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The representation of numbers
by some quaternary quadratic forms

by

L. J. MorpELL (Cambridge)

Let
(1) f=Ff(x,y,2,w) = Az*+ By2+ Cy2+ Duw?,

where 4, B,(C, D are integers. The question of the representation of
integers m > 0 by such forms has received muech attention (1). When f
iy definite, results are given by the classical theory of quadratic forms.
When f is indefinite, Siegel (2) has shown that m is representable by f
if the congruence :

(2) f = m (mod p")

i solvable for all primes p and integers r > 1 with (z,y,2,w,p) =1.

Many special results are known when f is definite. Some of these
give the number of representations and are found in various ways, e.g.
by the classical theory, the application of elliptic and modular functions,
Liouville’s method, and some miscellaneous methods.

Other methods prove the existence of solutions for given m, and
then there is no loss of generality in supposing that m is now and here-
after square free. The classic instanee is when 4 =B=C=D=1, and the
proof is due to Lagrange. Other proofs of this case have been given by
using the geometry of numbers. There is really no need .to use this since
its only object is to find an estimate for the least number represented
by a quadratic form. An estimate, however, is given by arithmetic pro-
cesses much more elementary, but the bound may not be so small. One
can also use the precise estimate for the minimum but this requires more
technique.

(*) Bee Dickson, History of the Theory of Numbers, Vol. III, Chapter 11.

(%) Siegel, Indefinite quadratische Formen und Funktionen Theorie, I, Math.
Ann. 124 (1951), pp. 17-54. See also, G. L. Watson, Integral quadratic forms, 1960,
p. 81.
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Most of the special results for the existence of a representation of
all m by (1) consider only the case when 4 >0, B >0, C >0, D > 0 (%).
The method now presented gives results also when some of 4, B, ¢, D
are negative. Some such results are trivial.

Thus for

3)

22y — 22—t = m,

if m == 2 (mod 4), it suffices to take y = w = 0, and if m = 2 (mod 4),

it suffices to take y =1, w = 0.
For
22 y2— 22— 2wt = m,
we write

(4)

L2 Y2 (24 W) — (2— w)? = m.
It suffices to show that solutions of (3) exist in which 2 # w--1 (mod 2).
This cannot oceur if m = 2 (mod 4). If m # 2 (mod 4), we need only
take y = w and w =z (mod 2).
We congider from now on the gpecial forms given by

(8)

These forms admit a compésition procegs (). Thus if

f=Ff(2,9,2 w) = 2>+ boy®+ caz® 4 abw*.

fo =@y, 41, 21, w) = #}+ boyi+ abwi+ Ga'z‘f!
then

I = f (@, Yay 20y W),
where .

@y = @y — (beyy, + caze, + abww,),
Yo = Y&+ 110+ a(ew, —2,w),
2+ 2184 b (wy, —w,y),
W+ ;24 6 (Y2~ Y1 2).

£33

Wy =
This shows at once that if f represents m and m,, then f represents mm, .
We prove now the ,

Lmyma. There ewist integers (m,y, 2, w) # (0, 0,0, 0) such that

(6) fla,y,2,w) = Mm, |M| < V2]abe,

(ﬂ)v In particular, Bamunujan has shown by the theory of the definite ternary
quadratic form that this holds for only 55 sets of values for 4, B, 0, D; Oollected
works (1927), pp. 169-178,

() Bachmann, Die Avrithmetil der Quadratischen Formen, I (1898), p. 18.
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provided that the congruence

) ¢cA%+-bB%+a = 0 (mod m)
8 solvable.

It is well known that this is so if (m, abe) = 1, since m 5= 0 (mod 4).
Put

(8) =cAX+bBY-+mZ,

Then since from (6),
c2A2+ beB*+-ca = 0 (mod m),
b2B2+beA?+ab = 0 (mod m),

flz, 4,2, w) = Mm.

Yy=BX—-AY+mW, z2=X, w=7Y.

A crude estimate |M]| <4l/[abc| arises by applying Minkowski’s
theorem on linear forms to (8) (°) of determinant m?2 Thus integers
(X, Y,%Z, W)= (0,0,0,0) exist such that

Viabel || < Viabelm, Viabe] ly| < Viam,

Viabelle| < Vib[m,  Viabel wl <Vielm.

