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A generalization of a theorem of Landau
by

Indar S. Lurnar (Urbana, I1L.)

In 1908 Landau [1] proved that the number B(z) of integers < m

which are representable as the sum of two squares is asymptotic to

b .
= with
Vioga

b= %[1 (L —p2)- 12

the product being taken over all primes congruent to 3 mod 4. In hig
book on Ramanujan, Hardy remarks that by pushing the analysis a little
harder this result can be improved to obtain an asymptotic expansion
for B(zx) in the sense of Poincaré, namely

bz ¢ d
) B =1 g g

An incorrect value for ¢ was given by Stanley [3] and the correct one
was later given by Shanks [2].

We now notice that a rational integer is representable as the sum
of two squares if and only if it is the norm of a Gaussian integer. It is
natural to ask whether we can obtain a result similar to (1) for the number
of rational integers < # which are norms of integers of an algebraic number
field k. In the present paper, we restrict ourselves to the case when % is
a quadratic field and obtain a formula for the number By(z) of integers
< o which are norms of totally positive numbers of k. It may be remarked
that our result does generalize the resulty of Landau and Shanks, since,
being totally positive is no restriction in imaginary quadratic field and,
gince, a rational integer which is the norm of a number of a quadratic
field of class number (in the restricted sense) 1 or 2 is, in faet, the norm
of an integer of that field. To prove the second assertion, let

a=p*p'...
have integral norm; then a+-a/, ... are all non-negative, so that

a=pHe...
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is an integral ideal having the same norm as a. Moreover a i principal
since

ag = PP ...
is prineipal.

Let then & be a quadratic field with diseriminant d and let d = d,...d,
be the decomposition of d into prime discriminants. Let y be a real
character of the group of ideal clagses (in the restricted sense) of &; then,
ag is ‘well-known, y corresponds in a 1-1 manner to a factorization

(2) 4 = up

of d into two diseriminants w and v (we fix the order of the factorization
Dby requiring that d, does not occur in u). The relation between y and the
factorization (2) is expressed by

(JL) it (u,p) =1,

Np)
(3) x(p) = 0
(N(p)) =1
p being any prime ideal of k. Obviously y(a) depends only on N (a). We let
() fo, )= Sbim =t (e>1)
Nl
where
0 if # is not the norm of any ideal
® by = l o v
z(a) if n = N(a).
Clearly
fo 0 =[]—20r ™ [T =z H (L—x(0)r™)
Ud __) . @ H_l
q

Here I runs through all the primes which divide d, ¢ through those primes
.. {d
for which (—q—) = +1 and r through those primes for which (%) = —13

moreover [, ¢ and v denote prime divisors in % of 1, ¢ and r respectively (1).
Taking account of (3) we obtain:

feo=]] (1—(—’;—)1*’)-1(1—(%)14)*1 1 (1~(-%l°~)q"“)mmx

ld ]

T -t [T e
(£) - ()

() There are two choices for q, but it does not matter which one we take.
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Setting
° -1
‘Lu( =1 (5)2)
» P
(©) o D)
nis) = [[[1- () )
» P
we get
s
Loy (8) L (5)

T e

Since
-
rI\r >
so that
(1~(ﬂ)r-")_1(1—(3)rﬁ)_l (L—r)
we have
(1 fs )

1] (1_(Ll‘) l)(1—~(ﬂl) z—s)”l ]7 (L—r ) Eu(5)Tu(o).

1@

Let G be the region:

B e 1
¢
> >3 >3
cz1— 10gli| >3/4) for [t =3,
¢
ar_>,1_-~——-—10g3 (=3/4) for |t <3
Tig. 1

and let G be the region G eut along the real axis from

D) =1—1 ° %o 1. Then, as is well-known, for a gufficiently small

og3
¢ > 0, the function L, (s)Ly(s) is regular in @ except when « =1,v =4
in which case it is regular everywhere in @ except at s =1 where it has
a simple pole; moreover L, (s)Ly(s) has no zeroes in G and

Ly (s) Ln(s) = O(log®}t))  (seG, [t >3)
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To caleulate the residue of the fuunction L, () Ly(s) ab & = 1 we notice
that by Kronecker’s formula

L) Lols) = Lals, 2) = X 2(@) N (a) "

a

50 that
Lu(s) Zuls) = Cals, ) = ) N (a)"

Consequently Ly (s)Lg(s) has residue he ot & =1, where b iy the clags
number of the field and x» is the usual constant asgociated to %.

These considerations and formula (7) immediately give the follbwing

LummA. The function f(s, x) is reqular in 05 in fact for y +f y,, de.,
for w %1, £(s, %) is regqular in G.

Moreover for any y,

(8) s, 7) = OQoglt]) (s, [1] > 3).
Finally f(s, zo)Vs—1 is regular in @ and ity expansion at s =1 beging

with the constant
(9) o =Vhe[[@—r" [T (@=ry,
nd @ ) -l

3

Here Vs—1 is to take positive values for s > 1.
Let now z > V3. We have

1 2100 & 1 2.4 a
B( 2 _ 1 & _
éx e =g [ i =g [ G aetow.
20 2.5

Changing the path of integration, we get

(10) 2 b(n, z)log (%)

n<w

1 Jod D " n i
- "EE?(BI +Uf "‘Df'{"ff +Ff j+f+ f) f(s, z)ds+0(1).

| . .o
Here we are integrating ?“f (s, ) along the upper edge of the cut in

the fourth infegral on the right and along the lower edge in the fifth.

