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" I
fast iiberall, wo y eine Konstante ist. Is ist nimlich lim 1/,4;)_,_agln)
3
fast fiberall endlich, wie schon aus Satz 7 in [5] hervorgeht, Der Voll-
standigkeit halber seiin diesem Zusammenhang erwihnt, daB schon aug
Satz 5 in [8] und Satz 2 in [6] folgh

o) > vlnwy
fiir endlich viele Werte » fast iiberall und demnach
1 N
p=1
fast iiberall.
Die noch offene Frage ist, wie das invariante Mall u awwicht, oder
anders ausgedriickt, welche Funktion f(x) dic Kigenschaft

w(B) = [fla)d
4 1
besitzt.
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On distribution of values of multiplicative functions
in residue classes

by

W. NARK1EwIcZ (Wroclaw)

1, The following notion of uniform distribution of sequences of
integers was introduced by I. Niven ([4]):

Let ¥ > 2 be an integer. A sequence a,, ¢,,... of integers is uni-
formly distributed (modXd) if and only if for every j, N (n <
ap = j(mod N)) ~ /N for @ tending to infinity. (Here N(n < 2| P)
denotes the number of positive integers n < with the property P.)

In this note we shall consider a gimilar, but weaker notion of uni-
form distribution:

Let & >3 be an integer. A sequence a,, a,, ... of integers is weakly
uniformly distributed (modXN) if and only if for every pair of integers
J1rJa With (ji, N) = (j,, ¥) =1

Nn < @ =j(modN))~N(n <l a, =j,(mod )

for # tending to infinity, provided that the set {j|(a;, N) =1} is infinite.
TFor shortness we shall write that such sequence is WUD (mod N).
It is easy to see that a necessary and sufficient condition for a sequence
@y, Gy, ... of integers to be WUD(modXN) is that for all characters
2(mod N) which are not equal to y, -~ the principal character, the follow-
ing evaluation holds

(1) 2%(%) = ”(2:7(0((1‘“))'

In fact, assuming (1) woe get

3 1= ) Y 2l

<L X Nt
@y =) (mod )

=7 N D wo(an) +07(N) X 7)) ) = (@ (W) +o(1) 3 o(an)

n<n x#%0 nse nLr
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and conversely, from

D 1=l

s
iy =j(mnod N)

)+o(1 ZXU W) ((Jy N) = 1)

we get readily that

= S0 Fte = Suted ol nte)

n<w Nl

for all § with (j, N) = 1 and this implies for x + xo
Zx a) =g (F) Y x()RG)

n<® 1IN
ylo (@) +o (ZXO (i, ) == U(ZZO %)

=1
=) D
1<1<N nqda e
(.N)=1

This eriterion is analogous to one proved by 8. Uchiyama ([7]) in
the case of uniform distribution in the sense of Niven.

Now let k¥ be a positive integer and let ¢ be the class of all multi-
plicative, integer valued functions f(n) satisfying the following condition:

There exist polynomials Wy(x), ..., Wr(m) with integral coefficients
such that for all primes p and j =1,2,..., k one has f(p') = W;(p).

The aim of this note is to give necessary and sufficient conditions
for feOj to be WUD (mod N), provided that the set {n] (f(n), N) =1}
is not too small in a sense to be explained below. Liet Gy be the multi-
plicative group of residue classes (mod V) relatively prime to N and let
for fin Cyand j=1,2,...,k, 4;= A;(f, N) be the subgroup of Gy gen-
erated by the set R; = R;(f, N) consisting of all residue classes » in Gy
for which the congruence W;(z) = r(mod N) has a solution z eGy . Finally
let K (f) be the largest number k guch that feQ, if such a number exists,
and K(f) = oo if feCy for all k. Then we have the following

THROREM 1. Let feC), for some k. If Ry(f, N) = ... = Ry ..(f, N) =
and Bu(f, N) # O for some m not exceeding K (f), then the sequence f(1),
F(2), ... is WUD(modN) if and only if for every monprincipal charactor
x of Gy which is trivial on A, (f, N) there owists a prime p such thet

14 Zx(f(p’))p“”’”” =0.
=1

(Note that such a p must necessarily either divide N or be at most
equal o 2™.)