The estimate (6) follows from the known results of Korkine and
Zolotareff with a slight extension to indefinite forms, that if D is the
determinant of f(x, y, 2, w) = F(X, ¥,Z, W) expressed as a quadratic
form in X, Y,Z, W, then f(x,y,2,w) represents a number with mo-
dulus < ;7[4D1. In our case, D = m*a*b*c®

We commence with the case ¢ =1 and so

(9) f = a2+ by + az?+abw? = Mm, |M]| <V2|ab|,
and
(10) A4 0B+ a = 0 (mod m).

This is solvable if (m, ab) =1, also if b = 1 since m is square free.
The classical case is ¢ = b =1. Also M = 1.

If we had used the cruder estimate M < 4, then M =1, 2, 3.

But M =2 gives

22y 4224 w? = 2m.

Since either all #, ¥, 2, w are even or only two are even, say z, ¥,

R

2
(5 Bachmann, Die Arithmetik der quadratischen Formen, 1923, p. 268.
Acta Arithmetica XII. 1
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If M = 3, we may suppose # = 0 (mod 3), y =2 = w = 1 (mod 3).
Then

y+etw\ | (z+y—z)’ w+z”w)z_ (E’j“w‘”y.)z -
( 3 )+( 3 )+( 3 - 3 "

This could have been deduced by composition from
02412412412 = 3.

The next cases b = 1, a = -2 are easily reduced to the cases b = 1,
o= 41. B

The cases b =1, a = &3, |M| <V6=0,1,2. Clearly M =0 is
impossible.

Take ¢ =3. If M =2,

@2+ Y24 3 (22 w?) = 2m.
It © =y (mod 2), then 2 = w (mod2) and

a+y\* [o—y\? z+w\? (z-—w)” _
(5 (5 oo () o) =

ie. the case M =1.

If # = y+1 (mod 2), then z = w1 (mod 2), 80 13 =2 2m (mod 4),
ie. m = 0 (mod 2). Hence M =1 if m =1 (mod 2). If m = 0 (mod 2),
M =1 for m/2 and since 2 is representable, so is m.

Take next ¢ = —3. Since 1241%2—3-12 = —1, we need only examine
M =2 and so

x4 g2 — 322 — Bw? = 2m.

The argument above applies when o = y (mod 2), 2 = w (mod 2).

We need only consider z =1 (mod2), ¥ = 0 (mod 2), # =1 (mod 2),
w = 0 (mod 2).
Since 1*—3-1%2 = —2, we have
o+ 32\* z+2\*  [y+3w\® ywi?
(27 () + (5 J=o[5) = -

ie. the cage M = —1.

When m = 0 (mod 3), the result holds for & = --3, since we can
take 4 =y = 0 (mod 3).

The case b =1, a == 5 is of some interest. Here

Oy B3+ w’) = Mm, M=1,2,3, (m,B) =1,
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Clearly M 1 for all m since 3 cannot be represented. It can be shown
from the theory of the ternary quadratic that all integers >3 are rep-
resentable with M = 1. The present method shows that all integers >0
are representable with M = 2. Thus if M =1,

(@+ Y+ (8 —9)+ B (s +w)*+ B (2 —w)* = 2m.
If M = 3, compound with 1*45-1* = 6, then

o+ B2\? v—2\* [y+5w\ y—w\
(5 (57 + (57 (5] =2

gives an integral representation. For
o'y = &+ w* (mod 3),
and we can take z =y =1, 2 = w = 1 (mod 3), and
=0, y=1, 2z2=0, w=1(mod3).
If m = 0 (mod 5), say m = 5m,, then

o+ Y1+ w' = 2m,.
and )
(22, + 9, + (B, — 2012+ B (4 w') = 10m,.

Next b =1, a = —5 and so

2%+ y2—5 (224 w?) = m.

It is simpler here to proceed as follows suggested by Dr. Birch.
Since 22—5-12 = —1, multiplication gives

(20— b2)2— 5 (v — 22)*— Y%+ bw? = —m,
or
AB—5C0D = —m,
where

A =2—b+y, B=22—0b2—y, C=2—22+w, D=o—2—w.

