On the units of cyclotomic fields

by

K. Ramachandra (Bombay)

§ 1. Let \(f \geq 1 \) be a natural number with \(\varphi(f) > 2 \), \(\varphi \) being the Euler totient function. Let \(a \) be a primitive \(f \)th root of unity and \(Q(a) \) the cyclotomic field generated by \(a \) over the rational number field \(Q \). It is clear that for \((s, f) = 1, 1 < s < f/2 \), the numbers

\[
 u_s = \frac{a^s - 1}{a - 1}
\]

are units of \(Q(a) \). Some time back Professor J. Milnor(1) asked the following question: Do the units \(u_s \) together with \(\pm a \) form a basis for the units of \(Q(a) \)?

In this note we prove the following two theorems.

Theorem 1. Let \(f = \prod_{i=1}^{k} p_i^{a_i} \) be the prime factor decomposition of \(f \) and for \(1 < s < f/2, (s, f) = 1 \) let

\[
 v_s = \prod_{i=1}^{k} \left(\frac{1-a_{p_i^{a_i}}}{1-a} \right)
\]

where the product is extended over all \(a_i = 0 \) or 1, \(i = 1, 2, \ldots, k \), except \(a_1 = a_2 = \ldots = a_k = 1 \). Then the \(\frac{1}{2} \varphi(f) - 1 \) units \(v_s \) of \(Q(a) \) generate a subgroup of finite index in the group of units of \(Q(a) \).

Theorem 2. Let \(p \) and \(q \) be two odd primes dividing \(f \), \(q \) having the property that the residue class group \(\mathbb{Z} / q \mathbb{Z} \) has a nonprincipal character \(x \) with \(x(-1) = 1 \), and \(p \equiv 1 \pmod{q} \). Then the units \(u_s \) defined in (1) are multiplicatively dependent.

Theorem 1 shows that if, in particular, \(f \) is a power of a prime, then the units \(u_s \) in (1) are multiplicatively independent, and hence generate

(1) In a letter to Professor K. G. Ramanathan dated 6th February 1964.
a subgroup of finite index in the unit group of $Q(a)$. Theorem 2, in addition shows that if f is composite and divisible by at least two distinct odd primes the units u_i need not be independent. In the case of the units v_i of Theorem 1, the index of the subgroup generated by v_i in the group of all units of $Q(a)$, is intimately connected with the class number of the cyclotomic field $Q(a)$. These results in a more general setting will appear elsewhere.

After this paper was written we came to know from Professor Hyman Bass that he had proved some theorems which gave a system of units generating a subgroup of finite index in the group of all units of $Q(a)$, this system being in general bigger than the maximal set. He has also a fairly simple proof of Theorem 2. However, our point of view is different and Theorem 1 appears to be new.

We should also mention that in the case where $f = p$ is an odd prime greater than 3, Theorem 1 is proved in Siegel's [7] lectures.

§ 2. In this section we set our notations and terminology and prove three lemmas which lead to the theorems stated in § 1. We denote by \mathfrak{A}, the multiplicative group of residue classes prime to f modulo the subgroup generated by the classes 1 and -1. Let χ be a nonprincipal character of \mathfrak{A}. Now if $f_1 > 1$ is a divisor of f then we have a map from \mathfrak{A} to \mathfrak{A}_{f_1} which takes a class E of \mathfrak{A} to the class of \mathfrak{A}_{f_1} represented by a representative of E. This map is well defined and onto. It may happen that for some divisor f_1 of f, χ will pass to a character of \mathfrak{A}_{f_1} if it passes to a character of \mathfrak{A}, it also passes to a character of \mathfrak{A}_{f_1} where $f_1 = (f_1, f_2)$ is the g.c.d. of f_1 and f_2. In this way we arrive at the least divisor f_1 of f such that χ will not pass to a character of \mathfrak{A}_{f_1} for a divisor f_1 of f_1, $f_1 \neq f_2$. The character of \mathfrak{A}_{f_1} derived from χ will be denoted by χ_{f_1}.

Let g be a divisor of f, $1 \leq g < f$, and write

$$q_{f_1}(R) = \log(1 - e^{\pi \sqrt{f_1}})$$

where r is a representative of the class R of \mathfrak{A}_{f_1}.

