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then there exist integers r, s such thai

b =7gn+8Gn—1; @ =TPn-+8Poy
ond |s| < A-+1. In eddition (a, b) = (r, 8) and
yﬁj“SQn—l“Sq;u+}_ )

bE—a| = :
[b&—al i

If we put
M, = minminb|bf—al,
b (ab)=1
where the first min is only over b satisfying
N <b < min(gmsa, ¢N),

then this lemma allows us to express the condition M, < A4 again as
2 condition on the variables in (3.1). In fact, since ¢ in lemma 4 is limited
to finitely many values, one ean write M, as a minimum of finitely many
simple expressions in these variables in the region M, <.A.
Since
S(N, A,¢) = {£: My, <A or M, <A},

one can then conclude that Lim|S(N, 4, ¢)| exist from the existence of
the limiting distribution in lemma 3.
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On a conjecture of Erdds and Sziisz related
to uniform distribution mod 1

by

HARRY KuESTEN* (Ithaca, N.Y.)

1. Introduction. Let £¢[0,1], 0 <a<b <1, and denote by
N(M, & a,b) the number of integers %, 1 <k < M, for which o < {k&},
<< b. ({¢} denotes the fractional part of ¢). Our main result gives a criterion
for the boundedness of

(1.1) R(M, & a,b) = N(M, £, a,b)—M(b—a).

This ig stated in

TEEOREM 4. For 0 <a <b <1,b—a <1 and fived & R(M, &, a, b)
18 bounded in M if and only if

(1.2) b—a = {j&} for some integer j.

It was known for a long time (cf. [6], [10]) that (1.2) is a sufficient
condition for the boundedness of R and the result that (1.2) is also neces-
sary confirms a recent conjecture of Erdos and Sziisz [2].

Throughout this paper we shall make heavy use of continued fraction
expansions in the following notations:

The regular continued fraction of an irrational()(?) £e(0,1) is
denoted by '

[a:(€), az(&),...] =

* Alfred P. Sloan Fellow.

(}) We shall ignore rational &s most of the time. They form a set of measure
zero and therefore do not influence the metric result in section 3. Also they constitute
a trivial cage for theorem 4. ’

(?) We use the notation of Chapter 10 of [5] except that we drop a¢(£) = [£]
from our formulae, since a,(£§) = 0 in all our considerations.
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and its mth convergent by Pn(£)/gn(£). One has then the well-known
recursion formulae ([5], chapter 10)

(1.3) @=L ¢=0, a1 = Olatdn-1,

(1.4) Po=0, P1=1, Png1 = Onp1Pn+Pn1-

We introduce also

(1.5) (l;,+1 = 0:;;_,_1(5) = %.+1+[afn+27 Ay oo .

= Oy b
“nu

and

]: .q
(1.6) Qn+1 = ‘1n+1(§ = “n+1%+q" L= g1t = Md .
afm 2 i, +8

As in Ostrowski [9], one can expand N a8

m,E)

(L.7) = D= D &, Oalé)
(0

where

0 <o <y, Cmg>0, and Z%m < s
. T

for  0<j<m(N,¥E).

Such an expansion exists and is uniquely determined by these conditions
(see [9] and [11, part I, p. 464]). The letter m will be reserved for the
(finite) upper bound m (N, &) in (1.7). When no confusion is likely we do
not write the arguments N and & Note that ¢,, is the last denominator
of a convergent of £, which does not exceed N.

To prove theorem 4 we begin with a detailed study of the N intervals
into which [0,1] is divided by the points {k&}, & = 1,..., N. We shall
always identify the points 0 and 1 and accordingly consider [max {% &}, 1]
w [0, min{%k £}] as one interval so that the N points divide [0, 1] into N
rather than N1 subintervals. The lengths and relative location of these
subintervals are desembed by theorem 1 and corollary 1 in terms of the
quantities ¢;, ¢u, gnsy and O Corollary 1 once more confirms a con-
jecture of Steinhaus that, for each N, subintervalgy of only three different
lengths occur. This conjecture was proved before by Surényi [18], by
means of the Farey series Fy. Fy is the sequence of rational numbers

jlk, with 0 <j <k <N and (j, k) =1, arranged in agcending order.
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‘When Surinyi’s result is combined with theorem 1, one obtains the
following amusing result:

THEOREM 2. Let & be an wrrational number such that ji[ky, < & < jyfks
where j, [k, and j,/k, are successive members of Fy. Then, for

J1 Jitda .
J1 ELELELA = m(N e,
k1<f<k1—‘rkﬂ’ m (N, &) is even,
(1.8) = Qma(§) = k1,
I'N , .

