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ACTA ARITHMETICA
XI (1965)

On a cyclic sum of Mordell
by
VicTor J.D. BAsToN (Southampton)

1. Introduction. In [1] and [2] Mordell and Diananda respectively
have considered for what values of 1 the inequality

n n
(1.1) (@) =2 3 wul@cat+oim) > 0,

f=1 1=1

where @,_; = #; = 0 for all 7, holds. The results obtained so far are sum-
marised by two theorems in [2], which we state here for the sake of
completeness.

THEOREM A. Let #,.; = @; for all i. Then for given m,n > 0 there

is a constant A(m,n), 0

0 if A<

n
< Am,n) < —, such that (1.1) is true for all
m

Lyyoeny By 2 A(m,n) and false for some @y,...,% =0 if
A > A(m, n).
TagoreEM B. The constants .(m,n) are such that

(i) A(m, n+1) = A(m,n) = A(m-+1, %),
) A(m,n) = ﬁ if alm-+2 or 2m or 2m+1 or 2m+2,
m

or if nlm-+-8 and n =28 or 9 or 12,
or if nlm+4 and n =12,

n R
and A(m,n) < — otherwise,
m

211+

(iii) A(m,n) = if n>2m-+2,

12n

) 2 y o 12m
(iv) A(m,n) T i2m_6

if n2m—1 and n > 6,

Am—Fkn,n
(v) A(m,n) = ]j%mr);b_ ifkn<m (E=1,2,...).
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From these theorems we see that the only upper bound known for

. . n 12 L.
A(m, n) when m+2 <n<2m—1 is mm{—y;b—,7}. In this paper we

prove that:
(1) For a fixed positive integer ¢ =3 and m >ma.x{2t,§t+2},
4(t+2)
2m—1) = ————.
(1.2) Mm, 2m—1) =
(2) When ¢ = 3,
4(1+2)

(1.3) M7, 11) < Alm, 2m—1) < for m>=1.

3t 4
(3) For m+2 < n < 2m—1,

2(r+1){(r+1)(m+1)—ra}

. <
(1.4) A ) S S T+ D m— £ 2r (e 1)’
2 1
where » is the integer such that T é-q—’b- < r+ .
r41 m r o

%is a better bound for A(m, n) only for A(6, 9) in the range considered.

Although this case shows that strict inequality holds in (1.4) in at least
one case, (1.2) shows that equality does hold for » = 1, ¢ 5= 3. It therefore
seems likely that equality holds in (1.4) except possibly for a few par-
ticular cases.

2. In this section we prove that, for a fixed positive integer # and
m =241, A(m, 2m—1) < 4(¢+2)/(3i+4), and also that, if strict in-
equality holds, then any sequence which requires A = A(m, 2m—1) in
(1.1) can contain at most 2¢-+3 positive terms.

L3
Consider (1.1); the case >, = 0 being trivial since z, > 0, we may
r=1

n
suppose by homogeneity that }w, = 1. Hence (1.1) becomes

r=1
n

(2.1) 1>2 Zw,(m,+l+...+w,+m) = (@1 ey n),

=1
n

where fu(:, ..., @) = 3 Bp(@pyyto+2,m). Clearly (2.1) holds for
foss

all sufficiently small A, so A(m, n) > 0 and we have

1
2.2 -
(2.2) Fnl@ey vvey @) < Ch
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DEFINITION. A tazimal sequence is a sequence of non-negative
n

1
numbers &, ..., x, where 3w, =1 such that f (2, ..., %) = ——.
F=1 A{m, n)

Let %1, ...,¥n be a maximal sequence of f,(z,...,a,) then since
n
9, 2 0 for all 7 we may temporarily write y; = #7. Since ) 2; =1, by La-

r=1

grange’s method the condition for f,(y,,..., ¥,) to have a maximum is

B

that, if 4 = fu(23, ..., 23) —k{ D'2i—1} where k is a constant, then a—u =
i=1 i

=0for2=1,...,n, Le.
2z, > £=24k (i=1,...,1).
o<li—ijm
Hence reverting to the 9; we must have at least one of
2 4=k

o< |f-ilsm

(2.3) ;=0 and for each 7 (i =1,...,n).

