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Tet A be the seb of all numbers « > 1 for which none of the powers
a, a2, ob, ... i8 an integer. For every positive integer n there exists at
least one integer g, which is closest to " and thus gatisties the inequality

Jo™ ] < 1/2.
We are here concerned with the lower limit
P(a) = limint |a"—g,| "
Tieroo
which trivially has the property
0 <Pla) <1 for all aed.
A few years ago, ono of us (Mahler, 1957) proved. that
Pla) ==1 if o is any rational number in 4.
One can further show that there are irrational &lgebfaie numbers

wed for which P(a) =1; eg. tho number }(24V3+V3+4/3) is of
this kind. T6 is also well known that there exist algebraic numbers a in 4
for which

0 < P(u) <1

e.g. the number §(1 —M/g) hag this property.

Tn the present note, the following three results will be proved.

(a) If P(a) =0, then a s lranscendenial.

(b) In every neighbowurhood of .cvery number x> 1 there ewist non-
countably many aed for which P(a) == 0.

() For almost all a in A, P(a)=1; thus there are tramscendental
numbers with this property.
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Proof of (a). Let « be an algebraic number of degree m, and lot

M1
f(m) = “0507)1'{‘“1'7/'7”*1““- oty = “0” (m_a(ﬂ))
H=0
be a primitive irreducible polynomial with integral coefficients of which
a = @ is a zero. For each n the product :

m-1
ag” (a(/l)n_‘(fn) = DPn
#=0

say, is an integer. This integer is distinet from zero because «™ =4 ¢, and
henece also
Mg, £0 (u=0,1,...,m—1).
Therefore
[Pa] = 1.

Next @ >1, hence g, > 1, and therefore

[ — gl < g (e 4-1)",
go that

m—1

jad [ 16 —ga) < g {jal [T (%) + )"
n=1 He=1

On < an‘I‘% < (2a)n

Here

and so finally

M—1

1< [pal < Ja"—gal {20 o] [T (0% +1)}"
=1

There exists then a constant ¢ >1 depending only on « such that
la"—gal = ¢™  for all n,

proving that P(a) > 0. Conversely, if P(a) =0, then a necesgarily is
transcendental.

Proof of (b). Let #>1, 0 <& < }(z—1). We show that there iy
a sequence of positive integers

I=n <ty <M< ... <y < o0

depending on », but not on &, with the following property:

Given any sequence {7} with 7;, equal to either 0 or 1 (briefly, an
7-sequence), there is a real number o, where

® - 0<s—a<s,

such that

) lim (|4 g, ) = 0.
ko0 &

i:m@
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Clearly if #; = 0 for infinitely many values of &, then P(a) = 0;
and it {7}, {ni} are two ossontially different s-sequences, i.e. such that
e F 17}. for infinitely many %, then the corresponding real numbers a
and o ave distines. Sinee there are non-countably many essentially different
y-sequences, we obtain non-countably many o with P(a) =0 in the
(left) e-neighbourhood of @, hence also non-countably many wed with
this property. N N

Tor the proof take any increasing sequence iy which satisfies the
condition.

; T-pa\ ™\ w1 i
3y - -‘-lwvlog‘ 1-21 el Ly B ey gy L for k> 0.
' m 9 w1
The condition is clearly satisfied if oy, increases sufficiently rapidly.

Tebt {n} be an arbitrary s-sequence and &>>0; we may assume
e < §. Determine JC > 1 so that

o0
T -k £
(4) [Ja—2%>1——.
=K @
Wo define now @ == @ = 4, 2= @y 32 ... a8 follows: For 0 <k < K
we seb @y, == @. Suppose that for some k > K, @, has already been deter-
mined so that

(5) AEROR RIS DE N
Set
(6) Al = apl-Ayy 0y integer, 1 <A, < 2.

