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Hence (A) holds with M = 1 if m is odd. But if m ig even, (A) holds
for -m/2 with M = 1. Since (A) represents 2, (A) also represents m. If
m = 0 (mod 3), » = 3X, z = 3Z and we have again (A).

Take finally (C) and multiply by 12—3-1% = — 2. Then

(@—3y)*— 3 (x—y)2— 42* 4120 = —2m.

Write this as ,

(1) AB—30D = —2m,

where

A=2-3y+2%, B=w-3y—20, C=c—y-+2w, D=o—y~2.

We require the condition that @,y,2,w be integers for given
integers 4, B, 0, D. Thege are obviously,

A = B (mod4), C =D (mod4);

and
A+B—C—D =0(mod 4), ie, A= 0(mod?2),
since
2—3y = A+B , @—y = Q;I;ZJ_
2 : 2
Hence

A?—30% = —2m (mod 4).

If m =1 (mod 2), we take A = 0 =1 (mod 2). Then we can satisty
formula (11) by taking 4 = B = ( = D =1 (mod 4).

If m = 0 (mod 2), (C) holds for m[2 and also for 2 with M =1,
and so also for m.

A gimilar argument holds when m = 0 (mod 3).

There is no need to give further instances of the method.

ST. JOHNS COLLEGE,
CAMBRIDGE, ENGLAND
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Uniform distribution of sequences in GF[g, #]*
by

Jorx H. Hopees (Boulder, Colorado)

1. Introduction and preliminaries. Let & = GF[g, #], denote the
ring of polynomials in an indeterminate z over an arbitrary finite field
GF(q) of g elements. Throughout this paper italic capitals 4,B, M, H, ...
will denote elements of @, except as indicated.

TLet M be any element of & of degree m > 0. Then a complete residue
system modulo M (in @) contains ¢™ elements. One such complete residue
gystem consists of all elements of @ of degree << m. (For this purpose,
the zero polynomial may be regarded as having degree < m for all m > 0.)
Tet 6 = {4} be an infinite sequence of elements of &. For any Bed
and any integer » > 1, define 6(n, B, M) as the number of terms among
4,,..., 4, such that 4; = B(mod M). Then following Niven ([5], §1)
we say that the sequence 0 is uniformly distributed modulo M, abbreviated
ag u.d. (mod M), if and only if

1.1) lim6(n, B, M)n = ¢~™ (all Bed).

Furthermore, we say that the sequence 6 it wniformly distributed,
abbreviated as w.d., if and only if it is u.d. (mod M) for every M of degree
>0 in @.

For certain questions of interest concerning sequences in @,
a somewhat weaker condition than (1.1) must be used. Let 6 = {4}
be any infinite sequence of elements of @ in which no element of @ appears
infinitely many times. For any Be®, any integer n > 1 and any Me®
of degree m > 0, let

6(n) = number of terms of § such that degd; < n,
(1.2) N(6,n, B, M) = number of terms of 6 such that degd; <n
and 4; = B (mod M).

* Qupported by NSF Research Grant GP 2542 and NSF Science Faculty
Fellowship 64203.
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Then 6 is called weakly uniformly distributed modulo M, abbreviated as
w.a.d. (mod M), if and only if

(1.3) N (0, n, B, M)[0(n) = ¢™ (all Be®),

200

and is called weakly wniformly distributed, abbreviated as w.u.d., if and
only if it is w.u.d. (mod M) for every M of degree > 0 in @.

Note that in (1.1) and (1.3) we need only let B run through the ¢™
elements of any complete residue system modulo M, and that without
any loss of generality we can restrict our study to the case where M iy
mondc (or primary), that is, has coefficient of o™ equal to 1, The case
M =1 is omitted because it is trivial here and also because the phrases
“uniformly distributed (mod 1)” and “weakly wuniformly distributed
(mod 1)” have been given a different meaning, as indicated in § 4 of the
present paper, by Carlitz ([2], §4). Throughout this paper, therefore,
the term monic will mean monic of positive degree.

In this paper we investigate some properties of uniform distribu-
tion and weak uniform distribution of sequences of elements of @. Unless
otherwise noted, the word sequence whenever used here will mean infinite
sequence of elements of @. All of the results obtained in the paper, as
well as most of the proofs given, are the analogs for sequences in & of
results given by Ivan Niven ([5]) for sequences of rational integers. In
§2 we consider the relationship between w.u.d. (mod M) for a rising
sequence 0 (an analog for @ of a strictly increasing sequence of positive
integers) and various density properties possessed by 6 and its comple-
mentary sequence 6*. In § 3 we prove a number of elementary theorems
concerning the relationships that exist among uniform distribution (and
weak uniform distribution) of a sequence with respect to different moduli
M and F and to their product MF. In §4 several theorems are proved
concerning weak uniform distribution of sequences of polynomials gen-
erated by certain drrationals inl a field @’ which containg the quotient field
of . Finally, in § 5, an exponential property of sequonces and its rela-
tion to uniform distribution (weak uniform distribution) is discussed.

In a subsequent paper the author will consider the amalogs for &
of results proved by Niven ([6], §4), Burke Zane ([7]) and Stephan

R. Cavior ([3], [4]) for sequences of integers generatoc by polynomials -

with integral coefficients.

