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Tt remains only to prove that each of the numbers 6,4 given by
Temmsa 1 is either a T-number or an S-number of type exceeding . From
Lemma 3 we obtain

max (6 —6, |p — @) < 67D IO,

and it follows that 8, ¢ cannot be S-numbers of type < ©(¢). Finally we
appeal to Theorem 1 of [1]. From Lemma 4 and the inequality

Hypy < HT (667)7
+

it follows that all the hypotheses of Theorem 1 are satistied with ¢ = O,
or o = @), provided j is sufficiently large (and similarly with the
superseript 2j4-1 in place of 2j), and hence 6, ¢ are neither algebraic nor
U-numbers. This completes the proof of the theorem.

(6) See Schueider [9], Satz 22, p. 82. Again we are assuming §, sufficiently
small so that HY*> 6"+ if n is sufficiently large.
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On a conjecture of Davenport and Lewis
concerning exceptional polynomials*®

by
O. R. MacCrusr (Ann Arbor, Mich.)

1. Exceptional polynomials over arbitrary fields. Let I be an ar-
bitrary field. A polynomial f(x) in K [2] is said to be ewceptional over K
it the polynomial @(z,y)= (f(m)—f(g/))/(m'—y) has no absolutely irre-
ducible factors in K[, y1.

Tn the investigation into the average error term of the number of
golutions of congruence relations, Davenport and Lewis [1] were led to
propose the following conjecture:

Tae DAVENPORT-LEWIS CONJECTURE. For f(z) in Z[2] and for all
large primes p, if f(x) s exceptional over Z,, then the map

f: Z,— 1%,
is one-to-one and onto.

The object of this note is to show that the Davenport-Lewis Con-
jecture is indeed correct. In fact,

TaeoREM 1. Let K be an arbitrary field and let f(x) be a polynomial
in the ring K [2] of degree n. Suppose charK =0 or n < char K. If f(x)
is exceptional over K, then f(z) is a one-to-one ‘map of K into K.

The proof of Theorem 1 will follow some necessary observations
concerning the splitting fields of polynomials in two variables and
gome remarks on pure equations.

Tor the remainder of this note let K be an arbitrary field and let
A be the algebraic closure of K.

DeFINITION 1. If (s, y) in K[, y] is of the form

a(@, y) = adﬁn+P1(1/)mﬂ”1"}'- o Puly)
where each P;(y) is in X [y] and where 4 i8 a non-zero element of K, then
a(z, y) is said to be reguler in x. If, in addition, o =1, then a(z, y) i8
said to be monic in w.

* Research was sponsored by the National Science Foundation. Ann Axbor,
Michigan, T. 8. A.
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DEFINITION 2. Suppose a(w,y) in K[z, y] is regular in . If ¥ig Assume that £ # Zx(p). Then some Bi(, ), say for ¢ =1, must
a finite normal extension of K such that a(z, y) factors into a product factor further in Zx(B) [z, y]; otherwise 2 would be a splitting field for
of absolutely irreducible factors in X' [, ], then X' is said to be a splitting B(x,y) over K which contradicts the minimality of Zz(f). Let
field for a(wz,y) over K. &,
Remark. Clearly every regular polynomial has at least one splitting Br(@, y) = (@ ¥).. . Puslity §)
field over K.

where each. (@, y) is irreducible in Zx (f)[#, y] and monic in .
Then, by assumption, s > 1. Let p = char X and let ¢ be the ex-
ponent of the purely inseparable extension Xx(f)/Q. Then each poly-

All splitting fields over K are to be thought of as subfields of 4,
With this in mind we have the following:

Lmnwes, A Suppose a(m, y) in K[z, y] i regular in o. Then the intor- nomial fy; (%, y)”e has coefficients in £. But we have
section of all splitting fields for a(=, y) over K is a splitting field for a(x, y) ! . ) )
ovor 6 donoted by Zifa) | Ba(a, 9 = Bua(w, 90 .- By )"

Prootf. Choose a in K such that aa(w, y) is monic in . Let Therefore, because of the mnique factorization property of the rings

Q[z,y] and Zg(B)[», y], the Buls, y) coincide; i.e.,
Bul@, y) = Pule, ¥)".