Let P be the subset of 1, 2, ..., n for which only the second equality
of (2.3) holds and # = 2m—1i where 1 ¢ << m—2, then, since _}Ey, =1,
(2.3) gives =
(2.4) =9+ Yrsmi T¥rmotpr e+ Yrim =k (reP).

If P contains » members then on adding the p equations of (2.4)

we obtain
r— ;yr'{‘ ; (Yromette e T Yrom) = Pk,

Since Yy, =1 and, for fixed s (s =0,1,...,%) D¥rms<1 Wwe
therefore ]:;ve p—1+(t4+1) = pk, ie. "
(2.5) E<1-+tp.
- Now, using (2.3) we obtain

oty or ) = D] D =Dk =k
reb 0<|i—rj<m reB
Hence, since ¥, ..., Yam_¢ is & maximal sequence, we have from (2.5)
(2.6) A(m, 2m—1) = 2 > _219~
k p+t

In the above we have only assumed that #,..., ¥, is & maximal
sequence of fo, (%1, «« -5 Zy)y 80, if fin(@y, ..., #,) has more than one maximal
sequence, we may choose for 4y, ..., ¥, & maximal sequence which containg
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at least as many positive terms as any of the remaining maximal sequence,

and then (2.6) will be true for the value of p of this maximal sequences.
Consider # = 2m—1t when ¢ is even, say ¢ = 2s, then for the sequence

defined by 2; =8 = ... = &1 = 1/2(s+1) =25 a1 = Fmespy = oe0 =

= 2y, and 2 =0 othelwme, we have, for m = i +1,

(2.7)  falRry ooey 2a)

= ———2—1—)2{(2s+2—1)+(28—|—2~2)+...+(2s—|—2——8—1)}

4(s+4
3s+2
(+l)2{2 (s41) %(8+1)(8+2)}=m
—_--4%-__% since t = 2s.

Now consider n = 2m—1t when ¢ is odd, say ¢ = 2s—1, then for the
sequence defined by #; =2, = ... =2 =1/(28+1) = 2p_ss = Zm_sys
=..= Zm,.u Zy1 = 1/2(28+1) = 2p_,y; and 2, = 0 otherwise, we have,
for m = (t+ 1),

3i4-4
4(t+2)°
t—l—l we see from (2.7) and (2.8)

, 2, With Zz, =1 and 2, > 0 such that

(2.8) F(2ry oy ) =

Hence for n = 2m—t, where m >
that there is a sequence 2, 25, ...

r=1
Thus from (2.2) we have:

Fn(21y ooy 20) = (36+4)[4(042).
TeEOREM 2.1. If t is a positive integer and m = H—l then
4(t+2)
A —1) < .
A{m, 2m—1t) < 3114
: 4(-+2) 4(t+2)
Further if A(m, 2m—1) < 314 ———, from (2.6) we have—_H < 304’

ie. p < 2(1+2). Hence we have:
LemMa 2.1, If A(m, 2m—1) < 4(1+42)/(3t+4), then a mazimal se-
GUENCE Y1y « .+« y Yomy CAN CONTALN 0t MOST 284 3 positive terms when m = ;t—]— 1.

3. In this section we show that A{m, 2m—1) is a non-decreasing func-
tion of m for m > max {2t, 31+ 2} and so deduce that (1.2) holds for t =1
2,4 and that (1.3) holds when ¢ = 3.