Lemma 1.

$$V_{f_1}(\chi) = \sum_{R \in \mathfrak{A}_{f_1}} \overline{\chi}(R)q_{f_1}(R)$$

where $T(f_1)$ is a certain gaussian sum of absolute value $\sqrt{f_1}$ and $\overline{\chi}$ is the complex conjugate character of χ.

Proof. If r is a representative of R we write $\chi(R) = \chi(r)$ and $\overline{\chi}(r) = 0$ if $(r, f_1) > 1$. Now

$$V_{f_1} = \sum_{R \in \mathfrak{A}_{f_1}} \overline{\chi}(R) \log(1 - e^{\pi \sqrt{f_1}}) + \log(1 - e^{-\pi \sqrt{f_1}})$$

$$= \frac{1}{2} \sum_{r \in \mathfrak{A}} \overline{\chi}(r) \log(1 - e^{\pi \sqrt{f_1}})$$

$$= \frac{1}{2} \sum_{r \in \mathfrak{A}_{f_1}} \overline{\chi}(r) \log(1 - e^{\pi \sqrt{f_1}})$$

such rearrangements being permissible since we could have started with the series in (5) with $e^{\pi \sqrt{f_1}} (\sigma > 1)$ in place of $e^{-\pi \sqrt{f_1}}$ and then passed to the limit $\sigma \to 1$.

Let

$$f = \prod_{i=1}^{k} \prod_{j=1}^{n_i} \prod_{l=1}^{m_i} \prod_{s=1}^{p_{ij}} p_i^{a_i} \quad (i,j,l,k,n_i,m_i,s \geq 1, a_i > 0, j = 1, \ldots, k),$$

$$f_s = \prod_{i=1}^{k_s} \prod_{j=1}^{n_s} \prod_{l=1}^{m_s} \prod_{s=1}^{p_{ij}} p_i^{a_i} \quad (1 \leq s \leq k, 0 < r_i \leq n_i, j = 1, \ldots, k),$$

$$h = \prod_{i=1}^{k_h} \prod_{j=1}^{n_h} \prod_{l=1}^{m_h} \prod_{s=1}^{p_{ij}} p_i^{a_i} \quad (1 \leq h \leq k, 0 < r_i \leq n_i, j = 1, \ldots, k).$$

Now as a runs through a complete system of coprime residues $b \mod f$ and β through a complete system of coprime residues $\mod h$, the numbers

$$r = f \cdot a + \frac{f_s}{h} \quad \beta$$

run through a complete system of coprime residues $\mod f$ each only once. Thus we have

$$T_{f_1}(\chi) = \sum_{r \in \mathfrak{A}_{f_1}} \overline{\chi}(r) e^{\pi \sqrt{f_1}} = \sum_{r \in \mathfrak{A}_{f_1}} \overline{\chi}(r) \sum_{a \in \mathfrak{A}_{f_1}} e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}$$

$$= \sum_{a \in \mathfrak{A}_{f_1}} \overline{\chi}(a) \sum_{r \in \mathfrak{A}_{f_1}} e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}$$

$$= \sum_{a \in \mathfrak{A}_{f_1}} \overline{\chi}(a) \sum_{r \in \mathfrak{A}_{f_1}} e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}$$

$$= \sum_{a \in \mathfrak{A}_{f_1}} \overline{\chi}(a) e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}$$

$$= \sum_{a \in \mathfrak{A}_{f_1}} \overline{\chi}(a) e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}$$

$$= \sum_{a \in \mathfrak{A}_{f_1}} \overline{\chi}(a) e^{\pi \sqrt{f_1} \log(1 + \frac{f_s}{h})}.$$
The sum in the second bracket vanishes unless \(h f_x \mid ng \). In this case the sum is \(h f_x \), and further since \(ng/h \) will have an exact denominator which divides \(f_x \), the sum in the first bracket will vanish unless \(ng/h \) will have exact denominator \(f_x \). The sum in the third bracket is the Ramanujan sum \(C_{\alpha}(ng) \) (properties necessary will be stated below and are not hard to prove). Thus

\[
T_{f_x}(\chi) = \frac{1}{f_x} \left(\frac{h}{f_x} \right) C_{\alpha}(ng) \sum_{\alpha \mod f_x} \frac{\chi(\beta)}{\beta} e^{2\pi i ng/\alpha} \quad \text{if} \quad (h, ng) = \frac{1}{f_x}.
\]