It is an immediate consequence of the definitions given above that
a sequence 6 = {44 > 1} is w.d. (mod M) [w.w.d. (mod M)] if and only
if the truncated sequence 6, = {4;| % > r}isu.d. (mod M) [woa.d, (mod M)]
for any fixed positive integer 7. Similarly, 0 is w.d. klnod M) [woud.
(mod M)] if and only if 60 = {44+ 0|4 > 1} is w.d. (mod M) [w.u.d.
(mod M)] where O is any element of @, ' '
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If M is monic, it is easily shown that for any integer > m, each
residue class modulo M in @ contains the same number, namely (g—1) ¢
of different polynomials of degree ¢.

b

2, Weak uniform distributivity and complementary sequences.
A sequence 0 = {4;} will be called a rising sequence if and only if degree
A; < degree 4, for all integers ¢ > 1 and 4; # 4; for ¢ < j. (This is an
analog for @ of a strictly increasing sequence of positive integers.) In
particular, any sequence I' containing all of the elements of @, each
oceurring once, arranged according to monotonically increasing degree
is a rising sequence. In view of the remark at the end of §1, it is clear
that every such I'is w.u.d. However, a given such I' need not be u.d. since
there may exist a monic M for which I'is not u.d. (mod M). For example,
let M be an arbitrary monic polynomial of degree m. Let I' be any rising
sequence containing all elements of @ and such that for every integer
t > m, the (g—1)¢"™ elements of @ of degree ¢ which are congruent to 0
modulo M are preceded by all the other (¢—1)(¢"—1)¢"™ elements
of @ of degree {. Then for any such t, with n, = ¢+ g1 (" -1)g™
we have I'(n;, 0, M) = ¢"™™ so that

I'img, 0, M)m = [q(g"—1)+117" < g™
Therefore,

UmT'(n, 0, M)m = [g(¢"—~1)+117" < ¢,

{00

so that in view of (1.1), I' is not u.d. (mod M).

For sequences of integers the problem illustrated above does not
arise. That is, for a strictly increasing sequence of positive integers, the
analogs of the concepts of uniform distributivity (med M) and weak
uniform distributivity (mod M) are equivalent. (See [5], § 1.) For a rising
sequence 0 in @, of course, if 6 is u.d. (mod M) then 6is w.u.d. (mod M).

If 0 is a rising sequence in @ and for all integers » > 1, 6(n) is defined
by (1.2), we define

asympototic density of 0 = lim inf ¢~" 0 (n),
(2.1) . e
natural density of § = lim ¢~ "6(n) (if limit exists).
Ner00
Let 6 be any rising sequence. If the set complement of 6 in @ is finite,
then we define the complementary sequence of 6 to be any finite sequence

- formed by use of all the elements of this set complement. If the set com-

plement of § in @ is infinite, then we define the complementary sequence
of 8 to be any rising sequence formed by use of all the elements of this
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set complement. The complementary sequence of ¢ will be simply called
the complement of 6 and will be denoted by 6*. We note that definitions
(1.2) and (2.1) can be extended without change to any finite complement
6* with the result that 6* has natural (and go also asymptotic) density
equal to 0. It is also clear that for an infinite complement 0%, both the
asympototic density and the natural density (when it exists) of 0* are
uniquely defined as functions of 6, that is, are independent of the partic-
ular choice of order of occurrence in 0* of elements of the same degree.
Thus, with respect to the properties that we will be concerned with here,
there is no ambiguity involved in speaking of the complement 6* of 0,

We now prove two theorems concerning the relationship between
weak uniform distributivity (mod M) of a riging sequence 0 and density
properties possessed by 6 or 6*. First we have (compare with [B], §2)

TeOREM 2.1. If 6 s a rising sequence whose complement 0* has
natural density equal to 0, then 0 i¢ w.u.d., that is, 6 i¢ w.u.d. (mod M)
for every monic M in O.

Proof. If 6* is finite so that O contains all except a finite number
of elements of @, in view of the remarks at the end of §1, it is clear that
gince # is a rising sequence it is w.u.d. (mod M) for all monic M in @,

Therefore, suppose that §* is infinite. If I" denotes any riging sequence
formed by using all the.elements of @, then for all integers n >

I(n) = 6(n)+0*(n) = ¢".
Also for any Be®, any monic M of degree m and all n 2 1,
(2.2) N(yn,B, M) =N(0,n, B, M)+ N(6* n, B, M).

Since b}; hypothesis 6* has natural density 0 and by definition (1.2)
0 <N(6*,n, B, M) < 6*(n) for all » > 1, then

23) 1 =n1{$q"‘l“(n) = lim ¢7"[0(n)+ 04(n)] = lim.q™" 0 (n)
and N-r00 Ner 00

(2.4) lim ™" ¥ (6%, n, B, M) = 0.
N-»00

Congequently, since I' is clearly w.u.d. (mod M) in view of the remark
at the end of §1, using (2.2), (2.3) and (2.4) we get

0" = Bm N (I, B, M)[T(n) =Ym ™[ (0,m, B, M)+ N (0*,m, B, M)
= lim [ 0LV (6, n, B, M)/0(n)] = Lin N (0, n, B, M)/ (n).

Thus, in view of the definition, § is w. i i i
‘ 4 , w.d. (mod M), Since thi
for all monic M it follows that 6 is w.w.d. ) "l tme
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Using Theorem 2.1 we can show that the answer to both of the follow-
ing questions is no. Let 0 be a rising sequence whose complement 0*
is infinite. If 0 is w.u.d. (mod M) [or w.u.d.] must 6* also be? For let 6
be any rising sequence containing all the elements of @ except for a
a sequence §* = {4¥} whose ith element A} is a prime polynomial of
degree 4 for all ¢ > 1. (Compare with the example. given by Niven [5], § 2,
to answer the analogous questions for strictly increasing sequences of
positive integers.) Then 6* is the complement of 6 and clearly has natural
dengity equal to 0. Therefore by Theorem 2.1, § is w.u.d. (mod M) for
every monic M. But for every such M, there exists at most one value
of ¢ such that 4} = 0 (mod M) so that 6*is not w.u.d. (mod M). However,
it is eagy to give an example to show that for a rising sequence f and
a monic polynomial M, the fact that 6 has natural density equal to 0
does not imply that 6 is not w.u.d.(mod M). For instance, if ¢ = 2,
taking M = @ and 0 = {4,} with 4; = o' for i odd and 4;= 144 for
i even, then 6 is in fact u.d. (mod ).

On the other hand, the complement 6* of a rising sequence 6, just
as in the corresponding situation for strictly increasing sequences of
positive integers ([5], Theorem 2.1), does inherit weak uniform distri-
butivity from 0 in case 6* has positive asymptotic dengity. This is the
content of ‘

TemOREM 2.2. Let 0 be a rising sequence whose complement 6% ha
positive asymptotic density. Then if 6 is w.u.d. (mod M) for a given montc
M in @, so-is 8% Thus if 0 is w.u.d., then so is 6% ‘

Proof. In view of the definition of w.u.d. we need only prove the
firgt of the two assertions. Let Be® be arbitrary and M be monic of
degree m such that 6 is w.u.d. (mod M). Recalling the definition (1.2)
of N(6,n,B, M) for any integer » >1 a8 the number of terms of the
rising sequence 6 = {4;} such that degree A; < n and 4; =B (mod M),
we can gshow that

(2.5)
N(0,n,B, M)+ N(6%n, B, M) = " ™+a, (o rational, |as| <1).

