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On the difference of consecutive terms
of sequences defined by divisibility properties
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Leb @, < a; < ... be an infinite sequence of integers satisfying

1
;< oo; denote by by < by < ... the sequence of integers not divis-

1 1
ible by any a. It is well known that the b’s have positive density and
henee it follows that by, /b;—>1. It is easy to see that this result is best
possible as it stands, in other words, that there ig no function f(z) tending
to infinity as @ — oo, 50 that for z > , there always isabin (@, o-+/f(@)
To see this let 3, &, < oo and leti ng > oo sufficiently fast. Let the sequence

: k

a; consist of the integers in the intervals (nk,fnk(l—l—sk)),k =1,2,...
Clearly

1
—< < oo
‘72 B % -

and if ng — oo so fast that epng > ng[f(ng), then the interval (ng, me+
+nk/f(nk)) clearly contains no b’s. On the other hand if we assume that
the a's are pairwise relatively prime, we can make very much stronger
statements about b;,,—b;. In fact, we shall prove the following theorems.
(Throughout this paper ¢ ¢, ... Will denote positive absolute constants.)

THEOREM 1. Let

1
) <o (@i, 07) = 1.
0 12

Then there is an absolute constant ¢ (independent of our sequence &y < S|
30 that for all sufficiently large « the interval (2, ©-+z'"°) contains b's.
Theorem 1 can probably be improved a great deal and quite possibly
by —b; = o(bf) holds for every & >0 if 4> io(¢). On the other hand I
shall show that there is a definite limit to the improvement of Theorém 1.
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TurOREM 2. There is a sequence a, < ... satisfying (1) so that for
infinitely many © (expz =€)

by 1 —be > exp (}(logbsloglog b)),

Denote by B(wu, ») the number of b's in the interval (u, v), and let «
be the densify of the séquence b, < ...

THEOREM 3. Let f(z) /'™ — oo for every e > 0. Then
(2) Bz, a+f(®)) = (ato(1))f(®).

Theorem 3 is best possible. Assume that there is a sequence @, —+ oo
5o that there is an & > 0 for which f(z;) < 23" Then there is a sequence
@, < ... patisfying (1) so that (2) does not hold.

Before we prove our theorems we discuss a special case. Let the a’s
be the squares of primes; then the b’s are the squarefree numbers ¢; <7 ...
The problem of estimating the maximum possible order of ¢;.,—g¢; is
very difficult. On the one hand it is known [2] that for every ¢ > 0 and
infinitely many 4

2 .
3) Get—gs > (1—e) 5 loggifloglog:
and on the other hdnd [5]

109556

i1 —Gi = 0(g5t* where =
Gir1—¢ (65, T YVOT

= 0.221b8h34.

It seems certain that g;.,—g; = 0(qf) for every & > 0 but this must be
very deep.

Let a, < ... be any sequence satisfying (1). Let
(4) Gy oo B KB < by oo Qylypy.

Usin.g 'the Chinese remainder theovem and an elementary sieve
Dprocess, it iy easy to see that to every ¢ > 0 there iy an w, = ®,(e) 80 that
for every » > @,(e) there is a b; < » for which

(5) byas—b; > (1—a)¢n (1~ L)"l,
A

where 'i‘is defined by (4). The proof of (5) which is very similar to that
7 of (3) will not be given in this paper. ;
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In general, (5) is best possible. It is not difficult to construct an
infinite sequence a, < ... satisfying (1) so that for every &>0 and
2> @ (e) every interval ‘

)

H (1— %)—1), t<aw

T==

(6) (t, T+ (14-2)d

contains a b; (¢ is given by (4)).

All the sequences @, < ... which I constructed to satisfy (6) increase
very fast. I do not know to what an extent this is necessary. I could not
prove that there ig a sequence satisfying (1) and a; < k* say, so that
—b; = o(b5) for every &> 0.

Now we prove Theorem 1. We use an idea of Estermann-Roth [4].
We need the following :

TEMMA. Lot m<dy <...<d <m-+y be a sequence of integers

satisfying (diy dp) =1, 1 <4 <J <t Put maxt = R(m, y). Then

bi+1

R(m,y) < ¢1y/logy.

Clearly for each p < y there can be at most one d; which is a multiple
of p. Hence by a simple argument (m(y) denotes the number of primes
<y and A(m,y) denotes the number of integers m < u < m-+y all
whose prime factors are greater than y) we have :

(M) R(m,y) < m(y)+A(my).
Now by a well-known result (easily deduced by Brun’s method),
8 A(myy) < cayflogy. '

Lemma 1 immediately follows from (7) and (8).