For given 4, B, 0, D, we have integer values of ¢, 9, 2, wif A = B(mod 2),
C = D (mod 2). Hence if m = 1 (mod 2), it suffices to take ¢ =.D
= 0 (mod 2), and if m = 0 (mod 2), to take ¢ = D =1 (mod 2). When
m = 0 (mod 8) it suffices to take # = y = 0 (mod b).

Next b =1, a = —7. Clearly M s 0. Then |M|=1,2,3. Since
32422 7(12412) = —1, we need only take M = 2,3. First,

22yt — T (22 w?) = 2m.
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The result for @ =y (mod 2), # = w (mod 2) follows as for @ =3, and
so we need only consider the case when @ =1, y = 0, 2= 1, w0 all
to mod 2. Since 32—7-12 =2, we have

3w+ Tz\? 2+32\° 3y+7w)2_ (y—{w&}w)z:
() (5 + ) ) =

Take next
@2 —T (2 w?) = 3m.
Hence 22—7-1% = —3, and so
(20 T2)t— T (@ 22)2 -+ (24 -+ Tw)? — T (y + 2w)? == — 9.,
Now
w2+ y? = 224 w? (mod 3).
Hence, all to mod 3, either #2+y% =1, s24-w? =1, and we can take
p=1, y=0,2=1, w=0, or ?+y?=2,2%+w? =2, and we can
take =y =2 =w = 1.

In all cases 22+ Ty, @22, 2y-+ Tw, y-2w = ( (mod 3), and o we
have a representation with M = —1 and so M = 1. The result also holds
when m = 0 (mod 7).

Let us take b = 1, a = —11 for a final example of this type. Then

@y —11(t+w?) = Mm, |M|<V22 =2,3, 4

Since 32412—11-12 = —1, we need only take M = 2, 3, 4, since clearly
M #0. '

Suppose first that M = 2. Then z-+y-F2+w =0 (mod2). If
¢z =y, z=w(mod?2), we have

e+y\t  [z—y)\? g+w\e  [e—w\2

( 2 )+( 2 *11( 2 )F< 2 ))=m
We may suppose then that =1, y =0, z =1, w == 0 (mod 2). Since
32—-11-1% = —2, we have

© [ 83x+112)\? %+ 32\* 3y 11w \* -4 300\
2 5 o

that is, the case M = —1.

Suppose next that M = 4, and 80 @ = y =2 == w (mod 2). We need ,

only eonsider odd # and so by the above, we are reduced to the case of
M = —2, and then again to the case M = 1.

Suppose that next M = 3. Then we have to mod 3, either o y* = 1,
#+wd= —1 and it suffices to take (z,y,#,w) = (0,1, —1, ~1), or
#'+y* = —1, 2+ w? = 1 and it suffices to take (w, y, 2, w) = (1,1, 1, 0).
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Take (®y, Y1, 2y, w;) = (0,5,1,1), and then
3, = —by-+llz+1lw, y, =58x—1lz+11w,
2, = o+Bw—y, W,=ux-+y—D>be.

In all cases @, = ¥, = 2, = W, = 0 (mod 3), and we have again the case
M = 1. The result holds when m = 0 (mod 11).

We now consider the cases ¢ = 42, b = 43, ¢ = 1. It is well known
that the case @ = 2, b = 3 is the same as a = b = 1.

Consider the equations

(A) 22— 3y*— 22% 4 6w? = Mm,
(B) @%-4-3y?— 22— 6w? = Mm,
(©) 22— 3y 222 — Bw? = Mm.

Hence |M|=0,1,2,3. Since each of the forms in (A), (B), (C)
represents —1, we need only take M = 2,3. We show that the equa-
tions (A) and (B) each imply the other. Multiply (A) by 12—2-12 = —1.
Then

(x4 22)2—2 (54 2)*+ 3y?— 6w = —Mm.

Since x--2¢ = X, v+2 = Z gives a 1-1 correspondence between integer
sets ¢,z and X, Z we have (B) with M replaced by —M. Clearly M 0
in (A), a8 is obvious from z = 3X, z = 3Z.