(1.9) Om—y = lg— T by, (here we define q_, = 0),

1
and

Ja 1
1.10 PR L
( ) ky Gmdm1
I 7’01177: <f< k—z then m is odd,
(1.11) Gm = kza
ks .
(1.12) Gy = ky— W ky, provided ky > 1,
2

and

j 1
(1.13) LI S A

ks QmQm+1

As a byproduct of these results we derive a metric result concerning
the maximal gpacing between the points {k£}.

TaeOREM 3. Let
Ly (§) = max({ky £} —{k, &)

where the mazimum is over all pairs Joy, by with 1 <ky, by <N, {k &}
< {ky &} such that there is no 1 < ky << N with {ky &} < {ksé} < {ky€}. Con-
sistent with the identification of 0 and 1 we also include the pair

{k, £} = max {ké}, " {ky¢} = min {ké}
‘1<k<.N 1Sk N

in which case {ky&)—{k; &} s 1o be replaced by 1L—{k, £}+{k,&}. (Roughly
speaking, Ly iz the mazximum distance between adjacent points {ké&},
1<k N
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 Then(®),
lim [{¢: N Ly(8) <o}l =

0 if xz<l,

1 -+ —
w2 t o8 wt— +
-1 —

1 . ot ¢
12 o1, 0B ) 12 flog"” @ i 1<wsy,

i —p—1
=10 f m—llogm'(zt—l)d 1277
2 N t wt—1 it A

Theorem 3 is proved by the methods of Friedman and Niven [4]
and Erdes, Sziisz and Turédn [3] who also used Farey series. The author
has used those techniques elsewhere [7] to derive the limiting distribu-
tion (*)

Lm|{&:0 < & <1, NV min|ké—af < x}.
Neoo 1<h<N

in case @ = 0. It seems that the techniques of the present paper axe strong
enough to treat the case of general « but the computations become too
complicated to be carried out.

2. The successive values of {k£}. A large part of the information in
this section can be found in, or derived from, V. 868 [11] and [12]. It is
more convenient though, to give direct derivations here, which are adap-
ted to the needs in section 4. Throughout this section N and & will be
fixed, £ irrational. ¥ will be expanded as in (1.7) and m will stand for

m (N, £). As before the points 0 and 1 will be identified. ¢.., is defined as
Zero.

THEEOREM 1. Each interval (L, r+l
dm qm

),r = 0,1, ..., g1 contains

exactly one point {kE} with 1 <k < qm. Denote the point in (-L LL)

m qm
by P, and the interval [P;, P,.;) by J, in case m is even. If m is odd, let Py

. . q—r— —r . ) .
be the point in ( m I ) and J, the interval (Ppi,P,]. Then
O qm C
() 14| denotes the Lebesgue measure of the set 4.
*) ||ﬂ[| denotes the distance between f and the nearest mteger to 8.
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exactly Gm—Qm-1 intervals J, have lengih g’" L and exactly gm_, have
m+1
length ——— am+1+ . Intervals of the first set are called “short” and inder-
!Zm+1

vals of the second set are called “long”. The long intervals are exacily those J,
for which(®) P, = {k&} with 1<k < gn-y. The next (6m—1)gn points
(k&Y g1 < & < CmQm, Subdivide the intervals J, in such o manner that
emactly (cm—1) points fall in each J,, namely at the poinis

(—1) 8

P+ , §=1,2,...,6,—1, 7 =0,1,...,qn—1.
Tt

These points divide each J, inio Oy sub-intervals. Starting from P,

the first cm—1 subintervals of J, have lengih and the last inferval,

, 1 —Cm+1
adjacent to P,.; and to be denoted by Jr, has lengih —m—“—,———m—t if J,

Qm+1

’ _ 9 ,
is short and length a—milq‘,ci—l———— if J, is long. J; is called short or long

m-H1

me-1
when J, is short, respectively long. OFf the last N —cn(m points {ké}, tmqm
41 <k < N, at most one will belong to each J,. If such a point belongs
(— 1) ‘tm

m+l

to J,, it is located at P,+ . Such a point therefore belomgs to

Jr and divides J, into an interval of length adjacent lo the previous

Qm+1

intervals of length in J, (or adjacent to P, if cn=1) and an interval

Qm+1 .
i adjacent to P,,,. These last N —cCpgm points {kf} subdivide as many
long J, as possible. IL.e. if N—Cmgm < gm-1 = number of long Jy, then
these points fall only in long J,. If N—Cu@n > qm—, then one such point
falls in each Tong J, and some points fall in u short Jy.
Proof. Only the case of even m will be considered, the case where
m is odd being entirely smalogous( ). By the well-known formula ([5],
chapter 10)

t
(@.1) gt D
Ui 9197+1
(%) We slightly abuse notation and confuse P, with tha va.lue of its coordmate
in [0, 1] This will often be done in the sequel.
(5) Some special considerations are necessary when m = 0, which corresponds -
to the case 0 < & < (N-+1)~L However, it is easy to see that the theorem remains
valid in this case if one takes ¢] = a1, in agreement with (1.6).
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we have for even m and 1 <k < gm