Levmma  3.1. If, for a fized positive integer t, A(m,2m—1t) =
= 4(8+2)/(8¢+4) for m = my > max {241, 4} then A(me—1, 2my—1—2)
< A(mg, 2my—1).
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Proof. Since my—1 >§t-|—1, we have by Theorem 2.1
4(t4+2)
Almy—1, 2(my—1)—1] < 304 = A(Myq, 2me—1).
2m—1
Leb 2, ..., 2oy Where 3 2,=1,2>0 and m >3t4+1, be a se-

r=1
quence and suppose it contains two zeros which are separated by at least
(m—1t—2) terms. Take two such zeros; we may suppose without loss
of generality that one of them is z, = 0 and the other z, = 0 so that
m—1t <b <m+2. Consider the sequence ¥;,...., Ym_t_» consisting of
By fyy wens Bo1y Zoi1r Boa2s ovey Ramty PO Fou 1 (Yas «os Yomesoo) = fnl?y ---
-+ Zam_g) because, forr = 2,8, ..., 0—1, 2 (4 y1+- . F Zoym) < Y1 (¥t

veiFYrim—s) since 2, +...+ 2., must include 2, since b < m-+2, and for
r = b+1; b+2, ey 2m—t7 zr(zr+1+--'+gr+m) < yr—z(yr—l_lL"' +yr+m—3)
since #,,;-F...+2,.» must include 2, since b > m—1.

In particular, if 2;, ..., Zem_; is & maximal sequence which contains
two zeros which are separated by at least (m—t—2) terms, then there
is & sequence ¥, ¥ay «..; Yom_i_» Such that

1

Faa@ss - Am, 2m—1)

s Yam—tz) 2= Fm (1) ooy Bams) =
so that A(m—1, 2m—i—2) < A(m, 2m—1).

Now suppose A(m,2m—1t) < 4(t+2)/(3t+4) and m > 2t4+3 then,
by Lemma 2.1, a maximal sequence 2, ..., Zy,_; can contain at most
(2t43) positive terms so, since m > 2i-+ 3, there are at least (m—1) zeros
and so two zeros must be separated by at least (m—{—2) terms. Hence,
in virtue of Theorem 2.1 and Lemma 3.1 we have from the above:

THEOREM 3.1. For a fized positive integer t, A(m, 2m—1) is a non-de-
creasing function of m for m > 2t+2.

From the special result 1(4, 7) = 172 proved in 1], we now see from
Theorems 2.1 and 3.1 that (1.2) holds when ¢ = 1, a vesult proved by
Diananda in [2].

Now supposing ¢ > 2 consider m = 2¢{-+s for s = 1, 2; by Theorem 2.1
either A(m,2m—1t) = 4(t+2)/(3t+4) in which case A(m—1,2m—i—2)
< A(m, 2m—1) by Lemma 3.1 or A(m, 2m—1) < 4(t-+2)/(3t+4). If the
latter holds and #,, #,, ..., %mn_; is a maximal sequence we have from the
above that A(m—1, 2m~t—2) Alm, 2m—1) if 2, ..., Zum_¢ contains
two zeros which are sepaaated by at least (m-—t— 2) terms. Hence A(m—1
2m—t—2) > A(m, 2m—t) can only possibly hold if each maximal se-
quence has (£4+s—1) consecutive terms which contain all the zeros. Thus,
using the notation of Section 2, consider, if possible, & maximal sequence
21y .eey Zomg such that 1,2,...,2t+s+1 all belong to P.
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(i) If s = 2, by Lemma 2.1 there can be at most (2{-}-3) positive
terms and so 2, = 0 for r = 2¢-+4,...,3t+4. Thus, from (2.4) with
r =t+4+2, we have & = 1—#;,, <1 which is impossible since, from (2.6),

2 2 (3 4)
Alm, 2m—1) 4(1-42)

k=

(i) If s =1, (2.4) holds for r =1, #42 and 2¢{42 and on adding
these three equations we obtain
3t42
8k =3+ D % 24a —Zatgs < 4.
r=1

Thus if ¢ > 4 we have a contradiction gince

£
k>%) >§— for t>4.

Hence from the above we may strengthen Theorem 3.1 to:

THEOREM 3.2. For a fiwed positive integer t, L(m, 2m—1) is a non-
decreasing function of m for m > max {2t ,%t—l— 2}

From Theorem B (i) 1(5,8) =3 and 1(8,12) =3 so from Theo-
rems 2.1 and 3.2 we see that (1.2) holds when ¢ = 2 and 4 and (1.3) when
t=3.