Now we are ready to prove Theorem 1. Let ¢ < min 1/(2+2¢,) and
%k =k(c) a sufficiently large integer. Denote by I(») the number of
integers @ < t < x-+o'"° for which :

t = 0(moda,) for some 1<é<k.
I,(») denotes the number of integers » <t < @k ~° for which
t = 0(moda;) for some ap <& < e,

and finally I,(z) denotes the number of integers & <t < z-+a'° satisfying
) { = 0(moda;) for some o< @< o+a%  but
t £ 0(moda;) for all a; < s

We evidently have ;
10 B(@, x+2"") > o' — (@) —Ta(@) —L;()-

Acta’ Arithmetica XII.2
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. . 1 ‘
A simpl ¢ i —_
. ple sieve argument shows (using Z “ < oo) that for every
> 0 if k is sufficiently large (k > %o(7)), then
(1) Li(2) < & ~°(L—a-+n).

A 1
Again using 2—;'— < oo 'we obtain that for &k > ky(z)
41

1—c .
(a2) Lie) < ([ w+aw' ]... [%—]) <o - + 1< .
Z i i Z &% Z/ ) ’
apeai—C

ap<a<al—C ik

. 1
Since, by )’ — < oo, D 1=0(y). In the estimation of 1, (v) and I,(s)
. % a;<y )
we did not use (a;, ¢;) = 1. Thiy condition will be i i
hilariaiy , needed in the estima-

By assumption, we have ¢ << 4. The integers ¢ istyi

. satist;
then be of the form b;a; where ® ying (0) sk
(13) < by <aota'™%  a>aTC

To see this observe that if 1 satisfies (9) we mu
st have ¢ = 0(moda,)
for some a; > #'7° 1
S b:. and by ¢ < 4, t/a; < a°, whence by (9), t/a; must be
For fixed ¢ the number of iﬁtegers of the f i
orm (13) is by L
clearly not greater than (now we use (a;, a;) = 1) . v homma

* ml—c ml——a 1—c
) e o R e
z,ii<“1 w+:{—° ; ogw[b; (1‘—-—2c)loga;—-1

Hence by (14) the number of integers satisfying (13) is less than

(1) e @' Z 1

(1—2¢)logz—1 b
bi<a®+1

Since the density of the b’s is e, we have

1
(1f.i) o= calogw+-o(logw).
by<alt1 v
From (13), (15), and (16) we finally obtain
7 Iy(@) < (140(1)) —2— g'0q <  pt=
. (L40(1)) T, % ca <-2—a01 ¢

gince ¢ << 1/(2+2¢,).
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From (10), (11), (12), and (17) we finally obtain that, for sufficiently
small 7
B(o, o+a'™0) > =0 (L—atn) =o' — —g—wH = (—;— —2n)m"° >0
which proves Theorem 1.

Now we pass to Theorem 3. The proof of Theorem 3 is very similar
to that of Theorem 1 and we leave it to the reader. On the other hand
we prove in gome detail that Theorem 3 ig best possible. Let f(x) be such
that there is a sequence &y —> o0 for ‘which f(w) < x * for a fixed & > 0.
We then show that there is a subsequence of the &, (denoted for simplicity
also by @) and a sequence &, < ... gatistying (1) so that

(18) Blwy, @ptmr ™) < (a—n)az

for a fixed n > 0. In other words, (2) cannot hold.

We construct our sequence @ <<... satisfying (1) as follows: Let
the sequence & tend to infinity gufficiently fast. The sequence a;, < ...
consists of the primes in the intervals

1—g
Ly P Y £
(Tk’7+”'}£t“)’ E=1,2,..;1<t<af
A simple computation which we leave to0 the reader shows that our
sequence satisfies (1).
Clearly,

(19) B (g, tptai*) = 2 —Us—Us

where U, denotes the number of integers in (a0, o405 *) which are divis-
ible by an a; < 3~ and U, denotes the number of those integers in
(a5, Dx+o}) which are divisible by an a; in (@™, @y ) but not divis-
ible by any a; < a3 ° Denote the density of the b’s by o. By 2 gimple
gieve process we obtain

(20) Uy =(a +o(L))a ™"

Ag in the proof of Theorem 1 we obtain that the integers of U, are
of the form

bag, by < dhtl, ok <o < oo
and hence by the definition of the a/s these are the numbers of the form

1/ ‘o +ml—.
bj}), 1<b¢<mf, ’b”i<p< kbk ’
1 ]
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Now by the theorem of Hoheisel [3] for sufficiently small ¢ the
number of primes in

(ﬂ vwlc'l‘mllcmz )

b’ by
ig greater than
1 oz
2 blogwy’

and hence the number of integérs satisfying (21) (or U,) is greater than

11—z
@y, v 1 & 4,
= (a0 (1)) —
' Yloga, £ by fatot) g o

by<zy,

(22)

since the density of the b’s is «. (18) follows from (19), (20), and (22),
and hence we proved that Theorem 3 is best possible.