Pm k 4] k
2.2 k& { + ”"'f—} == = o
@2 k) = Qm Gm Gm-+1 Om  gmQmir
where oy is defined by
(2.3) kpm = bp(modg,) and 0 < g < gn—1.

As % rung through the values 1,...,¢m, ¢z runs through the wvalues
0,...,¢m—1 since (Pm, ¢m) = 1. Moreover,

w222,

ginee 0 < %/gmmi1 < 1/gm. This shows that for each r = 0
exactly one point

(2.4)

yeeey Gm—1L.

{LE}e(—L ’qil) with T=1,..., ¢

This point is called P, and the length of(") J, =
L Ar+1 ”—lr
G Gmlmi

[Pry Pypa) 18

if 4, is defined by
(2.8)

o= {18 =+

Im QMQWH-!
This of course means that (for m even) 1, is the solution of

(2.6)
Consequently

JPm =r(modg,) and <A < e

(Ar41=2)Pm = 1(mod Gm) -
When combined with the standard formula ([5] chapter 10)

2.7) Pmlmsr—Pm-1qm = (“1)m~17
this gives
B Aeg1—2p = —qp_1 (10006
In view of 1 < A, < ¢, we finally conclude
2.8) bty = | Tt e <A Sl

Im—Gmy  H 1 <A < gy

(") In case j = gm—1, Py i8 identified with P,.
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In the corresponding cases one has

9;n+1“‘Qm—1 a';n-i-l
’ - ’ 1
Gnmt1 Qm+1
2.9 Prypy—Pyl =
(2.9) |Prpr—Pyl - +:£
‘l;n-;-l

‘As stated in the theorem theére are therefore ¢, —gm., “short” intervals
and ¢n_, “long” intervals, the latter occuring if P, = {4,£} with 1 <2,
< ¢m_:- The remaining statements concerning the subdivision of J.
are immediate now since, by (2.2) and (2.5),
(o) =

q

m

(2.10) {(Ar+5gm) £} = Prt

m+1
as long as A, 4-sq¢n < g1 a0d thus in particular for A+sqm <N < gmia-
The only part not yet proved so far is the statement that the points {k£}
With €pgm-+1 <k < N first subdivide the long intervals Jy. This again
follows from (2.8), (2.9), and (2.10). In fact, k¥ will be of the form cnmgm-+4r
and {k&}ed, for some r. The values of k < ¢ngm+gm-1 correspond to
A < gy and thus to the long intervals. These values of & precede the
ones corresponding to short intervals, namely those with k > ¢mgm~+gm—1-
COROLLARY 1. Among the N intervals into which [0,1] ds divided by

the pointe {k&}, 1 <k < N, there are exacily

- af:n+2
Z i+ (6m—1) @m = N —qn, intervals of length = ——
fmsa Gm42
m—1
If Z Ci; = Qm—y, then there are in addition
i=o
2 . “;n+1“‘0m
CiQi—qm—, ntervals of length ————
Tes0 Qm+1
and
m—1
. a 1
q,,,+qm_1——2 ¢;q; ‘intervals of length M
i=0 Qm+1

m—1
If, however, 2 C:4; < Gm_1, then the additional intervals consist of
i=0

m—1

a, [# 1
Z Cili+Gm—Qm—; intervals of length —-ML
i=o Qm+1
and
et a';u+1"‘cm+2 '

qm_l——Z ¢;q; intervals of length — 7

= Gm+1
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Proof. This corollary is deduced from theorem 1 by cheeking the
lengths of the various subintervals of J,. Clearly the points Pr-( —1)"s/g,,.,,
§=1,2,...,b, divide the interval J, into b intervals of length 1/g,,,
and one mterval of length (amy1—b)/qmsy if J» is short or of length
(@mp1+1—b)/gms1 if J, is long. The highest value b which occurs for s
depends on N —Cpgm. If N—¢ngn = @m-1 = number of long J, then
b = oy, for all g, long intervals and for N —cyugm=—gm-, short intervals,
whereas b = ¢,,—1 for the remaining ¢m—gmn...— (¥ —Cmgm—gm—,) short
intervals. This gives the right number of intervals of the various lengths
i N—Cpim = @10 If N—0pQm < g, the counting argument: is uite
similar.