4. From Theorems 2.1 and 3.2 it follows that 1(2t, 3t) < A(m, 2m—1)
< 4(t42)/(3t+4) for m > 2t and ¢ > 4. Hence, to show that (1.2) holds
for ¢t >4, we need only prove that 1(2¢, 3t) = 4(¢t-+2)/(3t-+4). To do
this we firstly obtain a number of lemmas which give us information
concerning the terms of a maximal sequence of (2, 3t).

Notation. Throughout this section we assume # > 4.

DEriniTIoN. The dual of the sequence @y, #,, ..., %, is the sequence
Dy Ly 1y veey e

Clearly the dual of a maximal sequence is a maximal sequence.

Levma 4.1, If 41, ..., Ys 98 @ mazimal sequence of A(2t, 3t) then the
following situations cannot arise:

(i) Y #£0 for s =0,1 and 2.

(li) 3/;;+sg=0 for 8=0,1 and 2.

() 9 # 0, Y =0 =y;_,.

(iv) y; #0, Yigt =0 = Y541,

M) ¥ #0450 =g = 0.
(Vi) Yips # 0, Yspags %0 for s =0,1 and 2.
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Proof. (I) Suppose (i) occurs; then (2.4) holds for » = j,j+1¢ and
3t
j+2t and on adding these three equations we have 3k =3 3'y; = 4 so,
=1
using (2.6) and Theorem 2.1,
4 2 2(3t4+4) 4
Z k= > =
3 M2, 307 4@+2) T 3
sinece ¢ > 4 and we have a confradiction.
(IT) Suppose (i) occurs then, since y; 7 0 for some j, by (i) we may
assume ¥y =0 = Yoy (8 =10,1,2), ¥; ¥ 0. However, then fu(iy:,

391, Yss Yas - -» Ys) > fau(¥1, Yoy «- -, Ya) Which is impossible since ¥y, ..., ¥n
is a maximal sequence.

(III) Suppose (iii) occurs then we may suppose ¥; = 0 = Yy,
4, # 0. Further we may assume y;,, = 0, for otherwise fo(¥2; Y1, Y35 Yas - -+
veoy Ys) > Fo(Yry -« -y Yar). However, if 25, ..., 23 is the sequence #;, ..., ¥n
with 9y, and 4., interchanged, clearly fu(2y, ..., %) > Jat(Yys oves Yst)
S0 2y, ..., %y is & maximal sequence. Since 2,4 = 0 for s = 0,1, 2 this
contradicts (ii).

(IV) Using (iii) on the dual sequence (iv) clearly cannot occur.

(V) Suppose (v) occurs then by (iii) and (iv) ¥4 7 0 and ¥, ¥+ 0.
Since y; # 0 this contradicts (i).

(VI) Suppose (vi) occurs then by (i) Yjiere = 0 (s = 0,1,2). Sub-
tracting the equations obtained by putting r = j+1 and j+2 in (2.4)

we have 9,10 —¥is1 = —Yjray L8 Yipy > Yireer. However, subtract-
ing the equations obtained by putting r =j-+¢ and j+i+1 in (?.4)
we have —¥;.; = —Yjia1tYires L& Yip < Yjsin which contradicts
the above.

TEMmyA 4.2. Let 4y, ..., Yy be a mazimal sequence of A(2t, 3t):
@ 9 #0, Y #0, Yoy =0 =Yoryjpr, then 95 = Y1,

(i) of 5 £ 0, Yjoe #0, then Y =0, Y1 0, Y1 #0,

(iif) of Yrpe 50, Yiystr # 0 for s =0 and 1, then Y5 = Yipri1
= Yrs1 T Yise-

Proof.

(I) Suppose the conditions of (i) are satisfied then subtracting the
equations obtained by putting r = j and j+1 in (2.4) we have y; = y;1
sinee Yro; =0 = Yoyjp-

(II) Suppose ys 3 0, s = j, j+1, then by Lemma 4.1 (1) Yy = 0.
From Lemma 4.1 (iv) 9j44:% 0 and from Lemma 4.1 (i) y;, #= 0.