Generalization of a theorem of Landau 227

Bstimating the remaining six integrals on the right with the help of (8),
we obtain, from (10), with a suitable a > 0,

3 x 1 x° o
(11) Z b(n, y)log— = — ——+ f Tf(s, x)ds-&—O(me““m“).
new " 2mi mym

The integral on the nght vanishes for non-principal y, while for y = y,,
it equals

the integration being performed along the lower edge. Thus, (11) gives

; ¢ B
é x° i
(12) i, g)log = = =% [ S f(s, 2)ds+0 (oo
NELT TC Ee »
where
5 — 1 i g =0 ;
: 0 i g # -
We now estimate 6
1
1 x°
—:f—-;f(s, POLEE
w ) s i A
Fig. 2

Since the integration is to be taken along the lower
edge, we have to take, for s between ¥ and 1, the following expansion:

(13) Hoxd 8 iy agil—s)+

s 1/1 —8
where V1 —s is to take positive values for 9 < s < 1. Retaining the terms
up to (and ineluding) @y, ;(1—s)"" " and making simple estimates
we get:

1 ;o
— | = F(s, xo)ds
ki1 3 82

@ [ (1), &l([) azzn_lr(mu/z)] ( v )
= Vigs [“1(2)+ g Tt e | \togar )
This, together with (12), gives

a1 bin, p)log

__‘5,3":_ I(3/2) am_xr(m+1/2)] ( @ )
—wViogm[ ( )+ ' loga oot (logz)™ +0 loga)™ )
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We now let
(15) by =270 Y'b(n, y)
z

where, in the summation, y runs through all the real characters of the
group of ideal classes of k. We now notice that the real characters of the
ideal class group in the restricted sense of & are exactly the chara,cter‘;
of the group of genera in the restricted sense of k. By the theorem oyf
Gauss the number of genera in % is 2”7 It follows that b, = 0 unless n
is the norm of an ideal in the principal genus, i.e., the norm of a totally
positive number of %, in which case b, = 1. Thus the number By(x) of
rational integers < & which are norms of totally pogitive numbers of &
is given by

(16) Bi(@) = ) by

nEe

Summing (14) over all real y, we get

x o7
(17) anlog—=————« 2«

= n ©  Viogw
1 I(3/2) I'(m4-1/2)
X aP(7)+a ot + d
[ 5 "Toaa Fee gy (loga)” ] lO((logm)m”"Z)'

Taking m = 4, we easily obtain the following

- THEOREM. Let k& be a quadratic field with discriminant d and let By (x)

denote the number of rational integers ; 14
gers < @ which are norms of totally positi
numbers of k. Then - / posiine

ai-9 @ oy —
Bk(m)=‘—:.‘ _..[a = a] 0 d
Vo Viegz + 2logw + log™x |’
Here g denoles the number of distinet rational primes dividing the diserimi-

nant d and the constant a is given by (9).

Wg remark that .for imaginary quadratic fields we can give an explicit
expresgion for a, using the first limit formula of Kronecker. ‘
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N
Estimates of > &~*(ka)™*
k=1

by
A. H. Kruge (New Mexico)

1. Introduction. Throughout this paper, o is the set of all nonnegative
integers, R is the set of all real numbers, and Ry, is the set of all irrational
real numbers. For each weR, (] is the largest integer not greater than x,
and fr(z) = z—[x] is the fractional part of . For each zeR, we define

@y = min(fr(z), fr(—a)),

whence (@) is the disbance between 2 and the set of integers.

If, in some context, “A” and “B” are expressions and C is a con-
dition (perhaps a conjunction of several conditions) on whatever variables
may appear in “A” and “B”, then “4 = O(B) under (or relative to, or
for) G” means as usual that 4/B subject to C is bounded (here 0/0 =0
and A/0 = oo if A #0), and “4 =< B under (or relative to, or for) c?
will mean that 4 = O(B) under O and B = O(4) under C. Sometimes
ingtead of “A = O(B) under C” or “4 =< B under C” we shall write
«4 = O(B) (0)” or “A = B (0)” respectively.

Throughout this paper, &, m,n, N, and p are restricted without
additional mention to be integers.

(Consider the condition C: ®eRyy, N>1, sk, and teT.) This paper
ig concerned with estimating sums of the form

N N
1) Z k™ ”(kw)“ (= Z k-t ]siulmwl‘ under O if T is a bounded subset of R)
Ie=1 Kol
with s and ¢ nonnegative real numbers. The writer knows of no general
treatment of this problem. Hardy and Littlewood ([3], pp. 216-217)
showed that if s 3t 3> 1, then, for each ze Ry, such that

(2) 1=0( o) (jew\{0}),

the sum in (1) is O((log ¥)*) for N > 2. As remarked in [3), p- 214, (2) is
equivalent to

(3) Iy (@) = O(QMW)M) {(new),
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