To prove (2.5) we need to show that the number of 0 e® such that degree
0 < n and ¢ = B (mod M) is given by the right side of the equation.
Clearly there exists a unique Re® of degree < m such that R = B (mod M).
Tirst suppose that 1 < n < m. Then if degree B < n, there is one such ¢
namely ¢ = R, and this situation is described by (2.5) with a, = 1—g"™™.
On the other hand, if n < degree R, then there are no such elements
Ce® and this is described by (2.5) with a, = —¢"~™ Now consider the
case n > m. In view of the remark at the end of §1 concerning the
distribution of polynomials of degree > m in the various residue classes
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modulo M, it follows that for each m < i < m, the number of different ¢
of degree ¢ in @ such that O = B (mod M) i8 (q=—1)g" ™, SNumming
this value for ¢ from m to » and adding 1 to count R gives the right side
of (2.5) with a, = 0.

Now (2.b) leads directly to

[N(8,n, B, M)[6(n)1[q™"6(n)]-+[N (6%, m, B, M)[0*(n)][q™" 0%(n)]

= — 4 unq-‘—u .

Since 6(n)+ 8*(n) = ¢, replacing ¢~™0(n) by 1—¢ "0*(n) in this lagt
equation, we get

(2.6)  [q"0*(n)I[N(6*,n, B, M)[0*(n)—N (0, n, B, M)]0(n))
=q " —N(0,n, B, M)[0(n)-+ang™".

Since we are agsuming that ¢ is w.u.d. (mod M), the right side of (2.6)
tends to zero as n -> co. Furthermore, since the agymptotic density of *
is assumed to be positive, the quotient ¢~"6*(n) is bounded away from
zero for n sufficiently large, so that for every Be® and monic M of degree
m, (2.6) implies

Lim N(6*, n, B, M)/0*(n) = Hm N(0, n, B, M)/0(n) = ¢ ™

N—00 T 0O
Thus, 6* is w.u.d. (mod M).

A final theorem relating weak umiform distributivity of a rising
sequence and the density of the sequence is (compare with [5], Theo-
rem 2.2)

" TeEOREM 2.3. If a rising sequence 0 is w.u.d. and containg an infinite
seb of the form {KB+C} for all K of sufficiently large degree, where O is

any fized element of @ and B is monic of degree b, then 0 has natural density
equal to 1.

Proot. Since 6 contains all polynomials of the form KB--0 for K
of sufficiently large degree and the number of K of degree <« n—b is
¢, it follows that

N(8,n,0,B) =

Therefore, since 6 is w.u.d. (mod B),

""" +o(g").

gmN(o, ny €, B)[0(n) = ¢ = lim [¢""+- 0(¢™)]/0(n) = ¢~"lim ¢"[0(n),
00 00 ’ Pher 0 )
which implies that Lm0 (n)/¢" = 1.

3. Uniform distribution with respect to different moduli. In this
Sfﬂctl()l‘:l We prove a number of elementary theorems concerning the rela-
tlonships which exist among uniform distributivity of a sequence § with
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respect to monic moduli M and F and to their produet MF. Throughout
this section we will assume that M and F are monic of degrees m and f,
respectively. First we have

THEOREM 3.1. (a) If a sequence 0 is n.d. (mod M) and- F divides M,
then 0 18 u.d. (mod F). (b) If a sequence 8 is not w.d., then there exist in-
findtely many moduli M for which 6 is not u.d. (mod M).

Proof. Part (b) is an easy consequence of part (a). For if sequence 6
is not u.d. then there exists an F for which 6 is not u.d. (mod ¥} and,
assuming (a), this property is shared by all of the infinitely many different
monic multiples M of F.

To prove (a) suppose that F divides M and that sequence 6 is
u.d. (mod M). Let B be any element of a complete residue system modulo
P. Without loss of generality we may assume degree B < f. If 4 is any
element of degree << m in a complete residue system modulo M and
A = B (mpd F), then A = KF+B, where degree K < m—f. (K is the
zero polynomial if f = m.) Since 6 is u.d. (mod M), for any such B and X,

(3.1) lLim 6(n, KF+B, M)jn = ¢~™.

N0

Furthermore, for any fixed B of degree < f, since F divides M we have
(3.2) 0(n,B,F) = D0(n, KF+B, M),

where the summation is over all K of degree < m—f. Since the number
of such K is ¢™7, we see from (3.1) and (3.2) that for any such B,

lim 6(n, B, F)jn =

N300

lim §(n, EF+B, M)[n = ¢" g™ =¢".
deg K<m—t ">
Thus, 6 is w.d. (mod F).

Next, to supplement part (a) of Theorem 3.1 we prove

THEOREM 3.2. If F does not divide M, then there exists a sequence 0
that is u.d. (mod M) but is mot u.d. (mod F).

Proof. Suppose that 7 does not divide M and let {K;} be any fixed
sequence with degree K; = j for all integers j > 1. Let {B; | 1 <¢ < ¢"} be
a complete residue system modulo M with R, = M and 0 < degree E;
< m for all 2 <i< g™ For every integer j >1, define 6; = {FK;+
+R;|1<4<q" and let 6 = {4,} be any sequence such that for all
integers § =1, {4, ]} (j—1)g™ < s < jg™} = 0;. Since for each value of j,
the set 6; is a complete residue system modulo- M, 6 is u.d. (mod M).