(IIT) Suppose the conditions of (iii) are satistied, then by Lemma 4.1
(i) ¥ = 0 (s = 2t, 2t+1). Subtracting the equations obtained by putt-
ing r = j and j+1in (2.4) we have ¥, =% —¥Yi4i- Subtracting the equa-
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tions obtained by putting v = j+¢and j £+ 1in (2.

4) Yyt = Vit
and the proof is eomplete.

LemMma 4.3. If ¥y, ..., ¥s is o mazimal sequence of A(2t, 3t) then,
for each v, there is at most one value of w in r < w K< r+t—1 such that
Yo #* 07 Yop1 = 0.

Proof. Suppose that for some r there are at least two such wvalues
of w. We may clearly assume that w = » = 1 iy one such value and that
another i w = a 50 3 <a <t and y, =0 = y,,;. By Lemma 4.1 (iv)
Y115 0y Yppo #0 50 by Lemma 4.2 (i) Yuy1 = 0 = Yoo, Yiqz # 0,
Yiyar1 7 0y Yo1 7% 0. Since y, = 0 there is a § with 2 < f < a—1 such
that g5 # 0, ys_; = 0. By Lemma 4.1 (iii) ¥4, 7 0 50 by Lemma 4.1 (i)
Ypt = 0. Hence there is a y with f+4-2¢ <y < a+2¢ such that ¥, # 0,
Yys1 = 0 and further a 4 with #4-2 < 1 <-f4-t such that y; # 0, y,,, = 0.
Also since ¥, 44 % 0 and ¥y, = 0 there is a p with t+a-+1 < u <2
such that y, #£0, y,, =0. Cleatly 1l < f<a<i<p <y < 3t

Let £ be the set of numbers 1, a, y, A, u, then for je2 y; 5 0, 95, = 0
80 by Lemma 4.1 (iv) q/,” = 0. Henee (2.4) holds for » =4 and j+1 so

on addition, 2k =24 2 Ys.

Te=f+t41
Thus
f+3t-1 74t
106 =104+ > M gy = 15— D' My
JjeQ  t=j4i+1 je@ i=7

Since l<a<i+l<i<ati<u<2<it+tand 2642 <y < at2¢
< pu+t<3t+1 < y+1, we have

J+i 3t

D Dw= Yut Dty =14+ 3 W40
l

759 i= 7 i= jeq jeQ
Hence

(4.1) 105 < 14*2(%‘-}— Yi1)-
jeQ
Hence, using (2.6) and Theorem 2.1,

10¢ 8—1
(42) 0< (W44 <14—-10k <1 {10 } ——
g; A + 2(6+2)|  1+2
so unless ¢ << 7 we have a contradiction.
By the construction if j, e, joeQ and j; # j, then j,—j, s= 0(mod?)
80 when { = 5,12;(‘1/5—1- Yitt) = 1 since 4;, = 0 by Lemma 4.1(i). Thus
(4.1) gives
13
R L il
10 2(t42)
which is impossible.
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Hence we may suppose ¢ = 6 or 7. Let ¢ be such that none of 2, i-4¢
and ¢4-2¢ belong to Q. From Lemma 4.1 (i) and (i) only two effective
cases arise:-

(I) Suppose y; # 0 and y;,, # 0, then on putting r =14 and i+t
in (2.4) and adding we obtain

i48E—1 "
24 y; =2k > 24+ ~——.
) 7'=i§+1 ’ 2
Thus
i+3t :
1 >]_‘§J:yj >H—2 +»yi—|-?h+t:
iS5
ie.
43 L ‘2 t+4
( . ) Jm yt-v.i\t| 4(t’l‘ )

since ¢ = 6 or 7.
(IL) Suppose #; = 0, iy = 0 = Yi o, then by (2.4)

=g+t Yign =k =21+

2(1+2)°
Thus
149

1 = 2 i

?/+7;+t% (t—}—2)+ Yis
ie.

t+4

(4.4) < m

Sinece ¢t = 6 or 7 from the above there can be at most two such 4
and so from (4.3) and (4.4)
t-+4
(4.5) D B<3am

z(modi)d-\?
However, using (4.2)

1 2 n S 1— —t 43—12 - t+4
= yi y.7+i o oL o) ) ! ‘
i(modt)éﬂ < t—!—2 2(t+2) 2(t+2)

This contradiets (4.5) and the lemma is proved.

