Ry).
a
The expression (12), along with the estimate for R, and (13), is now in
a form suitable for the application of a generalization of the sieve of
A. Selberg. All of our estimates up until now have not been necessarily
uniform with respect to the primes ¢;,4 =1, ..., The following lemma
will enable us to obbain a uniform inequality which will suffice for our
* purposes.

Liawa 13. Let f be an ideal in K, with h(f) corresponding ideal classes.

Then we can find & positive constant g, depending only upon K, so that

if #>2, and Nf < a7,
¢ ®
1< .
Z h(f logw

Np<a
p~a(modf)

Proof. A proof of this result is given in Rieger [10], Satz 5, p. 161,
and Satz 7, p. 164.

Returning to our consideration of S(x; ¢, ..., ¢) when % is an odd
prime, we see that if ¢; < ¢, <... < g, < ¢,log, for a small but fixed
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constant c,, then by a well-known estimate from elementary number
theory,
N (kg ... q,)) < a7,

so that by (12), (13) and Lemma 13,

1 €y & ,
S(x; e ) S —— ;——’h"—‘ 22y,
S(rsq,, ,Q) —1 “ , 71(9?,.) 1oga: +O0{x )

Thus

C -1 &z 5 ]2
(14) S5 g1y -5 &) ZU(k Eé; Twll)~
This completes our considerations of what we need for the second part
of the proof. )

For the third and final section we need some further lemmas. uy
these final lemmas & need not be a prime.

LEMMA 14, Let 1<, <ay<...<az <N be distinet rational
integers. For any integer v, and prime p, let Z(r; p) denote the number of
the a; which salisfy a; = r(modp). Then we have the following inequality:

P-1
A
V V‘( s p ——) <2287
D \1 r=0 p

Proof. For a proof of this example of Linnik’s large sieve, we refer
to Davenport and Halberstam [4].

LeMMA 15. Let g(x,y) denote the number of rational integers, not
exceeding a, which are made up entirely from primes p <y. Then, if for
@ fived & satisfying 0 < 6 <1 we have that » >y > (logz)®, then for
any & >0,

p(@, y) > (6, a0
Here ¢(9, &) is a constant depending upon 8 and s only.

Proof. This is a sharpened form of the corresponding result by
Erdss in his paper, already meutloned Suppose first that y < #°, and
define a positive integer k by ¥* < # < y Ftl . Clearly we have that

1 & ke -~k .
p(x, y) >77!(21) >y (2klogy)

<Y
> 2" (2klogy) ™" > ¢, (6, &)o' .

For if @ is large enough our hypotheses guarantee that

logaz
logy

(2klogy)* < (2logm)* < e.xp( log (210g$)) < oy’
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If, on the contrary, ¥ > o°, then let r = [1/e] > 1. If # is, once again,
large compared with s, we have,

1
w@mﬁ>%ﬂ£2qg>%m50%‘q>%@wb”
p<a®
Sinee ¢ > 0 is arbitrary, the proof of the lemma is complete.
LeMMA 16. For any rational prime p, and any & > 0, we have the esti-
mate
m(p) < 05(e) P*

1

with & = eF

Proof. This result is obtained by using the method of I. M. Vino-
gradov [11], in conjunction with the well-known character sum estimate
of Burgess [3]. The proof requires only simple changes.

We can now give a proof of the theorem. The integer % is not assumed
to be an odd prime unless stated.

Proof of the theorem. As indicated earlier, we divide the sum
which we estimate into three parts. We write

D @) = i+ Lo+ Ly,

LT
where L, is defined to be the left hand sum with the extra condition
n(p) < M, where M is an integer. L, and L; are defined similarly, the
extra conditions being respectively

M < m(p) < clogz, and e,loge < ny(p) < @.

To estimate L, we apply (9) to the relation

(18) L, = qu 2 1= ZIQ:{S(W;QU“'7%—1)_5(”5(11’---:%‘)}
Q<M " (z;)<mq <M
EP)=9

where ¢;, ..., ¢, are the first » rational primes, and so obtain that
= Ygmt—ayP ,_w_)
Lo = 2 g {7} logw +0M(10gw ’
Q<M

a8 @ ~> oo. We write 0y to denote that the error term may not tend to
zero uniformly with respect to M. By using the estimate

Ny > o(k) K"

of Lemma 5, we see that we may extend to infinity in a natural way
the series which is the coefficient of the leading term in this expression.

hm@
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This introduces a further error term which does not exceed

(" vk"‘r")<0 d ex( e M)
loga q;';"y ) = Copogg TP\ T % logif |’

Here we have used (as earlier) the estimate ¢, = O(rlogr) if » > 2.
Collecting results we see that, with Cy, defined in the obvious manner,

16 Ly = Cpo—a —I—O——mex(z’ﬂ"o L
(16) LT R g logx P *logll )T \loga )’

where the first term is uniform with respect to 3.