It is a standard result that the sum

\[
\sum_{\alpha \mod f_x} \frac{1}{\alpha} \left(\frac{\delta, \eta \mod f_x}{\alpha} \right) e^{2\pi i \delta \eta/\alpha} = T(f_x)
\]

is independent of \(\delta, \eta \) and is of absolute value \(f_x \). Hence

\[
T_{f_x}(\chi) = \frac{1}{f_x} \left(\frac{h}{f_x} \right) C_{\alpha}(ng) \sum_{\alpha \mod f_x} \frac{\chi(\beta)}{\beta} e^{2\pi i ng/\alpha} = T(f_x)
\]

if \((h, ng) = \frac{1}{f_x} \).

Also

\[
C_{\alpha}(ng) = \frac{1}{f_x} \left(\frac{h}{f_x} \right) C_{\alpha}(ng)
\]

by the multiplicative property of the Ramanujan sum and

\[
C_{p^3}(ng) = \begin{cases} 0 & \text{if} \quad (ng, p^2) \neq 1, \\ -p^2 & \text{if} \quad (ng, p^2) = 1, \\ p^2 & \text{if} \quad (ng, p^2) = p^2.
\end{cases}
\]

We now go back to the series (5) for \(V_{f_x} \). If \(f_x \mid f/g \), i.e. \(g \not\mid f/f_x \), then (8) vanishes identically by (8) or directly from the definition of \(f_x \), since the series in the curly brackets in (5) is an invariant of the classes of the quotient of \(\mathscr{A} \) modulo \(\mathscr{A} f_{f_x} \). As for the series (6), we write

\[
g_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j} \quad (0 < l_j < a_j; j = 1, \ldots, k),
\]

\[
g_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j} \quad (0 < l_j < a_j; j = i+1, \ldots, k),
\]

\[
g_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j}, \quad g_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j}, \quad g_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j}
\]

\[
h_x = \prod_{j=1}^{k} p_{\alpha_j}^{l_j} \quad \left(\frac{f}{h_x} \right)
\]

The condition \((ng, h) = h f_x \) for \(n \) now reads

\[
\left(\prod_{j=1}^{k} p_{\alpha_j}^{l_j} \right) n = \frac{1}{f_x} \prod_{j=1}^{k} p_{\alpha_j}^{l_j} n,
\]

and so all such \(n \) are given by

\[
u = \left(\prod_{j=1}^{k} p_{\alpha_j}^{l_j} \right) m_x = \frac{h m_x}{f_x g_x}
\]

where \(m_x \) runs through integers prime to \(h \), i.e. to \(f_x \). Inserting (12) into (6) and using (8) we get

\[
V_{f_x} = \frac{1}{f_x} \left(\frac{h}{f_x} \right) T(f_x) \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{C_{\alpha}(ng) n}{f_x} \right) \text{ if } g \not\mid f_x,
\]

where \(\sum_{n=1}^{\infty} \) denotes the sum over integers given by (12). We have

\[
X_x \left(\frac{ng}{f_x} \right) = X_x(m_x) X_x \left(\frac{h y}{g f_x} \right)
\]

By (9) and (10) we may restrict the sum only to those \(n \) for which

\[
\left(\frac{ng}{f_x} \right) = \left(\frac{f}{f_x} \right) = \prod_{j=1}^{k} p_{\alpha_j}^{l_j} \quad (\alpha_j = 0 \text{ or } 1, j = i+1, \ldots, k).
\]