) In the case m =1 the sufficiency of this condition can be easily
inferred from a result of B. Wirsing ([8], Satz 2).
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As an application we ghall derive the following corollaries:

COROLLARY 1. The divisor function d(n) 4s WUD (mod N) if and only
if one of the following conditions hold: |

(i) N = 4,

(i) ¥ =23% (a > 1),
(iil) N = p% p is an odd prime, ¢ = 1 and 2 is & primitive root mod p®,
(iv) N = 29% p = 5 s a prime, & 2 1 and 3 is a primitive root modp®.

In all these cases
N(n <@l d(n) = j(mod N)) ~ o™
holds for (j, N) = 1 with ¢/ >0 independent on § and m = minp —1.

DN

(A part of this corollary, namely the result that d(n) is WUD (mod p®)
provided that 2 is a primitive root modp® is due to L. G. Sathe ([6]).
Note, however, that his remark made after Theorem 5 in [6] that in this
cage the values of d(n) are uniformly distributed in arithmetical pro-
gressions kp“—+j (§j =1,2,...,p"—1) is not correct for a >1.)

CoROLLARY 2. The Euler’s fumction ¢(n) is WUD (modN) if and
only if (N, 6) = 1. If this condition is satisfied then we have for (j, N) =1

Nin <a| p(n) = j(modN)) ~ Oz(logz)*
with A = [ {(p—2)/(p—1)—1 and € > 0 dependent on N only.
DN

If feCy for some k, but for all m < K (f) the set R, (f, N) is void, then
we ghow that the set {n| (f(n), N) = 1} must be small in some sense.
In fact we prove

TuroreM II. Let feC) for some k. :
- (i) If K(f) is finite and the sets Ry(f, N) are void for i =1,2,..., K
= K(f), then
N(n <a] (¥,f(n) = 1) = 0(@/F0+)
for every positive e.
(if) If K (f) 48 infinite and the sets Ri(f, N) are void for all i, then
N(n =zl (N, f(n)) = 1) = O((logx)),
where v is the number of distinet primes dividing N.
2. For the proof we need a tauberian theorem due to H. Delange,
which we state asg

LmmmA 1. (See [1], th. IIY). If a, are nonnegative real numbers, and
for res >a >0

w

Z‘an'n = go(8)(s—a)""+ Z(]/ §—a)~"I4h(s)

M=l
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where b is a real number not equal to zero or a negative integer, g, (s), ¢.(s), ...
wer Gu(8), B(s) are regular in the closed half-plane res = a, go(a) # 0,
reb;<b (j=1,2,...,w) and b; 50, —1, —2,... then for a tending to
infinity one has
Dt~ @~ (bt (loga)~ "
nLL
We shall need also a corollary to this theorem, which we state ag
LEMMA 2. Thé assumptions are the same as in Lemma 1, except that
the condition gq(a) # 0 is replaced by go(s) = 0 for all 8, @ = 1/m and
0 <b < 1. Then for x tending to infinity one has

ay = o (2™ (logx)’~).

Proof of the lemma. Let
F(s) =n(1—{—bp’s) = Y Bn.
» =1

Clearly B, >0 and in view of 0<<b <1 we have for res>1 the
equality F(s) = G (s)(s —1)"" with G(s) regular for res > 1 and G(1)0.
Consider

F(ms) + 2 ayn”® = Z Ayn.