But 6 is not w.d. (mod F). For if m < f, then for all 1 <i<q"
and all integers j >1,

F.Kj"'—Rr,; = Ri =0 (mod F),
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g0 that the assertion is true for this case. On the other hand, suppose
that f < m. Then all of the ¢'—1 R; of degree < f are incongruent modulo
F. For each 2, f <z < m, the (¢g—1)¢° R; of degree # are divided evenly
among the ¢’ residue clagses modulo ¥, each residue class containing
(g—1)¢"" such R;. Thus for each B # 0 of degree < f, the number of
R; of degree < m such that R; = B (mod ¥) is

m-—1
c=1 —1 tna-] = Tn»--f.
- 14 ):; (@-1¢" =4

However, since B, = M = 0 (mod F'), the total number of R, such that

; = 0 (mod F) is equal to the number of such B, of degree < m which
is equal to ¢—1. Also for some B, 0 of degree < f, By == M == B, (mod I)
go that the total number of R, such that R; = B, (mod I') is e¢--1.
Since, for every j > 1, the elements of 6; are congruent modulo F to
the elements of the set {B;|1 <4 <¢™} it follows that 0 is mnot
u.d. (mod F).

By analogy with the construction given by Niven ([5], § B) to prove
the analog of Theorem 3.2 for sequences of infiegers, in the preceding
proof for the polynomial case F' can be replaced by any of its nonzero
multiples, in particular, by the least common multiple of 7' and M.

Another important and easily proved property is given by

TuEOREM 3.3. If @ sequence 0 is both u.d. (mod M) and u.d. (mod F)
where' M and F are relatively prime, then 0 need not be u.d. (mod MF).

Proof. The following is an analog of the example given by Niven
([6], §5) to prove the corresponding property for sequences of integers.
Let ay, ..., a; be the elements of GF(g) listed in any fixed order. Let
H = z*(z+1) and 6 = {4} be any rising sequence such that for all in-
tegers i > 1, if ¢ = ag+b with a, b integers such that 1 <b < ¢, then
A;=a*+2+ 0, (mod H). Then with M=o and F == g1, 0 i8
w.d. (mod M) and u.d. (mod F), but § is not w.d. (mod MF), even though
M and F are relatively prime, since no element of 0 is congruent modulo
MF = 2*+a to the linear polynomial w. Note that 6 is not even
wad. (mod MF).

By use of a polynomial analog of a congtruetion given by Niven ([B],
§5) we can prove a theorem of a slightly different gort, nmamely

TamorEM 3.4. There ewists o sequence § which is not u.d. but which
18 u.d. (mod P°) for every monic irreducible P and every integer o = 1.

Proof. Let a;, ..., a; be the elements of GF(g) listed in any fixed
order with o, = 0. Let I' = {By} be the rising sequence formed by using
all the elements of @ a8 follows. For every integer j > 1, let

Iy ={Be | (j—1)g < ¥ < jg},
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where in particular, By = o if Byely, that is, if 0 <k < q. For 2 <j <g¢
define

Iy = qot+ Ty = {go+a ] 0 <k <gl,

where for fixed j the elements of I'; are arranged according to increasing
subscript on a;. Then by induction on j > g, if j satisfies

1<¢d<j=oad+b<gd" (A<b<d, 1<a<(g-1),
define :

i1
Iy = O‘a-}-v""’_}- + Iy,

where for fixed j the elements of I; are arranged according to the order
of elements in I}.

In the proof of Theorem 5.3 of this paper, it is essentially shown
that if M is any monie polynomial of degree m, then each successive set
of ¢™ elements of I" as defined comprises a complete residue system mod-
ulo M. This clearly implies that I" is u.d. (mod M) (and so is u.d.). In
particular, I" is u.d. (mod P°) for every monic irreducible P and every
integer ¢ = 1. S :

Given any positive integer %, for each (nonconstant) monic irreducible
P define j = j(P, k) by means of the inequalities dj <% < d(j+1), where
d = degree P. Then let 6 = {4;} be any sequence satisfying all of the
following conditions:

(i) degree Ay, > degree 4, all k >1,
(ii) Ay = By (mod P’), for every monic irreducible P #  of degree < k.

(iii) for P = =, if Ry is the remainder in the division of B; by #*+-=,
then modulo o

Buta (if By = aw for a + 0 in GF(g)),
Ak = Bk—a (if Rk == a(w+1) for a # 0 in G’F(q)),

B; (otherwise).

For each integer & > 1, since there are only a finite number of congruences
to be satisfied in conditions (ii) and (iii) and the various moduli involved
are relatively prime in pairs, by the Chinese Remainder Theorem for &,
polynomials 4, exist which satisfy all of the conditions in (i), (i) and (iii).
Thus, such a sequence f = {A,} exists.

Then 6 is u.d. (mod P°) for every monic irreducible P and every
integer ¢ > 1. For given P of degree d, we can ignore the finite number
of terms A, at the beginning of § for which % < de, considering only
those terms for which de < % so that e < j, where j = j(P, k) is defined
above. If P = x, by condition (ii) it follows for every k > de that A,
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= B, (mod P*) and since I'is u.d. (mod F*) so is 0. If P == &, since ¢ «4,
the conditions (iii) hold modulo #°. Since as noted before, the numbers of
elements By in I' of any given degree >>2 which are congruent modulo
@242 to any linear polynomial are the same, it follows that since I'ig
w.d. (mod #°) so is 0.

However, 0 is not u.d. since it is not u.d.(mod a*+-w). This
is true since for all integers & >1, Ay # #--1 (mod»*+x). For if 4,
= p-+1 (mod 2%+ ) for some &, then 4, = o+1 = 1 (mod ») and in view
of condition (ii) above, By = 4; = @-+1 = 0 (mod #--1). This last con-
gruence implies that the remainder Ry in the division of B, by #*+-0
i8 a(w+1) for some acGF(g). If a % 0 then, by condition (iii) above,
Ap=By—a=0(modx) and if a =0 then, again by condition (iii),
Ay = B, = 0 (mod @), in either case contradicting 4, = 1 (mod ). Thug,
§ is not u.d. (mod 22+ o). '

‘We remark that all of the results (and proofs with obvious changes)
of this section hold if n.d. and u.d. (mod M) are replaced by w.u.d. and
w.u.d. (mod M), respectively.