Observing further that for those \(f \) for which \(p_j / g, \eta_j \) has necessarily to be zero, the summation may further be restricted only to those \(n \) for which

\[
\nu = \left(\prod_{j=1}^{k} p_{\alpha_j}^{l_j-\eta_j} \right) m_x \frac{h}{f_x g_x}
\]

where \(m_x \) is coprime to \(f_x \prod_{j=1}^{k} p_{\alpha_j}^{l_j} = f_x k_1 \), say. Hence the summation may be split up into \(2^{-l+\infty} \) parts (where \(\mu \) is the total number of prime factors of \(g_x \) each with a different choice of the numbers \(\eta_j \) \(j \geq l+1, \eta_j < n_j \)). With a particular choice of the numbers \(\eta_j \) we have in case \(g \mid f_x \) the contribution

\[
\sum_{n=1}^{\infty} X_x \left(\frac{ng}{f_x} \right) C_{\alpha}(ng) n^{-1}
\]
to the sum over n in (13); here the sum is over all numbers n of the form (15). We have

$$
X_{\alpha} \left(\frac{mgf_{m}}{f} \right) = X_{\alpha}(m) X_{\alpha} \left(\frac{gh_{k}}{f_{k}} \right) X_{\alpha} \left(\frac{h_{k}}{g_{k}} \right) \prod_{p|\alpha, n^{2}} X_{\alpha}(p^{n} p^{'-1}),
$$

(17)

$$
\sigma \left(\frac{g, h}{b, a} \right) X_{\alpha}(a) = \prod_{p|\alpha, n^{2}} \left(\frac{\sigma(p \cdot p')}{\sigma(p)} \right) \prod_{p|\alpha, n^{2}} \left[\left(\frac{\sigma(p \cdot p')}{\sigma(p)} \right)^{-1} - \left(\frac{\sigma(p \cdot p')}{\sigma(p)} \right) \right] = \sigma \left(\frac{f}{h} \right) \prod_{p|\alpha, n^{2}} \left(1 - \frac{1}{p} \right) ^{-1} \times \prod_{p|\alpha, n^{2}} \frac{X_{\alpha}(p)}{m},
$$

Hence if $g[f]/f$, we have, for V_{α} from (13), the expression

$$
-\frac{1}{2} \frac{X_{\alpha}(h_{k})}{g_{k}} \prod_{p|\alpha, n^{2}} \left[-X_{\alpha}(p) \right] \prod_{p|\alpha, n^{2}} \left(1 - \frac{1}{p} \right) ^{-1} \times \prod_{p|\alpha, n^{2}} \frac{X_{\alpha}(p)}{m}.
$$

(18)

$$
\Psi_{\alpha}(R) = \Psi_{\alpha}(E) = \sum_{\sigma \in \sigma_{\alpha}} \sigma^{\alpha_{1} + \cdots + \alpha_{n}} \chi_{(\sigma \cdot (a + b)) \cdot c} = \sum_{\sigma \in \sigma_{\alpha}} \sigma^{\alpha_{1} + \cdots + \alpha_{n}} \chi_{(\sigma \cdot (a + b)) \cdot c} \times \prod_{p|\alpha, n^{2}} \left(1 - \frac{1}{p} \right) ^{-1} \times \prod_{p|\alpha, n^{2}} \frac{X_{\alpha}(p)}{m},
$$

the sum extended over all $(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)$. We then have

(19) $U = \sum_{\sigma \in \sigma_{\alpha}} \psi_{\sigma}(R) = -\frac{1}{2} T(f_{k}) L(1, \alpha) \prod_{p|\alpha, n^{2}} \left(1 - \frac{\sigma(p \cdot p')}{\sigma(p)} \right) = \prod_{p|\alpha, n^{2}} \left(1 - \frac{\sigma(p \cdot p')}{\sigma(p)} \right) = \prod_{p|\alpha, n^{2}} \left(1 - \frac{\sigma(p \cdot p')}{\sigma(p)} \right).$

We now define the function (constructed from (3))

$$
U = \sum_{\sigma \in \sigma_{\alpha}} \psi_{\sigma}(R) = -\frac{1}{2} T(f_{k}) L(1, \alpha) \prod_{p|\alpha, n^{2}} \left(1 - \frac{\sigma(p \cdot p')}{\sigma(p)} \right) \prod_{p|\alpha, n^{2}} \left(1 - \frac{\sigma(p \cdot p')}{\sigma(p)} \right)
$$

(20) $\sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \chi_{(\sigma \cdot (a + b)) \cdot c} = \sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \chi_{(\sigma \cdot (a + b)) \cdot c} = \sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \chi_{(\sigma \cdot (a + b)) \cdot c}$

because all our calculations fail when all the e's are equal to 1 (and to avoid this trouble) we could have taken continuous invariants

$$
\psi_{\sigma}(R, \alpha) = \frac{1}{2} \sum_{\sigma \in \sigma_{\alpha}} \sigma^{\alpha_{1} + \cdots + \alpha_{n}} \chi_{(\sigma \cdot (a + b)) \cdot c} = \frac{1}{2} \sum_{\sigma \in \sigma_{\alpha}} \sigma^{\alpha_{1} + \cdots + \alpha_{n}} \chi_{(\sigma \cdot (a + b)) \cdot c}
$$

and come to the conclusion that the term for which $f = g$ is zero.