To estimate L,, we fix our attention upon a particular prime divisor
k, of k. Then when ¢y, ..., g are kth powers (modp), they are also kyth
powers (modp). If &, is odd, then we estimate L, by beginning as for L,
but in place of the asymptotic equality (9), we use the inequality (14).
We can certainly do this if ¢, is chosen suitably depending only upon .
We then obtain the inequality

(17) Ly<e gr (kl_rl ° +wm)
M <gp<cylogz 0g®
@ a
=0 |- e 12+e|
2(logm exP( % logM) T )

If k is a power of 2, so that %, = 2, then we can use the quadratic reci-
procity law in place of Lemmas 10 and 11, and obtain the inequality (17)
on the lines of the derivation in Erdés’ paper [5].

We now let % be arbitrary, but fixed, once again.

In order to estimate I, it is eonvenient to divide it up into two parts.
For convenience, from now until the end of the proof we denote i by £.

Let » = 3(1—2), so that the hypotheses of the theorem guarantee that
v is positive. We write L, = I, L;, where

Y (),

ded
eologz < ny(p)<(logz)’
<z

Iy =

and ILj is a similar sum with the condition on ny(p) replaced by
(loga) < ny(p) < w.
Let us fivst estimate L,. Let g, be a prime which satisfies

$6.loge < g5 < cyloga.
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Such a prime will exist if # is large enough. Then it is evidel.lt fro.m‘ the
estimate (14), that if » > s holds, then when & has an odd prime divisor,

o _ @
S5 oy ey @) S S@5015 00 4) = O(fvl’“+2 s-*‘——)

logx
_o (
logx

logx
exp ( ~“Togloga )’

This result also Lolds, as in Erdds [0], if k is a power of 2. Using this,
we obtain for I, the estimate

9

(18) Ly < (loga)™ 8 (25 ¢ay +--y 4s) < Cro(loga) ™.

Finally, we consider Lj. If nz(p) =, then any rati.onal integer
made up from primes not exceeding y, must bea k jnh power residue (n}od pz.
Forany @ > ¥ > 2, let us consider the seb of such integers not exceeding a2
Let us denote these by ai, i =1,..., 2, where Z = p(a?,y). Let p be
a prime for which n(p) >y. Then since the integers {.ai} belm;g to at
most ((p—1)41)/k residue classes (modp), we see that if p = k*—k+1,

Pp—1 9

Z\? 1 N

pZ(Z(T;p)—;) >(1~k_1)p P
r=0

Thus, the number of primes p < @, for which nx(p) > y, is, by Lemma 8,
less than

kr— k4141822271 < k18w {p(a? )}

Taking 6 = »~! in Lemma 13, we see that if y > (logz)” then
1-v)~&

(@ y) > 61 (e)a*

Hence, since Lemma 16 shows that in any case n(p) < o(e)p*™e holds
for any fixed ¢ > 0, we have that

y - . -
Ly < €18” ™ max  gf < ey,a” T < oy (loga)
gp<e(g)ztte

(19)
since, if ¢ is small enough,

Wt et+l+e<3vt+{ =1.
Collecting the results (16), (17), (18) and (19) we see that

logx

. M
2 (nx(p))* = Orat-02:(1)+0 (GXP (— Cg Tgﬂ?) :

<z

icm®
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By letting first », and then J/ tend to infinity, we see that

. lo
lim

T

= (mtp)”
T o=
exists, and has the value (j,.
This completes the proof of the theorem.
In particular, 4e'~'%z 41 > 1 s0 that we may take « =1, and
obtain the analogue of Erdos’ theorem.
If k is odd, then #n, = k"¢ (k), so that

EF—1
Cra = /V,‘k_rq';,
g(k) &

and for odd primes ¢ (k) = k—1, giving the value of (ko stated in the
theorem.

Finally, we note that a sharper error term can be obtained in the
theorem by using the Siegel-Brauer theorem, (see Brauer [2], Theorem 2,
p. 743), for the fields K, in which we need to apply Lemma 7, are all
normal extensions of Q.
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