aa(z, y) = (@, ¥)...00(®, y)

where each o;(2, y) is irveducible in A [z, y] and monic in ». Let g (a)

= K(cy,..., ) where ¢j,...,c; are the coefficients of the terms of Since every automorphism of Q over K may be extended in one and
@ (@ Y)y ...y a(®, y). Then since isomorphisms of Xx(a) over K map only one way to an automorphism of Zx(B) over K, we see that 131).0
factors of a(w,y) onto factors of a(z,y), we see that Zg(a) is normal - (absolutely) irreducible factors of f(z,y) in Zx(B)[a, y] that are monic
over K. Therefore Xx(a) is a splitting field for a(w, y) over K. in*w are conjugate. To be explicit, let o; be an automorphism of Z’K(f)
Let X be a splitting field for a(z, y) over K. Then since irreducible over K that sends f,(a,y) into fi(«,y). Then set fu(2,9) = fu (@, y)
factors of a(z, y) in [z, y] are absolutely irreducible and may be chosen Then the factorization of f(x,y) proceeds in the steps:
monic in z, we see that these factors must coincide with the factors
@y (#Y)y -y &(®,y) in Az, y]. Therefore I contains the coefficients (over K) Bl )
01y ..., ¢ and hence contains Zx (). This proves Lemma A. (over Q) By, ¥). .. Br(@, 9)
Lenwa B. Let B(x, y) be drreducible in the ving K[x, y] and monic (over Zx(B)) Bun(@, 9)°. .. B (e, )
in 2. Then the irreducible factors of B(w,y) in Zx(B)[®, y] thet are monic
in © are conjugate over K. That is, if B,(x,y) and Py{z,y) are irreducible This proves Lemma B.
in Zg(B)[z, y], monic in x, and divide (z, y), then there is an automorphism Remark. The proof of Lemma B shows in particular that if T (B)
of 2x(B) fiwing K that maps py(w,y) onto By(w, y). contains elements inseparable over K, then B(z,y) necessarily has re-
Proof. Let 2 be the elements of L (f) that are separable over K. peated factors.
Then  is normal over K. Let Tt is possible to locate the minimal splitting field for a large class
of polynomials regular in 2 by the following Lemma:
Blzyy) = Bylw, 4) ... Br(m, y) ‘ LuwMa C. Let a(@, y) in K[o,y] be reqular in o and let F(w,y) be
where each (2, ¥) is monic i : 1 s the homogeneous term of a(m,y) of largest homogencous degree. ?’htm for
i@ Y omic in ¢ and frreducible in Q[x, y]. Let & be the each element a of K such that F(z, a) has no double roots, Lx(a) is a sub-

galois group of Q over K. Then & permutes the factors Bi(®, ¥) among
themselves. But the product of the factors in an orbit of @ is & polynomial
with coefficients in K that divides B(@, y). Therefore since B(z, ) is irre-
ducible in K[z, y], there can be only one orbit. This would complete

the proof if Zg(B) were a separable extension of K, since in that case,
2 = Zg(f).

field of the splitting field of the polynomial g(w) = F(w, a) over K.

Proof. Let a be an element of K such that F(w, ) has no double
roots. Let  be the splitting field of the polynomial g(») = F(x, a) over
K. Choose ¢ in K such that ca(w, y) is monic in 2. Let

ca(@, ) = o (@, y)... 0w, Y)
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where each o;(,y) is irreducible in 2[#, y] and monic in #. Let A be
the smallest normal extension of @ that contains Zx(a). Hence A ig
a splitting field for a(x, y) over 2 since A contains a splitting field for
a(z, y). Therefore A is a splitting field for each factor «;(z,y) over ©
Thus either each o;(x,y) is absolutely irreducible in which cage Q
containg Xx(a) and the Lemma holds, or some «;(x,y), say for { =1
factors further in Afw, y]. '
Let

ay (% Y) = 011(2, ). c1s(@, )

where each ay(x, y) is irreducible in A[#, ¥] and monic in x. We now
show that the assumption s > 1 leads to a contradiction.