=1 N==1
Lemma 1 implies

ZBML‘M ~ 2 A, ~ 0™ (logz)’~*

NLEL nLr
which is clearly equivalent to the assertion of our lemma.
Now let N >3, let x(n) be a character of the group Gy, treated
as a fonetion defined for all infegers. (For (d, ¥N) % 1 we put y(d) = 0.)
) Let 4; be the number of solutions of the congruence W,,(z) == j (mod N)
n zeGy if (j, N) =1 and 4, =0 if (j, N) 1. (Here m is the num-
ber occurring in the statement of Theorem I. Note that R, (f, N) =

Ul 1<i<N, 4 #0}) Let Fy,s)= Z—%X (fb(,,)fl)‘ Now we prove
’ ne=l

Levwma 3. For res > 1/m

N

1 \—4w
Pt 5) = )5 —)
W

where H(y, s) is regular in the closed half-plane ves >1 [m and does not
N

vonish at s = 1/m, and A(y) = ¢~ >(N) 21 1), if for every prime p
=

14+ D@ ™ 0.

j=1

icm®
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If the last condition is not satisfied, then A(y) is o complex number of the
form ~
1 - ) . p - . )
o (N)Z g (D=1 (131, integer).
J=l

Proof of the lemma. Observe first that for j =1,2,...,m—1,
(v, f(P")) =1 can hold with a prime P only if P|N, and so x(f(n)) 0
implies that every prime divisor of » either divides N or occurs in # with
an exponent at least equal to m. It follows that the series defining F(y, $)
converges absolutely for res > 1/m. Tndeed, it is majorized by the product
S Fut (where o =108, A e ] omo=s pa pie, pyd N} and B s

ned nel? . . .
the set of all m-full numbers, i.e. such numbers n for which p|n implies

p™|n) of two sevies, tho firgt of which iy convergent for o > 0, and the
gecond can be written in the form

3 (s ()]
3 Ay -
-t;;,m’" ] I (1—p=)"
farl palt3 _
which implies its convergence for res > 1/m in view of the evaluation
J[=p" = 0)
s
valid for every fixed positive o <2 1 and arbitrary positive e. (This evalu-

ation results immodiately from
-

39 = 0w)
DY
(see [5]).)
It follows that

Py =[] 1 + Malr@))p®)  tor  res>1jm.
fol

»
Tet P, be the set of all primes which either divide N or are less than
2™.1, and let Py be the set of all remaining primes. For peP, and res
>1/m we have (in view of y(f(p)) ==... = 2{fe™h) = 0)

] S

(2)

o
< Yp " = p (L-p™ ) < 2/p <1

and so = . - - w
[T Y atiwhle ) =ow{ 3 3 (=17 )™
DePy Fml pely Tl it -
== OX]) {Z%x(f(pm))p—m exp {1:%; !_me(f(pf))lo“i’e}x
xexp{ 3 S~ (iZ 1(f @) ")}
DePy Tl =
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pial
=3
T

Now for 0 <<e<< (m+1)7% res =1/m — ¢ Observe now that M = 0 holds if and only if for some prime p in P,

o

| > alfh)p

j=1+m j=1+m

oo ) < I\ o —im __
< Z p—'//(ljm—c) < (pL[»l[m(m—l)_pL—g)_l 1+ ZX(P )P =0

j=1

and consequently (2) and (3) imply the lemma.
Proof of Theorem I. For (j, N) =1 we get by Lemma 3

2 n? = tp_l(N);mF(% 8)

n
f{n)=f(mod N)

hence the function

-]

exp{ D' 3 4lf(e)p "}

L
PePy j=1+m

is regular for res > 1/m and does not vanish at s = 1/m, and moreover

for res >3 /4m =97} () ;Zmn(x, ) (s—1/m)= .

o © o As obviously

|

NGF

(T Zalswe™) | < 3 Do) < B

2 i=m 1=2 J=m

7]

with a suitable B > 0. Consequently the function

exp{ Y Zo,o’ (=1 f #(f@)p ")}

PPy 1=2 j=m

s regular for res > 1/m and does not vanish at s = 1/m.