4. Sequences of polynomials generated by irrationals. Let
@' = GF{q, v} denote the extension field of @ = GF[g,#] consisting
of all the expressions

(4.1) a= D adt  (4eGR(),

where » is an indeterminate and the coefficients ¢; all belong to a fixed
arbitrary GF(q). In this section, lower case Greek letters will denote ele-
ments of @'. If « has the representation (4.1) with ¢, 5= 0, following
Carlitz ([2], § 2) we define the degree of a by dega = m, where m is a ra-
tional integer which may be positive, negative or zero. We extend this
definition by writing deg0 = — oo, where — oo <k for all integers k.
The integral part and fractional part of «, denoted by [a] and ((a)) respec-
tively, are defined by

1=0

m 1
(4.2) [a] = Zciwi, ((0)) = a—[a)] = E oot

80 that [a] is a polynomial. An important property of this concept of
}ntegral parts (obviously not shared by its real analog) which follows
immediately from the definition, is that for a, f¢®, [a--B8] = [a]-[F]
The statement o = g (mod 1) is defined to mean that « = ﬂnl-}l’where
Ae@,‘ that is, 4 is a polynomial. Thus, every a is congruent (mod 1) to
a unique §, namely § = ((a)), such that degp < 0.

‘T}_le following definitions are also due to Carlitz ([2], §4). Given
an infinite sequence of elements a;, ay,... in @, an &rbii&rwy element
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g of &' and any positive integers n and %, let Ny(n, f) be the number of
a; with 1 < ¢ < n such that

(4.3) deg((e;— ) < —k-.

Then the sequence {a;} is said to be wuniformly distributed (mod 1) in @'
if and only if for all k> 1 and all fe®’
(4.4) - m Ny(n, f)fn = ¢

N—y00
and is said to be weakly uniformly distributed (mod 1) in @' if and only
if for all k¥ =>1 and all fe&’

(4.5) PIL}Nk(qt; Bld = a7

An element. £e®’ is called irrational if it is not contained in GF(g, 2),
that is, it is not a quotient A /B of elements 4, Be®. The following the-
orem proved by Carlitz ([2], Theorem 5) is an analog for @' of the well-
known theorem of Weyl ([6]) concerning uniform distribution (mod 1)
of certain sequences of real numbers generated by real irrationals.

THEOREM 4.1. If £e®' = GF{g,x}, & is irrational and {4} is any
rising sequence formed by wsing all the elements of @ = GF[q,x], then
the sequence {A;£} is weakly wniformly distributed (mod1) in &

We remark that this theorem (see [2], Theoreri 8) and in fact all
of the results of the present paper, can easily be extended to sequences
of n-tuples of elements of & or @' as the case may be. .

By use of this theorem of Carlitz we can prove an analog for @ of
a theorem of Niven ([5], Theorem 3.1) concerning sequences of integers
generated by real irrational numbers. Recalling the definition of w.u.d.
for sequences in @ as given in §1, we prove

THEOREM 4.2. Let £e® and {A;} be any rising sequence formed by
using all the elements of ®@. Then the sequence 0 = 0(&) = {[4:£]} of in-
tegral parts of the sequence {A;£} of elements of @' is woud. (in D) if and
only if £ is wrrational or & = A[B for A, Be® with degree A < degree B.

Proof. First suppose that £ js irrational and let M be any monie
polynomial. Then &/M is irrational in @' so that by Theorem 4.1, the
sequence {a;} with a; = A;&/M all ¢ > 1 is weakly uniformly distributed
(mod 1) in &'. Let Be® be arbitrary of degree < m 50 that for any integer
%k =1, by (4.5) we have

(4.6) limg~ Nu(', B/M) = ™"

where Ny(¢', B/M) is the number of «; with 1 <i<q such that
deg((a;— BIM)) < —k. If «; satisfies this condition then we can write
(4.7) a—B|M = Fi+((a;—B|M))  (FieD).

Acta Arithmetica XII. 1
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1f we multiply this equation by M and consider the special case & = m
we see that .
Ayt = B+MF+M{(a;—BIM)),

where deg M ((a;~B[M)) < 0 go that
(4.8) [4;€] = B+MF; = B (mod M).

Conversely, (4.8) implies (4.7) with deg((a;—B/M)) < ~—m. Suppose
that degé = d. Let ¢ be an arbitrary integer such that ¢-+-d = 1. As ¢
runs through the integers 1 <4 < g% 4, runs through all ¢* eloments
of @ of degree <t and, if [4;&] 40, deg [A,6] == dog A& < ¢--d.
Therefore, 6(t-+-d) =¢' and by the equivalence of (4.8) and (4.7),
N(6,t+d, B, M) = N,(¢', B/M). Therefore by (4.6) with & ==m, for
all such Be®

EmN(e, t+d, B, M)[0(t+d) = }imq"‘Nm(q‘, BIM) = q~™,
Thus, 6 is w.u.d. (mod M) and since M was arbitrary, 0 = 0(&) is w.ud
Next suppose that 6(&) is w.u.d., where § is rational, that is, £ = 4/B
with 4, Be® and B # 0. If £ = 0, it is trivial that 0(£) is not w.u.d.
so that we may assume £ 5= 0. Let o == degree 4, b = degree B and
suppose @ > b. Then for every integer ¢ > 1, of the first ¢ eloments of
6(£) (corresponding to the set of all 4, of degree < th) at least ¢*~" are

congruent to 0 modulo A4, namely those elements corresponding to all '