) Note that since A contains X;(¢,) and since a, (2, ¥) is monic in #
it follows that each ay;(z,y) is a polynomial of Zj,(a,)[x, y]. Therefore’
by Lemma B, each ay(#,y) can be carried onto each ay;(z, ¥) by some
a.utomf)rphism of X, (ay) over 2, which may be extended to an auto-
morphism of 4 over Q. Arrange each of the polynomials a, (w, ¥), a5, (2, y)
a15(®, ¥), -+ are(w, ¥) into a sum of homogeneous terms and le’t ;(m, ,l?/),
Q4 (z, y)., Qo2 9), ..., Qs(2, y) be the terms of largest homogeneous deéfisé
respectively. Then because the ay(z, y) are conjugate over 2, it follows
that the Q;(z, y) are conjugate over L. Moreover, 7

8

Payy) = [[ Qo v).

=1
Hence

P(z,a) = [ [Qu(a, a).

fut Pz, y) divides. F(z,y) and thus P(w, a) divides F(«, a). However
he Q; (m,' a) are conjugate over Q and are at the same time in Q2] since
. Q:(z, a) is the produet of factors of the form z—f where 6 is a root of
igl)c: 11:2(90, o)z)h= 0. This is of course an absurdity since F(z, a) and
#, a) has no double roots. Th = = i

promes the Lo erefore s =1 and A = Q. This

Remark. Under the conditions of Lemma C, we see that if F(x, a)

has no double i i
pasn roots for some a in K, then g (a) is a separable extension

Remark. Lemma O seems to i
: explain why a regular polynomial
chosen at random is usually absolutely irreducible. For ingtance, over

the field @ of rational i
e fox?m lonal numbers, let a(z, y) in Q [, y] be regular in « and

a(®, y) = F (, y)-+(lower degree terms)

On a conjecture of D t and Lewis 293

is

where F(x,y) is homogeneous and has no repeated factors. Choose & in.
K such that F (s, @) has no repeated roots. Let @ be the splitting field
of the polynomial g(w) = F(x, a) over Q. Then Lemma C gives us that
Zx(a) is a subfield of 0. On the other hand, by the Hilbert Trreducibility
Theorem, for a set of integers ¢ of density 1, a(w, y)—c i irreducible
over £ and hence absolutely irreducible. That is to say, for almost every
rational perturbation of the constant term of a(x, ), the resulting poly-
pomial will be absolutely irreducible.

DerINTTION 3. If f(2) in K [o] is of the form f(@) = 2" —a, then f(x)
is said to be a pure polynomial.

Lemma D. Let p be a prime natural number and let o be an element
of K. Then the pure polynomial a°—a is either irreducible over K or has
a linear factor in K[o].

Proof. See [2], page 171.

LmvyMa B. Let m be an odd natural nwmber such that char KYm, and
lét o be an element of K. Then the pure polynomial ™ —a is either frreducible
over K or has a pure factor o —b in K[x] where d\m and & < m.

Proof (). We proceed by induction on m. The conclusion holds
for m = prime by Lemma D. Asgume that the Lemma holds for
all allowable degrees less than m where m is an odd natural number
such that charK{m. Assume that 2™ —a factors in K[«]. Hence every
root of o™ —a = 0 has degree less than m over K. Let p be a prime divisor
of m and put &k =m/[p. If 2 —a reduces in K[x], then by induction,
#"—a has a factor in K[»] of the required form. Therefore assume that
##—a is irreducible over K.

TLet # be a root of z°—a = 0. Consider the polynomial #*—p. By
Lemma D, either o”—§ is irreducible over K(B) or has a linear factor
in K (8)[«]. The first case cannot occur for if 4” —f were irreducible over
K (B) and if a were a root, then a would be a root of #™—a = 0 of degree
m over K, thus contradicting the reducibility of #™—a in K [#]. Therefore
#"—f = 0 has a root « in K (). Hence of = §.

Let N(y) denote the norm of an eclement y in K(p) over K. Then

N() = (—1)f(—a) = N(d") = N(a)l =@

since m is odd. Therefore a is a pth power in K and o ™ —a hag the factor
#*—N(a) in K[#]. This completes the proof of Lemma E.

Remark. The assumption that m be odd in Lemma T is necessary
as can be seen by the example in Z,[#] of

ot —2 = (2 +-o—1)(2*—o—1).