THEOREM 4.1. For a fized integer t >4 and m = 21, A{m, 2m—1)
= 4(t+2)/(3t+4).

Proof. Let yy, ..., y3 be a maximal sequence of 1(2¢, 3t), then without
loss of generality we may assume ¥; # 0, ¥, = 0 so by Lemma 4.1 (iv)
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Y141 7 0 and by Lemma 4.2 (i) Yy =0, Yz # 0, ¥y # 0. Thus on
using Lemma 4.3 there is exactly one 1 with #4-2 <1 < 2¢ such that
i # 0y Yoy = 050y, #=0fors =1+2,...,4and y, = 0 forr = A+1,...
..., 2t+1. Further by Lemma 4.1 (iv) yz4¢ 7 0 so by Lemma 4.3 y, ;&.0
for r = A+1t, ..., 3t+1. Thus y, = 0 for w =t—1 and A+4+t—2 for in
either case if ¥, 7 0 then by Lemma 4.3 Y, # 0 and then we have
a contradiction to Lemma 4.1 (vi). Hence y, = 0 for r=2,...,t—1
and r =2t+1,...,44t—2. Hence by Lemma 4.2 (1) Yr = Y141 = &,
say, for 7 =1{¢+1,...,A—1 and y; = Yz = b, say, for s = A4-1,...,3%

Two cases now arise:

(I) Suppose y; 0 then by Lemma 4.2 (i) b = Yo = ¥1+ ¥ = Y1
= a. Further y;+¥;.1 = @ by Lemma 4.2 (ii) if ¥, 0 and by
Lemma 4.2 (i) if 934, = 0. Thus

3t 1
1= g;yi = (t+2)a s0o a= ;‘_—2—

Hence on putting r = 3¢ and A—1 in (2.4) we have
1—atg+(—t—1)a+y, =k,
1—a+ Y+ @2t—2+La+y, = k.

Thus 2k = 2--1a = (3t+4)/(t+2) so by (2.6) A(2t, 3t) = 4(t+2)/(3¢+4).

(II) By cyclic symmetry the case %34, 70 is covered by (I)
50 We may now assume y; = 0 = ¥;,;_,. By Lemma 4.2 (i) y; = a, Y1 = b
50 letting » = A—1t and o = 2t—2A-+2 we have v+o =142 and, since
3t

My =1, va-+ b = 1. By calculation
i=1
1 1
fulyrs ooy Yu) = o(v—1)a’ +2abve + 5 o(0 —1)*

1 1
= % (va+ wb)*— Eva“’——z— wb®+ abvw

= —z— —_ 2(01 . {v*a® + wva? + 0’0+ wib®} 4 abve

1 {(va+ wb)2+vo (a—b)?}-+ L {(wa+ wb)* — (va— wb)*}
2 20+2) 4
1 1 1 3t+4

<% T Ruxn VI iGte)

with equality if @« =% and v = w. Thus A(2¢, 3t) = 4(1+2)/(3t+4).
Hence in both cases A(2t, 3t) = 4(¢-+2)/(3t+4) and so the theorem
now follows by Theorems 2.1 and 3.2.

iom®
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5. By consfructing sequences we now obtain the upper bound for
A(m,n) given by (1.4) and show that this is a better bound than n/m
in the range considered except for m =9, m = 6.

For given n and m with m—+2 < n < 2m let
) 1
r4 < n r-t 1,

r+1 m r
(ii) s and 6 integers such that 0 <s <7 and m = 0+,
(i) ¢ = (r4+1)0—n.
(r+1)0—t r+1 . . . .
A) — —— if and only if — g .e.
(A) Py < " and only s < r(s+1), i.e. since

(i) 7 be the integer such that

(5.1) 0<s<r, s+i>0.
(r+1)0—t _ r+2 X
(5.2) 03 (1) (s+1)+s.