Ag:BF, where. I’ has degree < tb—b. Since deg & == a—b, for al
¢® A; of degree < tb, it follows that

deg [A:£] = deg A; £ = deg A+ deg & < th--(a—1D).
Therefore, reéa.]]ing the definitions (1.2) we have for every integer ¢ >1
f(th+a—b) = ¢",
N(0,tb+a—b,0,4) > ¢"".
This implies that (if the limit exigts)

r{l;mN(O, 1,0, 4)/0(n) = q" > ¢"*
which implies that 6 is not w.u.d. (mod 4) so is not w.u,d. Thus, we con-
clude that if 6(£) is w.u.d. for rational & = A|B 50, then a < b,
Finally, we prove that if & = A/B 0 with degree A = a <)
= degree B, then 6(¢) is w.u.d. Now the first ¢** terms of 6(&) corregpond
to the terms of the rising sequence {4;} which are of degree < b—a.
Tor all such 4, degree 4,4 < b so that [4,4/B] = 0. The next (¢—1)¢"~"
terms of 6(&) correspond to all the terms of {4} which are of degfee b—a.
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As A; runs through all polynomials of degree b—a, A;A runs through
all polynomials of degree b, with each of the (¢—1) possible leading coeffi-
cients occurring exactly ¢°~% times. Thus [4;4/B] runs through all of
the nonzero constant polynomials, each occurring ¢"~% times. Thérefore,
the first ¢°~**! terms of 6(&) consist of the ¢ constant polynomials in @,
each occurring ¢"~® times. By induction, it follows that for all integers
> 1, the first ¢°~*** terms of §(&) consist of all the ¢ elements of & of
degree < t, each occurring ¢°~® times, and we have 0(1) = ¢*~*%.

Let M be any monic polynomial, m = degree M and let C be any
element of @ of degree < m. By the argument above, for all integers
7 > 1, the first ¢*~“*™"" terms of 0(£) consist of the ¢™*" elements of &
of degree < m+r, each occurring ¢°"® times. C itself occurs ¢"~% times
among these terms. In addition, for each 0 < j < r, each of the (g—1)¢
polynomials' of degree m+j which is congruent to ¢ modulo M occurs
"~ times among these terms. Thus, of the first ¢°~“+"+" terms of 0 = 6(£),
the number which are congruent to ¢ modulo M is

r—1
(49) N, m+r, 0, M) = ¢~ [14 3 (g-1)d] = £

j=0
Therefore, it follows that for all such 0, since f(m-+r) = ¢"~**™*",

LmN (6, n, C, M)/0(n) = 4N (6, m+r, 0, M)[0(m-+r) =q" ™,

Nerr00 rso0
which implies that 6(£) is w.ud. (mod M). Since M was arbitrary, 6(¢)
is w.ud.

Since uniform distributivity of a sequence in @ is invariant under
addition of any fixed polynomial and as noted earlier, [a+f] = [a]+[B]
for all a, fe®’, a trivial consequence of the preceding theorem is (see [5],
Theorem 3.2, for the somewhat less trivial analog for sequences of in- '
tegers).

COROLLARY 4.3. If £e® is irrational or £ = A[B+#0 for A,Be®
with degree A < degree B, B @' is arbitrary, and {A;} is any rising sequence
formed by using all the elements of ®, then the sequence 6(&, B) = {[A:é+ £1}
is wud. in D

It is interesting to see that, as in the analogous situation ([5], p. 56)
for sequences of integers, the conclusion of Carlitz’s Theorem 4.1 follows
as a consequence of assuming for all irrationals in @' the conclusion of
Theorem 4.2, That is, ‘

THEOREM 4.4, If {A;} is any fived rising sequence formed by using
all the elements of @ and for every irrational Ee®', the sequence 6(£)
= {[4;£]} 48 wou.d. in D, then for every irtational &P’ the sequence {48}
is weakly wwiformly distributed (mod 1) in. @'
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Proof. Suppose that the hypothesis holds and that Eed' i8 any irra-
tional. For any integer m 3> 1, let M be any fixed monic polynomial of
degres m. Then M§ iy also irrational so that 0, = 0(ME&) = {{4;M&]}
is wu.d. in @ and so is w.u.d. (mod M).

Now let B be any polynomial of degree < m and suppose that
[4;ME] = B(mod M). Then A &= [4;&]-+((4:8)) 80 that A.M¢
= M[A;E]+M((4;¢)) and so '

(£10) [AME] = M{AE]+[M((A:8)] = [M((4:f))] = B (mod M).

Since deg M((4:£)) < m,[M((4,£))] is a polynomial of degree < m so
that (4.10) implies [M((4:£))] = B. Thus (4.10) leads to

(4.11) [AME—MA,E]) = [A;ME)—M[A; €] = B.
Therefore A,Mé—M[A,&] = BB with degf < 0 so that
(4.12) (A:8) = A6 —[A;8] = B| M+ 8/ M,

where —m < deg(B/M) < 0 if B 70 and deg (B/M) < —m.
Now as B runs through a complete residue system modulo M in &,
with degree B < m, the quotient

-1
BIM = D ba

Jem—00
runs through a set of ¢™ different elements in @’ in which each of the ¢"
different choices of all of the coefficients b;, for —m < j < ~1, appears
exactly once. For suppose that B, and B, are both of degree < m and
that B, /M = g+ 8, By|M = B, p with f;, f, both of deg < ~-m. Then
B,—B, = M(f,—f,) so that deg(B,—B,) < 0. Since B, and B, are

polynomials, this implies that B, = B,.
Therefore for any ae®’, in view of (4.12) and the comments above
concerning the distribution of B/M in ¢, there is a unique polynomial

B of degres < m such that for all integers ¢ > 1, [AME&] = B (mod M)
if and only if

(4.13) (Aif—a) = (B/ M ~a)) < ~m,

Since for any integer ¢ >1, deg A; <t for all 1 <4« ¢!, if deg & = d
then [A;ME£] =0 or

deg [A,M§] = deg A ME < t+m+d.

‘Thus‘ for any ac®' and the corresponding Be®d of degree << m as above,
in view of (4.13) we have (with N, referring to {4,£})

Om(t-+m+d) = ¢,
N(omy t+m--d, B, M) = Nm(qty a).
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Since 6,, = 6(M£) is w.u.d. (mod M),
(414)  limg~Nn(q', ) = B (O, t+m+d, B, M)[6(t+m+d) = ¢

Since (4.14) holds for every «e®’ and every integer m > 1, by
definition the sequence {A;£} is weakly uniformly distributed (mod 1)
in @',

It ig easy to show that all of Niven's comments ([5], § 3) concerning
the cardinality and other properties of the sets of uniformly distributed
and non-uniformly distributed sequences of positive integers, hold as
well for the sets of weakly uniformly distributed and weakly non-uni-
formly distributed sequences in @. These comments will not be repeated
here. (It may be noted, however, that in order to define the analogous
correspondence between sequences and the real numbers in the interval
0 < @ < 1 expressed in the binary system, it is necessary to first choose
any fixed well-ordering of @.)