Take (A) with M = 3 and so since z2—2¢* = 0 (mod 3), we have
x = 3X, # = 3Z, say, and then

3X2—y*— 622+ 2w* = m,

i.e. again (A) with M = —1.
Take next M = 2. Then # =y (mod 2). If # = 2X, y = 2%,

2X2—-6Y2—224 3w? = m.

This is (A) with M — —1. Suppose then @ =y =1 (mod 2). Apply
composition with 12—3-12—2-1246-12 = 2. Then
®y = 0+3y+2—6w, y,=y+o—2(z—w),
2 =2+0—3(w—y), w,=wt+st+y—=2.

Hence if w = z(mod 2), @, =¥y, = 2, = W, = 0 (nod 2), and we have
(A) with M =1.

.We may suppose now that w = 2+1, 2 =y = 1 (mod 2). Then (A)
gives

—2—2(w—1)24 6w? = 2m(mod 4),

and so m = 0 (mod 2).
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Hence (A) holds with M = 1 if m is odd. But if m ig even, (A) holds
for -m/2 with M = 1. Since (A) represents 2, (A) also represents m. If
m = 0 (mod 3), » = 3X, z = 3Z and we have again (A).

Take finally (C) and multiply by 12—3-1% = — 2. Then

(@—3y)*— 3 (x—y)2— 42* 4120 = —2m.

Write this as ,

(1) AB—30D = —2m,

where

A=2-3y+2%, B=w-3y—20, C=c—y-+2w, D=o—y~2.

We require the condition that @,y,2,w be integers for given
integers 4, B, 0, D. Thege are obviously,

A = B (mod4), C =D (mod4);

and
A+B—C—D =0(mod 4), ie, A= 0(mod?2),
since
2—3y = A+B , @—y = Q;I;ZJ_
2 : 2
Hence

A?—30% = —2m (mod 4).

If m =1 (mod 2), we take A = 0 =1 (mod 2). Then we can satisty
formula (11) by taking 4 = B = ( = D =1 (mod 4).

If m = 0 (mod 2), (C) holds for m[2 and also for 2 with M =1,
and so also for m.

A gimilar argument holds when m = 0 (mod 3).

There is no need to give further instances of the method.

ST. JOHNS COLLEGE,
CAMBRIDGE, ENGLAND

Regu par la Rédaction le 17. 1. 1966
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Uniform distribution of sequences in GF[g, #]*
by

Jorx H. Hopees (Boulder, Colorado)

1. Introduction and preliminaries. Let & = GF[g, #], denote the
ring of polynomials in an indeterminate z over an arbitrary finite field
GF(q) of g elements. Throughout this paper italic capitals 4,B, M, H, ...
will denote elements of @, except as indicated.

TLet M be any element of & of degree m > 0. Then a complete residue
system modulo M (in @) contains ¢™ elements. One such complete residue
gystem consists of all elements of @ of degree << m. (For this purpose,
the zero polynomial may be regarded as having degree < m for all m > 0.)
Tet 6 = {4} be an infinite sequence of elements of &. For any Bed
and any integer » > 1, define 6(n, B, M) as the number of terms among
4,,..., 4, such that 4; = B(mod M). Then following Niven ([5], §1)
we say that the sequence 0 is uniformly distributed modulo M, abbreviated
ag u.d. (mod M), if and only if

1.1) lim6(n, B, M)n = ¢~™ (all Bed).

Furthermore, we say that the sequence 6 it wniformly distributed,
abbreviated as w.d., if and only if it is u.d. (mod M) for every M of degree
>0 in @.

For certain questions of interest concerning sequences in @,
a somewhat weaker condition than (1.1) must be used. Let 6 = {4}
be any infinite sequence of elements of @ in which no element of @ appears
infinitely many times. For any Be®, any integer n > 1 and any Me®
of degree m > 0, let

6(n) = number of terms of § such that degd; < n,
(1.2) N(6,n, B, M) = number of terms of 6 such that degd; <n
and 4; = B (mod M).

* Qupported by NSF Research Grant GP 2542 and NSF Science Faculty
Fellowship 64203.
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