(%) The author wishes to thank H. B. Mann for his suggestions concerning the
proofs of this and the following Lemma,
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Loyma F. Suppose that the pure polynomial o"—a is irreducible in
E[2] and that char Ktn. Let o be a root of a"—a = 0. If K contains no
n-th roots of unity other than 1, then there are no proper extensions Q normal
over K such that

K c 2 c K(qa).

Proof. Suppose contrary to what is to be proved that Q2 is a proper
normal extension of K that is contained in X (a). We may assume that
2 is a maximal such extension of K. Let d = (K (a): &), i.e., the degree
of K (a) over Q. Then d|n. Let the conjugates of ¢ over 2 be a = ay, ..., a4.
Let f = a; ... az. Then B is an element of 2 and is of the form g = o%¢
where { is an nth root of unity. Note that { = § /ad is in K (e) and there-
fore is in 2 since 2({) is a normal extension of K contained in K (a) while
© is & maximal such extension. Therefore y = f/¢ = o is in Q.

Note that 4™ —a is irreducible over K for any divisor m of n and in
particular for m = n/d. But #™—a = 0 has y as a root and hence Q
= K(p) since m = (K(y):E)=(Q:K). Since 2 is normal over K, it must
contain the conjugates of y and hence contains a primitive mth root
of unity. Let p be the smallest prime divisor of m. Let & be a primitive
pth root of unity. Then & is an element of £ since pth roots of unity are
mth roots of unity. But then (K(&):K)|p—1 and (K(&):K)|m. Since
p was chosen as the smallest prime divisor of m, these divisor relations
are contradictory unless (K (é’):K) = 1. Hence K contains an nth root
of unity other than 1, contrary to our assumptions. This proves Lemma F.

LeMuA G. Suppose that char Ktm, that a is an element of K, and that
K contains no m-th roots of unity other than 1. Then there is a root a of

- &™—a = 0 such that for each root of unity ¢ in the algebraic closure A of K,

() ~nE({) =K.

Proof. Note that because charKtm and since K contains no nth
roots of unity other than 1, we may conclude that m is odd.

; Let d be the minimum divisor of m such that 4™ —a has a pure factor
# —b in K[x]. Then by Lemma B, 2%—b is irreducible in I [z) Let a
be a root of a®—b = 0. Clearly K containg no dth roots of unity other
than 1 since dth roots are mth roots of unity. It follows by Lemma F
that no subfield of K () is normal over K except K itgelf. Liet ¢ be a root

of unity in 4. Then K({) is a normal separable abelian extengion of K.
Therefore the field

R =K(a) K )
is normal over K since it is a subfield of an abelian extension. Therefore
2 =K and the Lemma is proven,

bﬂ‘l@
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that there is a root « of
k. Actually we may concludg : oot
n RimOaZuch that K () meets every abelian extension ogly at K itself.
‘ _?V; now direct our attention to polynomials exceptional over K.
Lemma H. Suppose f(x) 18 exceptional over K and yet f(a) = f(b)
for some @ # D in K. Then f'(a) = f(b)=0. o
proof. Let D(w, y):(f(m)—f(y))/(w——y). Then ®(a,b) = 0. Bu
&z, y) is within 2 constant of K the product of polynomials monic
in x’ a{mrl irreducible in K[z, y], each of which 118 th[e prot.luct (t);il etvslr]c;iflz
j jalg in X (P)[®, y]. Therefore since poin
more conjugate polynomials in Zx (@)l Therefoto Smce B ot the
ordinates drawn from I, it is at least a do ble 1“ 1 :
E:?x,rlx)z)elg?wc?/) — 0. Therefore (a, b) is at least a double point of the curve
)

Pla,y) = f(@)—fly) = 0 and so

OF(@0) o = aF (a, b)

= —f(b) = 0.
0w oy f

TmymMA I. Suppose f(w) in K[@] is of the form
flw) = @ 8 e A0

where © > 1 and char KA. If f(x) is ewceptional over K, then K containg
no -th roots of wnity other than 1.
Proof. Suppose that f(z) is exceptional over K. Let