We then define
(7 ay = (- np+27 ey,

(flearly »%n,ﬂmw*’”"‘k 1 € Ay, @ @y, and so the gecond half
of inequality (5) is satistied. We now show that also

= A (L) b2 T ).
Sets
1 5&' )
(3) Ly == Py ’ e N

By (6) and (7) we have for k> K

tSk

&
Wb 2 = (g A) (1 - “W“I") )
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or setting
b= he—dm—27"%,  0<0<2,

O e
1L ap® o= (1—— —-“) < g%,
Ny

By (5) therefore

(9) 0< ;< —log (1“£k (\1;-:19‘\)'%) —log (1 2 (1-1— )-—-WE)J

hence by (5) and (8),

oo )

= Ho+1)+27% (o 1),

since

—— g M1y

1 1o\ o—1
(10) n—klog(l—z( , ) )>-

-1
> — L pett > — (2 ot 0’“)
m+l z—1

by (3). Thus (5) is proved for ay.

From (5) and the monotonity of x, it follows that o = lim
ko0

exists and }(1+2) <a <. From (8) and (9) we find, since &; = 0 for

1<k <K, that
( Zk)> ]j]( R log(l 2(1:00)-%))

JOe T

i~
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=
1
s
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8

b
i
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v
8
e

(1—27% > m(l_i-) — s

=
1]
|

by (10) and (4). Hence (1) is proved.
It only remains to verify (2). We shall firgt prove that

(11) Tak = ;327 for  m> k> 0.

bm@
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Equality obviously holds for m = k, by (7); suppose therefore that
the inequality is true for m —1. We then have for m > &

57IL ﬂ‘k
ak = ayh 1(1"~ " ) (by (8))
“mn
—’n"L 71/7
R ) (1 + _.100( (14 ar') ))
g, 2
(by (9) and (11))
S (g bt 00 (1 2= ) (by (3)
> (b2 I (1 -3 by ()
T R AL (by (6)

>

= apt+dp+27",
and (11) is proved. But (11) implies
a = %,im ank = ap+a.
On. the othef hand -

o L agh = aln""‘%’]k‘}‘zglmk
by (7), therefore

|a™— ™ < 278 i gy =0,
2—1/1115 < lank——a:hlllnl" < (%_!_2“7"'7%)1/"% if M = .1,

and (2) holds with g, = a.
Proof of (¢). Let & o and b be real numbers satisfying

0<egl<<axh,

and denote by A(e) the set of all aed satisfying P(a) <1—e and
by Al(e, a, b) the subset of those aed(e) for which

aZa<h.

The upper bound for P{a) means that there exists to « an infinite
get N of positive integers n mtisfying

(12) I —gul < (1—%e)",  gu 2.
Therefore, if aed (e a,b), then for each such =,

%a'n < %an L < 20" ‘)bn’
because
(13" <1 < $9a-
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This farther implies that, if neN is given, the integer g, has not more

than 20" possibilities. Next, if both ne N and ¢, are given, then « i by (12)

vestricted to the interval
I,(ga): {Jn ‘18)11}1101 <a< {gn‘}‘(l"f}i*?)n}lm

of length

2(L—%e&)"

1 £ nyl/n ~
-2 ) } ,“‘(/5:1‘ -1)m

{gn 'l_ 7” e {J -

Tor large n this is less than (1—}e)"/a""" because

ggl—l)/n > 2—(7z~l)/1ba’71‘--1 > _:_ a’nm ].
Therefore, for each sufficiently large element n of N, the total length
of all the intervals I,(g,) corresponding to possible values of ¢, iy lesy

than
1, —1e)D\"
bn( a :iL =2a(,g__[i_‘?l_) .

This again implies that every point a of A(e, a, b) lies in the anion of
a countable set of intervals of total length not exceeding

0 1 n
Sm — Z 2a (,(}_._Ei&) y

a
=1

where m can be chosen ag large as we please.
If now

a
b
<153

then §; converges, and hence A (e, a, b) has the Lebesgue measure zero.
Since the set A (e) can be written ag

A(e) = (j 4 (37 (1_?53)4““])7 (1"%8)4%):

n=1

it evidently is a union of counmbly many sets all of meagure zero. There-

fore 4.(¢) and hence also U A(1/n) have the measure zero, which proves

N=1

the agsertion.
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