COROLLARY 2. If m 48 even, then

1

(2.11) min {ké} = {gné} =——

< Gm-t1
and

{(GmrFOm @)} = 1— Zmtt ~%m
Om-p1
if  QmertOngm <N,

2.12 1Y —
@12 max g

’
Ao -I‘l = Oy,
- 7

{(q'rn—1+ (Gm“‘l)Qm) & =1

Qmet1
) T mertCmgm > N
If m is odd, then

am+ 1—~Cm

{(@m—1+Cmgm) 5}

m+1
(2.13) min {kg) = ¥ 1 tOmgm < N,
1<k N ’ 1
{{gmos(om—1) g} §) = L2 tL =0
q'm+1
i Gme1FOmgm > N,
and
1
(214)  max (k) = {g &} =1 — .
KKN{ b=l d G

Moreover,(*)

(215)  min g = g ) = - .
Ik q

"H-l

Proof. Asan example we prove (2.12). The other formulae are proved
in the same manner. For m even, Ao, 1 = gm-, because of (2.6) and (2.7).
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Thus the point P, in ((¢n—1)/Gn; @n/iw) equals {g, .&} and J, _, is
“long”. The largest value of {k£} is therefore achieved for k = gp_,+bq,,
where b is the maximal value for which gu_;+-bgn < ¥ (cf (2.10)). Again
by (2.7), and (1.6),

1 Gnatbgm
1 Hbgm) €} =1 — o ———— =
{(gm-1+bam) £} o T ot
This is indeed the value given in (2.12).
CoROLLARY 3. The maximal spacing Ly(&) is given by

’
Uy —b
; .
Imia

(2.16) Ly(&) = 1— max {k€}+ min {k&}.

1k N 1<hsN
In other words the maximal interval between adjacent poinis {k&} is the
interval containing O (and 1). (For a precise definition of Ly, see theorem 3
in the introduction.)

Proof. By corollary 1,

a’"_“,:c_’”___l_l i N—Cmm > Gu_1,
i N—Cntn < Gmee
Q1
One immediately verifies from (2.11)-(2.14) that the value of 1 —max {k&}

1<k N
+ min {k£} always agrees with this.

1<k N
We now quote a result of Surdnyi [13].
TEREOREM (Surdnyi). If & is drrational and j,/k, < & < jufk, where
Julky and jofk, are successive members of Fu, then

(2.17) win (k& = {k, &}  and max{ké} = {k,&}.
) 1Sk N 1<k N

When we combine thig with corollary 2 we obtain theorem 2 of the
introduction.

We proceed with the proof of theorem 2. For N = 1, the theorem
is trivial and we may assume N 3 2. For irrational &, min {kf} and

nc;caxN {k&} oceur for unique values of %. OOmparlaon of (2. 11 (2 14) with
k<,

(2.17) shows that either

() m 38 even, g = b, and gm_1+[-l—v—_q-q’-"i]qm =,
m

or

(i) m 35 0dd, g = ky a0d gn_yt [1%] ——
m
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If cage (i) prevails, then

0 < gm-y = k,—integral multiple of by < gy, = I,

) 4
Gm—1 = kg— [%‘j‘] Fy

and in case (ii) the same argument with &, and %, interchanged is valid.
(Only for (1.12) we have to rule out ¢m.. = ¢m, Which can oceur only
it gn=tmr=1m=10n =5k,)

Since j, k7" and j,k;' are consecutive elements of Fy with N 3 2,
one has ([56], Chapter 3) &y, # k, and

and therefore

. . J2 Ja 1
2. — and T R i e
(2.18) Jals—jiky =1 an ky  Toy Ty Toy
Thus
J1 L J
2.19 0 — — v
(2.19) < £ T < W min | & i

where the minimum is over all jk;'eFy with j 5= §,. The lagt inequality
is obvious from the first two inequalities in (2.19) if %, > 2. But &y = 1
can oceur only for j,k;" = 1 and then for § < j,—1 (2.19) is again obvious,
whereas jki' > k3" = 1 is impossible. Since by (2.1)