(@, 1) = & Du(5, Y). D2, ¥)

where each ®;(x,y) is irreducible in K[a, y] and monie in 2. Arrm;]g;e
each @;(x,y) into a sum of homogeneous terms and let P;(z, y) be the
term of least homogencous degree in @;(xz, ). Then

4, B, (2, 9) = o | [ Pal: 9)

1
where

By(@, y) = (@ —y") [(l0—y) = ﬂ (@—Ly).
el

Suppbse ¢ is a 7th root of unity in K other than 1.. Then #—{y i8 & f&ct%r
of B,(, y) and hence divides some P; (2, y), say for = 1. But by Lerama ] ;
®,(x,y) is the product of % conjugate 11‘red1'1011_01e pol_ynomla.
Doy (2, )y v eey Pul®, y) in Zg(P)[w, y] that are moni¢ in . Slgee f(®)
is exceptional over K, % > 1. Arrange each ®y;(#, y) into a sum of homo-
geneous terms and let Q;(z,y) denote the term of least homogeneous
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degree in @;(z, y). Then
2

Py, y) = [ [z, v).

t=1

Moreover, since the &y;(x,y) are conjugate over K, so are the Qi (, y).
On the other hand, #—(y divides P;(z, y) and hence divides some @, (a, Y);
therefore #—{y divides each Q;(, y) since ¢ is in K. This is an absurdity
since B, (z, y) and hence Py(z, y) has no repeated factors when charK+r.
This proves the Lemma.

Remark. Suppose (char K, 2n) = 1. If f(x) is exceptional over K of
degree n, then n is odd. For if we apply the methods of the above proof
to the homogeneous terms of largest degree, we see that K cannot contain
nth roots of unity other than 1. Hence # must be odd.

Lemma J. Suppose that f(x) in K[z] is ewceptional over K and ss of
degree m where char K4n. Let { be a primitive n-th root of unity over K.
Suppose that Q is a finite extension of K such that

QA~AK(Q) =K.

Then f(x) is exceptional over Q.

Proof. Let &z, y) = (f(x)—F(y)) /(z—y). If f(x) is no longer excep-
tional over Q, then ®(w, y) has an absolutely irreducible factor D, (z,y)
in Q[w, y] that we may assume is monic in #. Hence @, (%, y) must coin-
cide with an irreducible factor of &(z,y) in Zg(D) [z, y] that is monic
in . But by Lemma C, % (®) is a subfield of K (¢) since the homogeneous
term of @(z,y) of largest degree is, within a constant of K, B,(zv)
= (2"—y™)/(x—y). Hence the coefficients of D, (w,y) are elements of
E({). On the other hand, @ ~ K () = K which implies that &,(=,y)
is in K[a,y], contradieting exceptionality. This proves the Lemma.

We are now finally in a position to prove Theorem 1:

Proof of Theorem 1. Suppose f(=) in K[2] is exceptional over K
of degree n where charK = 0 or u < charK. Let 4 De the algebraic
closure of K. Then by Zorn’s Lemma there is a maximal subfield Q of A
such that f(z) is exceptional over Q. It f(z) is & one-to-one map of 2 into
2, t'ih.en f(=) is a fortiori univalent on K. Therefore for our purposes, it is
sufficient to assume that K = 2, ie., that f(z) is exceptional over K
but not exeeptional over any finite extengion of K.

Suppose that f(z) is not univalent on K. Then fla) = f(b) for some
& #bin K. We may assume that a =0, b=1, and f(0) =f(1) =0
since f(z) is simultaneous]

> y exceptional and/or univalent with the poly-
nomial af (fr+y)+6 when aff #0,
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Let r
f(@) = Oa" . 0

and )
Flo1) = bpa .. b’

we may assume that by = 1.

Then by Lemma I, 7 > 1
we see that charK{rs. Then
roots of unity other than 1. .'Le
Then by Lemma G, there is
that

and ¢ > 1. Since char Il = 0 or # < char K,
by Lemma I, K contains no r.th nor 8_‘511
t ¢ be a primitive nth root of unity over K.
a root « of the equation 2 —a, = 0 such

-

K(a) ~ K(g) = K.