Next we prove

Lemma 3. Let α be a primitive f-th root of unity and w_{α} as defined in (1). Then for a non-principal character χ of \mathbb{R}_{F},

$$
\sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \psi_{\sigma}(R) = \frac{1}{2} \sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \psi_{\sigma}(R) = \frac{1}{2} \sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \psi_{\sigma}(R)
$$

where ϕ_{α} is a certain root of unity depending on α and χ.

Proof. Let $\alpha = \sigma^{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \cdot (b, f) = 1$. Then $\log \left| 1 - \frac{\sigma^{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \cdot (b, f)}{\sigma^{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \cdot (b, f)} \right| = \psi_{\chi}(R_{\alpha})$ where R_{α} is the class of b. Hence

$$
\sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \psi_{\sigma}(R) = \sum_{(a_{1}, a_{2}, \ldots, a_{n}) \neq (1, 1, \ldots, 1)} \psi_{\sigma}(R) = \chi_{(\sigma \cdot (a + b)) \cdot c} \psi_{\chi}(R_{\alpha}) = \chi(R_{\alpha}) V_{R_{\alpha}}
$$

and this proves Lemma 3.
§ 3. We now prove Theorems 1 and 2 stated in § 1.

Proof of Theorem 2. Let \(\psi \) be the real nonprincipal character mod \(q \) for which \(\psi(-1) = 1 \). We extend it to a character \(\chi \) of \(\mathbb{Z}_q \) in a natural way (since \(\mathbb{Z}_q \) is a quotient of \(\mathbb{Z} \)). For this character \(\chi \), Lemma 3 at once gives

\[
\prod_{(a) = 1, 1 \leq a < q} \psi \left(\frac{a^\theta}{a^\eta} \right) = 1
\]

whenever be the primitive root \(a \) with which we start. Hence the unit

\[
\prod_{(a) = 1, 1 \leq a < q} a^{\psi(r_{a})^{\eta}}
\]

is a root of unity.

Proof of Theorem 1. Denote the elements of \(\mathbb{Z}_q \) by \(E_1, E_2, E_3, \ldots \), \(E_q \) being the unit element. Let \(\psi(E) = \prod_{t \leq q} (1 - \alpha_t^{E_{t1}^{E_{t2} \cdots E_{tn}^{E_{tn+1}}}}) \), the product being extended over all \(k \)-tuples except \((1, 1, \ldots, 1)\), and \(r \) being a representative of \(E \). Now we have \(\psi = \psi(E_1) = \psi(E) \) and if the units \(\psi \) are dependent, say \(\prod_{(a) = 1, 1 \leq a < q} a^{\psi(a)} = 1 \), on applying the isomorphisms \(E \mapsto E^{-1} \) we have

\[
\prod_{(a) = 1, 1 \leq a < q} a^{\psi(E_{a}^{E^{-1}})} = 1 \quad (j = 0, 1, 2, \ldots)
\]

i.e.

\[
\sum_{a \neq 0} b_i \log \frac{\theta(E_i E^{-1})}{\theta(E_{-i})} = 0 \quad (j = 0, 1, 2, \ldots)
\]

where we have changed \(a \) to \(i \) and replaced the expression for \(\psi \) in terms of \(\psi(E) \). Since \(b_i \) are not all zero, we have

\[
\text{determinant} \left| \psi(E_i E^{-1}) \right| = 0.
\]

But by Dedekind-Frobenius group determinant formula the determinant on the left is nothing but \(\sum_{E} x(E) \log(\theta(E)) = \sum_{E} x(E) \psi(E) \) by (19) and this contradicts (22). Hence Theorem 1 is proved.

References