1 1 1

e L e
Now ~ 29’

we conclude from (2.19) that in case (i) p, must be j, and then, again
by (2.1), (1.10) must hold. A similar argument is valid in case (ii) and it
is only necessary to check which of the alternatives (i) or (ii) prevails for

a given ¢. For this we refer to (2.15) and (2.20) which show that in case (1)
one must have

llgm &Il = k1(£~%i) < 1= {ky &} = kn(i_._g)
1 I

(2.20)

e
Im ImQm+1

2
e
or equivalently
Jitia
Tor ey
In case (ii) the inequalities have to be reversed. Thig completes the proof
of theorem 2. '
3. The distribution of the maximal spacing between points {k&}.
We give here the
Proof of theorem 3. Put

W(N, 2) = {£: NLy(&) < o).
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If .
Ja Je
e < P
(3.1) % <é %

where j, k! and j,k;' are successive members of Fy (and hence &, = k,
if ¥ > 2 by theorem 31 of [5]), then by (2.18) and (2.19)

() = kl(e~ -Jk—)
and )
Je __}_ﬁ__ w_.'7_1_

Therefore, by corollary 3 and Surényi’s theorem,
J1 Ja
R e e e

whenever (3.1) holds. Using (2.18) once more, one has

i Je w{g(kwkmw;N) i >k,
(3.2) 'W(N’”)"(kl’ D =lram & nown
where

. 1 (a; i)* 1)
(8.3) g(ky, kyy 2y N) = min kl_ka’l_v-—kl 7k1k2

(¢t stands for max (0, ¢)). Consequently, for N = 2,

> X gy, byy @, N)
1<ky <ty <N 1,79

(3.4) W, 2) =

+ Y D gtk ey 0, F).

Lk <ky<N J1f2

where the sum over jy, j, is over those pairs jy; ja, for which j, k7 <j5,k;‘
are consecutive elements of Fy. It was proved by Friedmap ?Jnd Niven
[4] (see also [3]) that there exists exactly one such pair jy, j, if

and, Ty +ky > N.

(3-5) (Byy bg) =1

Otherwise there is no such pair. Thus

N
W, a) =2 g(k, oy, 0, N)

k=1 N—Fko<ky<ky
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where X’ is only over those &, with (&, &,) = 1. When (3.3) is substituted,
this becomes

@ 1 i 1
L R N N

max (g, ¥)<7£2<N N—kg<loy—
12 2"1 1 ;“‘1’ 1
N N k” N 7‘71 '
max (im., T)<k2<N max (lecz, ~£.)<I¢1-{;,;Ir2

For # < 1 the sums are empty and |W(N,)| = 0. For 1 <2 <2 we
obtain by means of lemma 2 of [8]

— » _1__ D (k) 2ky— N
00 Wa=z 7 () D) 2R
%dang
1 D(ky) Toq d(k,)
T ckper L <kyen

Here, as in [8], &() is Euler’s function and d(k,) = number of divisors
of k,. Just as in the proof of theorem 1 of [8] the error term in (3.6) tends
to zero as ¥ — co and @ (k,)/k, in the sums in (3.6) may be replaced by
its “average value” 6/x? One therefore obtains
1 1
12 1 2t—1 12 r1 '
o

z—1

The last case, where # > 2, is treated in & similar manner.

4. Criterion for boundedness of R(M, & a,b). This section is
devoted to the proof of theorem 4. The fact that

(4.1)
implies
(4.2)

b—a = {k&}

\B(M, £ a, )| < Ok)

for some constant ¢ and all M > 0 was proved by Hecke [6] and Ostrow-
8ki [10]. (The precise value of O(k) is not important here. Ostrowski
gives C(k) = |k| but this can be improved for most £'s.) We therefore
only have to prove that (4.1) is a necessary condition for (4.2). Except
for a glight modification this was conjectured by Erdos and Sziisz ([2],
P. 61). For £ rational it is not difficult to see that boundedness of R(M,

bm@

On o conjecture of Ilirdés and Sziise 205

&, a, b) implies that b = {k&} for some ¢. In the sequel & will therefore
be assumed to be a fixed irrational number. By a .result of Bohl ([1],
p. 226) the boundedness in M of BR(M, &, a,b) for a given & depends only
on b—a and not on a and b separately. It therefore suffices to take a = 0
and 0 < b <1 and for shortness we write R(M,Db) fo.r R(M, £0,D).
We want to approximate b by points of the form‘{ké}, in particular we
ghall want a good approximation of this form .Wlt]l k< gy = qﬂ(. &) for
each n. For this purpose we apply theorem 1 with N = Qp- In. this case
m(N, & = n and theorem 1 states that exactly one point {%&} .mth.k < n
belongs to (rgy’, (r--1)gn?). This point was denoted by P, if » is even
and by Py —r— if n i8 odd. In agreement wth (2.8) A, denotes the unique
positive integer not exceeding ¢y for which .