Hence by Lemma J, f(x) is exceptional over I (a). Thereffore K((.;) =.K
Dby the maximality assumption on K. Hence a i8 already in K. Likewise

: . " »_ g =0
there is a root § of the equation #*—a = 0 in K. Therefore @™ —a,

h root B in K.
* ;et ®(z,y) = (fl@) —f()/(@—y)- Then

F@)—fly'+1) = (@ =y ~1) 2@ ¢ + 1)
Therefore equating the homogeneous terms of least degree, we have
a2 —y"” = —P(@,Y)

where P(z,y) is the homogeneous term of & (2, y"+1) of least degree.
Hence
W =1 = —P(x/f,1).

Let Q(z) = —P(w/p, 1). Note that 1 is a gimple root of. Q.(m) 541‘11((;‘0
char K4rs. On the other hand, ®(x, y) is within & cqnst@nt of {{ t‘he prod-
uct of irreducible factors @y(®,y), ..., Pu(®,y) i I{f [w, y] that M?}
monic in ». Because f(x) is exceptional, each P;(x, ) is .the pro@ucﬁ 0
two or more conjugate factors in Zx(®P)[, ¥]. '.l?her('sfore. in turn, P(w, ¥)
is within a constant of X the product of polynomials in K[, y:], ea(fh
of which is the product of two or more conjugater po],ynomlajlf;. 11;
Zg(®)[z,y]. Therefore Q(v) is within a constant of I} the. proiduc,t,lo.
polynomials in K([«], each of which is the product' of co.n]ugmje p()t V1
nomials in Sg(®)[2]. Therefore every root of Q(x) in K i a mpe@ [
root. This contradicts the above conclusion that 1 is a gimple root of
@ (x). This proves Theorem 1.
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Remark. Theorem 1 together with what was shown by Davenport
and Lewis in [1] shows that for f(z) in Z[»] and for all large primes, f(x)
is exceptional modulo p if and only if f(x) permutes the residue classes
modulo p, i.e., the exceptional polynomials coincide with the one-to-one
polynomials.

2. Exceptional polynomials over finite fields. The fivst proof thag
was obtained for the Davenport-Lewis Conjecture applied to finite fieldg
and is interesting enough to be presented here in outline:

Let K De the finite field of characteristic » and order p% Tet I" be
the complete valuation field of all formal power series in the transcen-
dental % with coefficients drawn from XK. If f(#) is exceptional over K,
then f(x) is exceptional over I'. For any polynomial f(x) in K [], if
f(a) = f(b) for some a + b in K, and if a has order  as a root of f(z)—f(a)
where (r, p(p?—1)) = 1, then by a form of Hensel's Lemma it follows
that the set

B ={zin I'; f(z) = f(w) for some w =z in Iy

is infinite. If f(x) is in addition exceptional over K, then the condition
(r,p®—1) =1 is a Corollary of Lemma I provided that (r,p) =1. On
the other hand, if (=) is exceptional over K, then R must be an finite
set by Lemma H. From all this we obtain

THEOREM 2. If f(x) is exceptional over the finite field K of character-
istic p and if the degree of f(#) is n where n < 2p, then f(z) is a one-to-one
map of K onto K.

3. The case n > charK. It is at this time an open question whether
exceptional polynomials are univalent without qualification. The author
and others have been unable to find a single polynomial that is exceptional
over a field that is not univalent on the given field. There are compelling
Teasons to believe that no such examples exist. For example, if f(x) is
exceptional over K, and in addition, if &(z,y) = {f (=) —f)f(m—y)
is irreducible in K [#, 4], then it follows that f(») is univalent on X ; for
if ¢ is the number of conjugate factors of @(x, ) in 2 (P) [, y], then
by comparing the order of the factor £—a in the polynomial

f@)=f(a) = (2—a) B(z, a) = (2—b) B (a, b),

we are led to an equation of the form 1+%s = ms when f(a) = f(b) for
some 4 b in K.

The author has computed several cases not covered by Theorems
1 and 2 and has found that every polynomial f(») of degree n
=3,4,5,...,13 that is exceptional over Z, for P =2,8,5,7,11,13, is
necessarily univalent on Z,. For these and other Teasons, the author
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feels that if mperfect fields.
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problem and for hi & for an observation which led to a simplification
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