Finally
N
pzzl(f(,’p )P ——jiix(.?) E P

Wn(®) E}%nm:»dl\f)

N
= (77 3 () ) og (1 (s —1 jm) +g(s)
Y

=1

with g(s) regular for res > 1/m, and we get for res > 1/m

o0 X . _rP—I N ‘ -
K T 2 i) = g 961 fm) 0, 2,0

with g(y, s) regular for res > 1/m and g(y, 1/m) = 0.
The product

co1 R
[] {2+ 3 2(feh)p )
DePy =1
fieﬁm.ss obviously a function regular for res > 0, which does not vanish
1de1}1;10a11¥ and may thus be written in the form g, (y, 8)(s —1/m)™ where
M is an integer >0 and g,(y, 1/m) 5 0.

M=

re A (z) <ted (1) = (D 4) 97 (),

]
-

7
we can write

) 3w = Y AGE ()} (1m0

n 26X
f(n)=7(mod N} .

+ X gy(6)(s—1/m) = +-D(s)
Feal
where X ig the set of all characters of Gu with A (y) = A{xo), g1(8); -+
ooty 0u(8), h(s) are regular for res >1/m and res; < Axo).
Note that yeX if and only if 4; 7 0 implies y(j) =1 and moreover
(by Lemma 2) for all primes p

o0

14+ D a(f@))p™™ #0.

F=1
If for every nonprincipal character y of Gy, which is trivial on Am
(and a fortiori on R,,) there exists a prime p with )

=]

14+ Yl ™ =0,
j=1

then X consists of the principal character exclusively, and by (4) and
Lemma 1 we get for (j,N) =1

N(n <al f(n) = j(modN)) ~ Ca'™ (logawy“¥o)*

where ¢ does not depend on j, and this means that the sequence f(1),
£(2), ... is WUD (modN). The first part of Theorem I is thus proved.
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Now assume that the sequence f(1),f(2),... is WUD(mod¥).
Applying first Lemma 3 to the principal character x, of Gy, and then
Lemma 1, we get for (j,N) =1

276 W. Narkiewicz

Ny(@) = N(n <a| f(n) = j(mod X)) ~g (NN (n < al (fn), N) =1)
~ YA (ge)) ¢~ (N)mH (10, 1 Jm) ™ (log oyt
Note now that for (j, N) =1

D a(H (g, 1m) #0
_ X
as otherwise we would get by Lemma 2 from (4)
Ni(@) = o(#/™ (log )07

contrary to the evaluation just obtained. Consequently (4) and Lemma 1
lead us to

Nj(@) ~mI ™ (A (z)) g™ (N) Z (Y H (x, 1/m)ai™ (log zy (0=
X
whenee
D2 G)H (5, 1/m) = H(xo, 1/m)
%X

it (j, ) =1.
Let now the set {j;,...,J:} be a set of representatives of Gy/A,
in Gx. Then in view of the last equality the system

N a(ne(n) = Hxe, 1/m)

26X

(k=1,2,...,1)

has in case |X| > 2 at least two distinct solutions: z(y,) = H(x,, 1/m),
#(y) = 0 for y 5 y, and x(y) = H(y, 1/m) for yeX. But the maftrix

117 G lmy. t
2eX

is of rank |X| which gives a contradiction. Consequently X consists solely
of the prineipal character and this means that for every nonprincipal
character of Gy which is trivial on 4,, there exists a prime p such that

14 D' (f @) p~™ = 0.
=

This proves the second part of Theorem I.

‘ Proof of Theorem II. If K(f) if finite and R;(f, N) is void for
1=1,2, ....,K(f) = K, then as in proof of Lemma 2 we conclude that
the funetion F(y,, s) is regulalf for res > 1/(K+1) and by Ikehara's
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theorem one gets easily (see e.g. [38], Lemma 4) that
N(n <l (f(n), N) =1) = 0(a!F0+)

for every positive g, thus proving part (i) of Theorem Il

To prove part (ii) note that if K(f) is infinite and all sets Bi(f, NV)
are void, then (f(n), N) =1 implies that all prime divisors of n must
divide N and consequently

N(n<a| (fln), ¥) = 1) < _N(n <ol n=[]pl, pil N) = 0((log)).
qmal

Theorem II is thus proved.