(4.3) Py = {i&}.

Tt will be necessary in this section to indicate that P, aJn‘d {1, depend on. 7.
Accordingly we shall denote them by P{" and A". Similarly we shall
write J® for the interval J, introduced in theorem 1. For each n, there
is a unique 7, such that (*)

" [P, P{V,) it n is even,
() DI =\ (P P] it s 0dd.

To avoid cumbersone notatiort we ghall use the following abbreviations:
(4.5) J(m) =J,  Pn) =PP,  A(n) =)

We now consider the multiples |(1(n)-dgy) &) for which A(n)+dga < gn+1y
d =0,1,... We always have, by the definition of 4(n)

© (4:6) - An) S dn-

B Ay € Gn_y then the values d =0,1,..., @y, are permissable and

i o 4 A(n) < g only the
J(n) is a “long interval” (see theorem 1). If gn_y < 3

values d = 0,1, ..., ty,, -1 are permissable and J(n) i8a “ghort interval”.
We put for »n even,

(4.7) dy = largest permissable d for which {(A(n)+dgs) &} <b.
For odd n, we define d,, in the same way except for a reversal of the ine-

quality in (4.7). To fix attention assume that n is even. One 1;161‘6137 lizz
to reverge most of the inequalities below to treg.t an odd n. We also assu

(8) This argument is reminiscent of theorem 1 in [11] part II.
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that 0¢J(n). Since 0 < b < 1, this holds for all sufficiently large n. Under
these circumstances we have, by (4.3) and (2.10)
d
(4-8) {(l(n)+d4n) 5} = _P(’I’b) + =y
On+1

and the definition of d, therefore implies

dy, dyt-1
4.9)  {{A(0)+dngs) &} = P(n)+ —— <b < P(n)+ ~—q,+
ne1 n41

£ {(Z ('I’b) ‘”"‘(dw» "|‘"l) Qn) 5}

whenever d,-1 is still a permissable value, i.e. if A(n)-(da-+1) g < ¢nyy.
This is certainly the case if '

(4.10) I < g1 —2

which we shall assume for the time being. From now on we also aggume
that b is not of the form {k&} for some integer k. The inequalities in (4.9)
are then strict. Following an idea of Ostrowski [9], we shall now construct
a sequence of M’s, defined in terms of d, and ¢, for which R(M, b) is
unbounded. To begin with we take

My == (Ap+1) gn,

which is less than ¢,,, because of (4.10),.and estimate R(M,, b). Since
bed (n) = JE) and n even, one has

(4.11)

0< PP <PM<...<PP<b<PP, <... <P,
Consequently

(4.12a) I < [0, b) if

i< Tny
(4.12b) IOA[00) =0 i r<i<g-2,
1
(4:120) JE, A 10,5) = [0, Py) = [0, Py
N1

Among the d,,g, multiples {k£}, gu-+1 <% < (dy+1) gn, there are by theorem
1 exactly d, in each interval J{. Therefore for each 0 < i < r, exactly
t;hs) (d4-1) points {k&} with 1 <k < (d,~+1)g, = M, which belong to
J{" also belong to [0, b), namely the points
a
PO4{dgnt) = PP+ ——, 0<d <dy.

N1

This is still true for ¢ = r(n) because of (4.9). For ¢ > r, no point in J™
belongs to [0, #). This is obvious for 7, < 4 < gn—2 from (4.12b). For

bm@
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i = ¢,—1 it follows from (2.10) with ¢,—1 substituted for ». These data
prove .
(4.13) CN (M E,0, b,) = (dp+1)(rn+1).

On the other hand, by (4.3) and (2.6)

Mn)pn | Alm) } o Am)
. P(n) = {A(n ={ et =
(4-14) () { & )E} An Inqn+1 In  QnGnya
and (4.9) and (4.6) therefore imply
A dp4-1 7 dp1-2
(4.15) P T OB K R i
On  Qnn+1 Qnt1 qn Q1

Combining this with (4.13) and (1.6) we obtain

(4.16) R(M,,b) = N(M,, & 0,b)—M,b
d,+1 ,
= r+ ((an+1'—dn—2>{ln+4n-—l)
G+
dp+1 1 )
> 1 — g =2+ ———— 1.
~ Upyy+2 (a =2 Qpyat1
It is easy to conclude from this
. 1
(4.17) R(Myn, ) = 78’
whenever
(4.18a) 0<dy < Uy —3
or
(4.18b) 0<dy=0ap—2 and agy., <6.