Now we prove Theorém 2. A theorem of de Bruijn [1] states that
if p(@,y) denotes the number of integers < & whose all prime factors
are <y and y > (logz)?, then ‘

@
(23) p(@, ) < - where 4° <@ < ¢t

Pub w;, = (logzloglogm;) ™. From (23) we obtain by a simple com-
putation that for every k if z;, is sufficiently large, then

(24) L7 (wk, k?exp (%)) < wpexp(—uy).

Let }
[hA U
M, r=1,2,.., [—z-l—exp(_.—f_)],

be disjoint intervaly of length [exp(w;/4)] in (#,/2, #). It immediately
follows from (24) that for at least one of these intervals, say Iﬁ":k}, all
the integers in Iﬁ’;{k, have their greatest prime factor greateor than
kexp(uz/4). For every %k =1,2,... and each integer of I:@” congider

the greatest prime factor of this integer. The set of all these primes will
be our sequence a, < a, < ... Clearly 2~£—< oo gince for a fixed & we
. T A

obtain [exp(u,/4)] primes all greater than k*exp (u,/4); hence '

Ji<diow
—_ — < o0,
! k=lk2

icm®
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By our construetion, none of the intervals .zg:g,, k=1,2,..., contain

any b's and hence Theorem 2 i§ proved. . . .
The proof of Theorem 2 leads to the following questions which seem
to be of independent interest.
Put

' . X711
25 F(u,») = min »
(25) ’ ; Pi

where in (25) the summation is extended over a set py < ... of primes for
which every u < m < v is divisible by at least one p;. Similarly,

. 1
(26) J(u, v) = min -;i—

where in (26) the minimum is taken over all sets of integers a; <...,
(a;; a;) = 1 for which every u <m <w is divigible by at 1e§st one a;.
g(u,v) is defined as f(u,v) but the  condition (a;, a;) =1 is omitted.
Clearly
g{u, v) <flu, ) < F(4, )
and
1
§(2,0) = f(2,0) = P2, 0) = D)

P<Y

Tt seems difficult to obtain good estimations for f(w, v) and F(w, ).
I proved that then

Hm F(u, u-+t) = ¢ and Lmf(u, u+t) = 0,

U=00

g(u,v) is easier to handle. It is easy to see that for v < 2u

v—1
1
g(u,v) = Z“l‘i

lmtt

bus if v is large compared t0 %, then g(u, v) may also be hard to deberminea
The proof of Theorem 1 gives that there is an &> 0 and a ¢>
80 that for every u

(27) L fuuput) > e

but (27) is probably very far from being best possible.
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On two problems of Erdds, Sziisz and Turédn
concerning diophantine approximations

by
H. Kesrex* (Ithaca, N. Y.) and V. T. 86s (Budapest)

1. Introduction. The present paper concerns itself with the following
pair of problems posed by Erdos, Szilsz and Turdn [2]:

ProBrEM 1. For A >0, ¢ =1, let

S(N, A, ¢) = set of £¢[0,1] which satisfy |bE—a| < Ab~" for
some integers a,b with ¥ <b < ¢N, (@, b) = 1.

Does

1) - lim|S(N, 4, ¢)|
N-yoo

exist, and if so, what is its value? (If ¢ is a set, |C| denotes its Lebesgue
measure. )

If |bg—a| < (20)7, then a/b must be a continued fraction convergent
_of & ({5], Chapter 10.) The next problem is therefore closely related to
problem " 1.

ProBLEM 2. For ¢ =1, let

T(N, o) = set of £e[0,1] which have at least one continued
fraction convergent Pa/¢. With ¥ < dn L ¢N.

Does
(1.2) lim |T{N, o)

N—oo
emist, and if so, what is its value?

Originally, these problems were treated by means of the methods
of the article immediately following this one [7]. It was noticed, however,
by the second author that a much simpler, almost self conta,inefl treat-
ment of these problems is possible and it is our aim to present this treat-
ment here.

* Alfred P. Sloan Fellow.
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