5. An exponential property related to uniform distribution. In this
section assume that ¢ == p", that GF(¢) is defined by a zero § of an irre-
ducible polynomial of degree r in GF[p, ], and that small Greek letters
always denote elements of GF(g). For a<GF(q) so that ¢ = a, ' +...+a,
with a;eGF(p) all 1 <4 <, define #(a) = a,. Then for 4, MeP with
M monic of degree m, if

(5.1) A = g™ ...+ ap (mod M),
we define ([1], §2)
(5.2) e(4, M) = exp[2nit(a,)/p].

From these definitions it follows immediately that e(4, M) =1 if M|A
and that e(d, M) =e¢(A’, M) if 4 = A’ (mod M). Furthermore, Car-
litz ([1], Theorem 1) has proved that

¢ (i M|4),

(5.3) 2 a(AO,M)=|0 Gt M4

O(mod M)

where the summation is over a complete residue system modulo M in &.
If m =1, a complete residue system modulo M is isomorphic to GF(g)
itself and (5.3) reduces for 4 = aeGF(g) to

q (a = 0),

(5.4) D) exp(2rit(ay)p] = ( 0 (et 0)

where the summation is over all y<GF\(g).
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Making use of (5.2) we will say that a sequence 0 = {dg} of elements
of @ has zero ewponential density (mod M) if and only if

n
(5.5) tim [ 3 e(4x, M)]/n = 0.
Ny00 Iy X
By analogy with Niven’s proof ([5], §6) of the corresponding property
of sequences of integers we can prove
TEEOREM 5.1. If a sequence 0 = {4z} of elements of & 48 w.d. (mod M)
for amy mowic M, then 0 has zero emponential density (mod M).
Proof. Since § is u.d. (mod M), for any integer n = 1
n
(5.6) D, (A, M) =
k=1 B(mod M)
= > {ng"+o(B,m)}e(B, M),

‘B(mod M)

O(n, B, M)e(B, M)

where o(B, n) denotes a function of B and n of order o(n) in n. Hince
MA41, in view of (5.3), (5.6) simplifies to
n

De(dy, M) =

=1 B(mod M)

{o(B, n)}e(B, M) = o(n),

which implies the desired conclusion.
Concerning the converse of the preceding theorem we can easily
prove (compare with the regult in [B5], §6)

THEOREM 5.2, The fact that o sequence 0 = {4} of elements of

@ = GF[q, ] forq =17, P o prime, has zero exponential density (mod M), -

where M is monic of degree m, does not in general imply that 6 48 v.d. (mod M)
[nor even w.ad. (mod M)], except in the two special cases where r = 1,
m=1and p=2 or 3.

. Proof. Let M be any monic polynomial of degree m. First, for any
prime p consider the case r >1 and m >1 and lot f generate GI(g)
over GF (p) as indicated at the beginning of this section. Also let 0 = {Ax}

where for all & > 1, if & = sp-+j with j, ¢ integers such that 0 <j <p,

then 4, = (jf")a™ 4+ M* (with j here regarded as an elerment of GI'(p))
5o that e(dy, M) = exp[2nij/p]. It is clear that 0 as defined has zero
exponential density (mod M). However, 0 is not w.d. (mod M) [nor even
w.a.d. (mod M)] since it containg no elements congruent modulo M to
the nonzero constant polynomials.

Next, for any prime p, consider the cage r > 1 and m = 1. If 0 == {4z}
is defined as in the preceding case (with @° = 1) go that all the A, are
constant polynomials, then again 6 has zero exponential density (mod M).
But again 6 .is not u.d.(mod M) [not even w.u.d. (mod M)] since all
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of its elements lie in only p of the ¢ = p" > p different residue classes
modulo M in & (those p classes represented by j5 ' for 0 < j < p).

Finally, suppose that »=1, m =1 and that 6= {4;} is any se-
quence which has zero exponential density (mod M). Then for every
integer k¥ > 1, Ay = a; (mod M), where ax<GF(p), so that a may be
regarded as in integer (mod p). Since r = 1, t(a;) = @ so that e(4y, M)
= exp[2nia/p] and so in this case the question of uniform distributivity
reduces to the analogous question for uniform distribution (mod p) of
sequences of integers as considered by Niven. From Niven's results
([8], §6) we infer that in the polynomial case with m =1, r =1, the
fact that 6 has zero exponential density (mod M) implies that 6 is
u.d. (mod M) if and only if p =2 or 3.

Another result of the same sort as that given by Theorem 5.2 ig
contained in (see the analogous result in [5], § 6)

TEEOREM 5.3, The fact that a sequence 6 = {Ay} of elemenis of @
has zero exponential density (mod M) for all monic M in @ does not imply
that 6 is u.d.

Proof. Let a,, ay, ..., o, denote the elements of GF(g) arranged in
any fixed order with a; = 0 and a; = —1. Let I" = {B;} be the unique
rising sequence, with first term equal go a, = 0, formed by using all
the elements of @, where the elements of each degree are arranged accord-
ing to the ordering of the subscripts on their coefficients from left to
right, with all elements written in descending form. (For example, if
B = q;@"+ aua™ 4 ..y and € = ;@™ + o™ ... with ¢ < b, then B
precedes C in the sequence I') Now define § = {4}, where for each in-
teger % >1, if k =tg-+s with ¢,s integers such that 1<s<g,
then Ay = xBy+a,. We will prove that 6 has zero exponential
density (mod M) for all monic M, but that § is not w.d. since it is not
n.d. (mod z?). ~ o

Let M be an arbitrary monic polynomial of degree > 1. Since the
sequence I" = {B;} is clearly w.d.(mod M), by Theorem 5.1 it follows
that I' has zero exponential density (mod M). In view of the definition
of 6(4, M) given by (5.1) and (5.2), we see for all integers & > 1, since
oM has degree > 2, that

6(Ay, s M) = ¢(By, M).