Because of the assumption that b 7 {k£} for all k there exists an &, >0
such that the number of 1 < &k < M, with 0 < {e-+%k&} < b =N (M, &, 0,b)
whenever |e| < .
In particalar this holds for
o= 3 oue)
Jnts

whenever ¢; integral, l¢;| < a;,; and ¢ sufficiently large, say § > a. In
fact, :

{ 2 e;q,-&}é 2 lejl{gs €} <
g5>nte

[ 1 4 3—(n+8)/2
I M g —— g2
9341

JSnts j>nts iZnte L4 Ints
since

U2 = 245
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‘We therefore obtain for |e;| < ay.q, 8 = 8,

wie) (3 oo+ 0, D)= ( 3 o0 £:0,0)

= number of 1 <k < M, with 0 {{ 2 e,q,&-&-k&} < b
. foan-8

= N(M,, &, 0,b).

Assume now that for infinitely many even n (4.18a) or (4.18b) holds,
We can then select a subsequence {n;} for which (4.18a) or (4.18b) holds
and such that
Mg t8n; K Mgy
By (4.19) we have then for
i

11
M= 3 My = 3 (Ao, +1) s

te=1 =1
4 ¢

(4.20)  N(M, £, 0,0) =Z(N( > Mo+ M,, £ 0,0)

f=1 =gl

i i
~N( 3 Moy £,0,0)) = SN (M, £,0,0)
el

=it 3
and, by (4.17) ‘

t
t
R(M,b) = gR(Mw, b >
Since ¢ can b.e Faken arbitrary latge, we see that R is unbounded if (4.18)
‘holds for infinitely many even n. The same conclusion is valid if (4.18)

holds for infinitely many odd ». From now on we may assume therefore
that for n > =,

(4.21a) 0 < apy—1 <d, < [
(since d, < @y, by definition), or
(4.21b) 0<dy=a,,—-2 and Mg 22 T,

We now investigate closer what happens if (4.21b) holds for infinitely
many 7. For the sake of argument assume again that n > n, is even
and that (4.21b) holds. (4.9) (with striet inequalities) states

g-im {2 +augn) &) < b < {(A(0)+(@n+1) ) £).
0

Mn)+dngn < A H{dn+1) g, < Gnp1n < Qnre
Moreover, by theorem 1, there is no % < Qny for which

{200 +2uga) £} < (B8} < ((Am)+(dn+1)ga) &}

bm@
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In other words, v
P = {(A(n)+dugs) &} and P = {(A(n)+(dn+1)ga) £}

are two adjacent points among the P{"*Y. Thus according to (4.4), (4.5),
and (4.22) we must have (n-+1 is odd)

J(n+1) = (P, P"],
(4.23) P(n41) =P = {{A(n)+(dy+1)g4) £},
An—4-1) = A(n)+(dp+1) gn-

The analogue of one half of (4.9) at the (n+-1)st stage becomes (recall
that (n+41) is odd)

. ty+1 dyy
b < (A0 s §) = Plnt1)— T = puy4 2T T,
nta Gn+1 2

1f we now substitute d, = a,.,—2 and use the fact that dnyy > dny—2
gince n4+1 > n > n,, we obtain in the same manner as in (4.15)

b < Tn + “n+1—(a'n+2‘“2)/af;n+2_
qn Qnia
‘With
My, = (@p1~1)¢n

as in (4.11), (4¢.13) remaing valid and (4.16) can now be sharpened to

Uny1—1 Gyyp—2 S 135
e e B .
Ay 2 alr:n+z 4 8

R(My, b) =

since ayy1 = d,+2 > 2 and a,,, > 7. As before we derive from this that
R(.M, b)is unbounded if (4.21b) occurs infinitely often. Thus if R is bounded
we may assume that (4.21a) holds as soon as » exceeds a certain n,. We
proceed to limit the possibilities for d, still further. Agsume that n > n,
and that )
(4.24a) dy == Gpyy
or
(4.24b)  d, = @y,—1 and J(n) is “short” (i.e. A(n) > gu_i)-
(assumption (4.10) is dropped now). In both cases d, has the maximal
permissable value of d for which A(n)+dg, < gny.. Let n be even again.
(4.9) now has to be replaced by
(4.25) {(A(n)+dngu) &} < b < PP, = (A0, 8}
since P{, is the right-hand end point of J(n) and there is no ¥ < guia
with

{(A(n)+Angn) &) < {08} < (A0, 8},

Acta Arithmetica XIL2
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The argument which led from (4.22) to (4.23) now shows that

(4.26a) J(n+1) = [{(l n "}'dnqrn)f} {l 115}1
(4.26D) P(n+1) = PPy, = (M. £},
(4.26¢) Mn41) = A < g

The last inequality follows from the definition of A{™ (see (4.3)) and will
be crucial for our argument. In particular it implies that J(n--1) is
a “long interval” and A(n-F1)4tnir@nsr € Goie- Since n >y, ngt
can only take the values a,,,—1 and ..