3. In this section we prove the corolaries.

proof of Corollary 1. Tor f(n)=d(n) we have obviously
E(f) = oo, Wi(w) = 1+4, and for 0dd N, R, = {2}, whereas for N even
B=Ry=..=Rn1=0,Bn= {1+m} if m+1 is the least prime not
dividing N. Observe that for |¢] <1, # # 0

14 Y ylaph)d = 1427 Yali)d

j=1 j=2
N—-1 . N-1
=142 D 1 (%) > i = L= Y g (D)7
k=1 il

i>2
=k (mod N)

If thus for some character y of Gy and for some prime p
1+ Y gla@))p™ =0
g=1

- N1
then the polynomial M (z) = 3 x(i)s' has & = p7™ as a root, but all

=l

coefficients of M (z) are units of the field @ (exp(2ni/N)) and so all ifs
roots are algebraic integers, whereas z = p~"™ is not, & contradiction.

It follows that the sequence of values of d(n) will be WUD (mod N)
if and only if 4,, coincides with Gy and as Ay, is a cyclic group generated
by the prime 1--m, this means the same as the fact that the least prime
not dividing ¥ is a primitive root modN. It is easy to check that all
the numbers N >3 satisfying this condition are those listed in the state-
ment of Corollary 1. The evaluation given there is immediate, a8
A(ze) = 1.

Proof of Corollary 2. For f(n) = @(n) we have K(f)= oo and
W (@) = &~ (@—1). As ¢(n) is even for n > 3, the gequence ¢(n) cannot
be WUD (mod N) for N even. Let thus ¥ be odd. In this case

Ro={1<r<N—1, (nN)=(+1,N) =1}
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and is not void as 1eR,. Observe that for Js| <1
1+ D le@)d =14 Y p(p—1)2(pV 7 = 1+ —1)(1—x(p)5) 2.
j=1 ji=1

It this is zero for # = p~!, then y(p)—yx(p—1) ='p which implies
p =2, but then 3 = y(2) which is impossible. It results, that ¢(n) is
WUD (mod ¥) if and only if A, coincides with Gy. Let N = pil... pir
(ps # 2). Then the group Gy is a product of Gya, ..., Gyar and so we may
represent every element y of @y in the form [y,, ..., y.] with 1 <y; < pit,
p:ty; and y = y; (modpfi). In this notation A, is the group generated
by the set

{1 ¥r) YieGoffiy Y2 %= —1(mod py)}.

If N is divisible by 3, say p; = 3, then A; # Gy, a8 [2,1,1,...,1]<Gy
but is not contained in A,.

Now let (N,6)=1. We have to prove that A, = Gy. Let
Y= [¥1,-.., ¥ ]eGy, and let w; be a solution of the congruence
2w; = y;{modpf). Put

N _[?/i ity % —1(mod p),
e i y; = —1(mod p;)
and
. { 1 iy 5% —1(mod py),

w, iy = —1(mod p;).

Evidently [vy,,,...,9,]¢Ry a8 p;>3 and so 2= —1(mod py).
It w; = —1(mod p;) then —1 =y; =2w; = —2 (mod p;) a nonsense,
consequently [z, ..., z,]¢R;. But obviously y = [0, ..., v,][21, ..., 2] e,
and so Gy = 4,. The Corollary 2 is thus proved because the evaluation
stated in it follows immediately from the fact that

N
Al =97 (W) Yl = o7 (W) By = [] (9—2)/(p —1).

f=1 DIV

(CL. [2], vol. I, p. 147).
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