Therefore
= n
”ﬁ_ﬁ[geuk, wM)]/n -——7]‘.—1*11!1’1o [,g"(B’“ M)]/n —0.

Thus we: see that 6 = {4} has zero exponential density (mod zM) for
all monic M of degree >> 1, that is for all monic M, = xM of degree > 2.
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Purthermore, since 4 = a, (mod @) with s defined above for all inbegers
%k >1, for any integer n = fg+j >1 With 0 <j <¢, in view of (5.4)
we have

n K

| Yot a)| = ]fe(Ak,wH- D oldy, 0)|
k=1

k=1 Kl L

g )
‘Z exp[2mit(ay)/p]+ Z exp [2m it (uy)/p) 1
Gl

8=l .

7
— ‘ 2 exp [27 it (as)/p]

8=

<j<q.

Therefore it follows from the definition (5.5) that ¢ also hag zero expo-
nential density (mod ).

Next, let M be any fixed monic polynomial of degree m =2 such

that (M, z) = 1. (This latter condition is not really necessary, but the
_case where #|M has already been taken care of.) Trivially, M+w. It
follows directly from (5.1) and (5.2) that for all integers & > 1

(8.7) e(Ag, M) = e(xBy+ a5, M) = e(xBy, M),

since m > 2. Now the terms of the sequence I" = {By} ocowr in certain
finite sets I; = I';(m) of ¢™ elements each, defined for all integers j > 1 by

(8.8) Iy = {By | (j—1)¢" < = < jg"}.

In particular, Iy consists of all the ¢™ terms of I' of degree < m and go
comprises a complete residue gystem modulo M in &. In fact, for all
j =1, Iy comprises a complete residue system modulo M. To see this,
first consider the case 1 < j < ¢. It follows from the definition of I' in
terms of the fixed ordering of GF(g) that for any such j

I‘j = a,m""-!—l‘l == {a,wm+Bk [ Bhsl’,}.

Since I', comprises a complete residue system (mod M), so does [ Secondly,
we can prove by induction on j > ¢ that if § satisfies

(69) l<d<j=af+b<g* (Q<b<, 1<a<(g~1),
then
(5.10) Iy = agia™t 4 1y,

Thus, again by use of induction, it follows that for all J > g, I}y comprises
# complete regidue system modulo M.
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Now for any integer n > 1, if n = fg"+ v with 0'<v < g" in view
of (B.3) and the property of the sets I proved above, since Mtz we
have

W ! n
(5.11) ’Ze(wb’k, m| = |2 D) e(@By, M)+| Y olaBy, )|
k=1 U=1 BpelYy, k=n—v+41 R
n

f

¢(¢By , M)I < g™
k=n—v41
Together (5.7) and (5.11) imply that 6 has zero exponential density
(mod M).

We must now prove that 6 has zero exponential density (mod M),
where M is any monie polynomial of degree 1 different from z. By ana-
logy with the sets Iy above, corresponding to the sequence I' = {By}
(but here using m = 1), define sets 0; for all integers j >1, each contain-
ing ¢ elements of § = {4;}. In particular, recalling the definition of I'
and 0 we see that

6 = {g,(@+1) |1 <u <g}.

Let M = »—a, be arbitrary but fixed with 1 <s < ¢, if any such s
exist. (When s = 1, M = z which has already been considered and when
s = ¢, M = -1 which requires special consideration.) Then the elements
of 6, satisfy

e (@+1) = ay(e+1)(mod M) (1 <u<g),

s0 that since (a,+1) % 0, 6, comprises a complete residue system modulo
M = z— 0,. (That is, 6, modulo #— g, is just GF(g).) Then by analogy
with the proof outlined above for the I';, modulo monic polynomials of
degree > 2, it follows that for all integers j > 1, 6; comprises a complete
residue system modulo M = x—aq, in @. Thus for any integer » > 1,
by using (5.4) we obtain as the analog of (5.11), the inequality

n
| ey, o—an)| < g,
K=l .

which implies that 6 has zero exponential density (mod »— a,). Finally,
congider the special monic linear polynomial M = z—a, = #-+1. We
gee that in this case the elements of 8, satisfy

o (w+1) =0(modo+1) (A <u< Q).

Furthermore, for a,hy 1 <8<q, 0 = o+ 0, 80 that the elements of
6, satisfy
@+ oy (2+1) = gy (mod z+41) @A <u< q)-
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Therefore, taken together the elements of 0y, ..., 0y which contain the
first ¢* elements of 6, comprise ¢ different complete residue systoms mo-
dulo M = g1, that is these first ¢> elerents comyprise the clements of
GF(g), each element oceurring g times. By analogy with the results above
for monic M of degree > 2 and for all ¥ = &—a, % #+1, we find that
each -successive set of ¢ elements of 0 hag the same property modulo
#-+1 ag the first set of ¢* elements. Therefore, for any integer n :>1,

\i’e(A,ﬂ, o4+1)| < ¢

k=1

which implies that 6 has zero exponential density (mod w--1).

We have now proved that the sequence 0 == {4;} as defined hag
zero exponential density (mod M) for alf monic M. However, 0 is not
w.d. (mod #?) and so not u.d. since for all integers & 21, if F = g+
with ¢, s integers such that 1 <s <g¢, then from the definition of
I'={B,} it follows that By = a, (mod®). Therefore, for all integers
k=1

Ay = 2B+ 0y = a0+ 0y 7%= @ (mod 2%).

‘We remark that thig proof of Theorem 5.3 is quite different from
Niven’s proof of the analogons theorem for sequences of integers, which
makes uge of the analog of Theorem 4.2 applied to sequences of integers
generated by certain related irrationals. The proof of Theorem 5.3 given
here for polynomials is not adaptable to the analogous theorem for in-
tegers.

By analogy with the way the definition of uniform distributivity
(mod M) was modified in § 1 to define for certain sequences the concept
of weak uniform distributivity (mod M), we can modify the definition
of' zero exponential density (mod M) to define for these same sequences
the concept of zero weak exponential demsity (mod M). Then the analogs
of all the theorems (and the proofs with only minor moditications) of
ghis ‘iection hold for weak uniform distributivity and weak exponential

ensity.
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