If we assume

(4.27) Angy = Gnys—1,
the analogue of (4.9) at the (n-1)st stage is

(4.28)  P(nA41)+{(dnsr+1) guyn &} = P(n+1)— 42 g

.2

P41+ {dn s guir £ = P(n1)— 2=l

Qs

§ince dyy;+1 = a,,, is"a permissable value for d and n--1 i8 odd. In
turn this implies

P(n+2) = P(n++1)+{tns,
and finally {Gnsa Gt}

(4.29) 5> P(n42)+{dnoGusé} = P(n+1)— ?‘?ﬁ + .t el

’ ?
Q2 Qs

sinee dyyp 2 Gpys—1 f0r n+2 =0 > n,.
Because (compare (4.14))

P(n41) = P0HY = (a(nt1)g) = 1 "Tuey | Al0td)

Qne1 D1 Qe
we obtain from (4.29) and (4.26¢)
(4.30) b e S O p LY ] “m«n“‘l_
Gn+1 Gnt1qnr2 ‘].;»-l-s
Qn—| 1 7'%+1 . qn.,.;,_m uan.w‘-—l 1
Dnt1 Qnv19n+2 “;w-n 'qim'

Under these circumstances we chooge

11{ = q,
and claim that e mradnt,

(4:31) V(M1 & 0,0) = Ot 2 (Gngt —Prir —1).
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Indeed none of the points P(n+1)-+{¢gn., €}, ¢ < tyyp—1, will belong
to [0, ) by the second inequality of (4.28). In each interval JI"*) with
Pup1 < T < @uy1—1 there will be exactly an.. points {ké}, & < My,
by theorem 1, and all of them belong to [0,d) and none of the points
(k&) in J&*Y with r < 7,4, belong to [0,D). (This argument is merely
a repetition of the proof of (4.13), now with an odd index). From (4.30)
and (4.31) we conclude

Atz * O3 Gnden Ay g2 Apyy . 1
R(Mpp1, b) < — 7 g < - ' e
Oyt Gnte Oppat+2 O3+l 6

As Dbefore this can only happen a finite number of times if R(M,b) is
to remain bounded and therefore (4.24) and (4.27) together can ouly
happen a finite number of times. Thus if R remains bounded we may
assume that for every n = n,

Oy —1 £ dy < Gy

but both (4.24a) and (4.24D) fail or (4.27) fails, This only leaves the follow-
ing possibilities for dn, n = n,.

(i) dy = @y - Then (4.27) must fail and hence dny; = @ny, and then
Ay = Oy for © = 0.

(i) dp = Gppy—1 and J(n) is a “short interval”. Again (4.27) must
fail, hence d,,, = Gy, and then by case (i) dypii = Gpyiqq Tor 7221

({ii) dn = tpy1—1 and J(n) is & “long interval”. Then A(n)-+tniidn
< Quyy and (4.9) is still valid. By the argument leading from (4.22) to
(4.23) we conclude that

T(n41) = ({(A(0) +-dugn) €}, {3 (1) + (dn+1)4a) £})

which has length
1 “;H- 2

{gné} = —— =

7
Qo1 In+a

and is therefore a short J{"Y. At the (n-+1)st step we are therefore in
case (i) or case (ii) and dy.; = dpiipq for € = 2.

The final conclusion is that if b is not of the form {k}, then E(M, b)
can only be bounded if d, = @ny, for n > ng = ny+2. However, as Te-
marked before (4.7), d,, = @,,; can oceur only if J(n) is a long inberval
and in addition it was proved in (4.26) that d, = a,,, implies

P(n+1) =P, = PPP4-(—1)"-length of J,

a'n+1+

Gnia

SP('”‘)‘*“("l)’ W)+{Qn5} {%w——lﬂ""
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Iteration of this formula shows
W1

P@) = Pu)+ 3 ({8 — (@1 D) H4 (=1~ 4(-1)"

f=ng
= {A(ng) £} {gn—1 &} = {gng1 &} (1) A ()"
and therefore (see (4.4))
b = lm P(n) = {1(ny) 5}“{({7@» 16} '|"“H1 + (- 1)”3) e {(Z(“a)“'qna-u)f}

N—>00

which is after all of the form {k¢}. Thus B(M, b) cannot be bounded unless
(4.1) holds.
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