(I) Suppose? # 0 and such that (r41) and ¢ have no common factor.
Let N be the integer such that 0 < T < r where

(6.3) T = —t+N(r4+1).
Further let

(5.4) a=s8+i—N+41

and

(5.5) B =06—s—t—2.

Now a > 1 from (53.1) if ¥ < 0 and from (ii) and {—N = Nr—-T >0
for N > 1. Further § > 1 since n = m-++3.

For w=0,1,...,7 let a, be such that 0<e, <r and o
= g,[mod(r+41)] then the a, form a complete set of residues mod(r4-1).
Let

1 i e,>T,
2 it a<T

¢ =

and S, be the sequence 8,1, ...;Swgic WHOTE Sy = GguSpatre = Fr_wia
a+C

and s,; =r+1,§ =2,..., a+c—1. Hence ) s, = a(r+1)+ 7. Finally
i=1

let W = (r+1){a(r+1)+T} and V; denote the sequence comprising

of j zeros. Since the sequence defined by 8,, Vi, S,_1, Vg Sr_zy .05 Vi,

81, Ve_1y 8oy Vp has n terms by (5.4) and (5.5), denote this' sequence

with each term divided by W by %,..., ¥». Hence

n

“ Z?/i=l

=1
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and
szm(?ln cees Yn)

" a+c—2 . W ‘
> Dletw—rri+ 3 o i o [ 75

a(r+1)+T
ety T g rird)
= (W—T*l)——é—“-l"("—@‘l)j:;—; (W—+ 1 W—
w , L

= m{(m‘—rl)w—-(’l +1)%.

From (5.3) and (5.4) W = {(r+21)(s+ 1)+ 7t} {r+1) 80
@+ 1) [+ (r 4+ 1)s]+2r(r+1)
2(r++1) [+ (r+1)(s+1)]

(IT) Suppose ¢ # 0 and such that (r+ 1) and ¢ have a common factor
p > 2 not divisible by (r+1), say r+1 =p(u+1) and ¢ = po where
(1) and o have no common factor; clearly » # 0. Now s+ w(p—1) =0
is trivial if » > 0 and follows from (5.1) since wp = tif © < 0. Thus let P
and @ be the integers such that
(5.6) stow(p—1) = uQ+P
where @ >0 and 0P <, ¢=0+4+0, h= (u+1)p— (u+1)Q— o,

= up+P. Now P+(v+1)@+w = s+t+Q >0 from (5.1) so from
(A) RhJg < (w+1)/u. Using (5.6)
W = (u+ D[P+ (u+1)@+ o] +P = (u+1)(s+1+Q +P
= (ut+L) s+t +st+t—w+Q.

Thus from (5.2):

#foz0, W< (@t2)(s+)+Q <r+1E+)+Q <0+Q =9,

fw<0 sti—o<sso W< (utl)(s+t)+s+Q < (r-+1)(s+0)+
+54+Q < 04+Q =0

Hence from (B) Rfg = (u+2)/(uw+1).

Further h—g = g— (4+1)—P—w = 64+-@—Q—s—t+w—w = 0—
—8—1t>2 since » >m-2.

fm(gl’ vy '!/n) >

h
Thus by (I) there is & sequence ¥, ..., yn such that Z‘yi =1 and
i=1
@u41) {wl(u+1)Q+ o]+ (u+1)P}+2u(u+1)
2(u+1){ul(u+1)@ + o]+ (u+1)(P+1)}

L) (s+2)
2+ D) it (r+ D) (s 1)}

oy ooy yn) =

hm@
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Hence for the sequence 2y, ..., 2, where Ziren = iyi fors=0,1,...,
_ r
wyp—1 (i =1,...,h) we have
(2r+ 1) {rt+ (r-+1)s} +2r (r4-1)
2r+1){rt+{r+1)(s+1)}
. (TII) Suppose ¢ is a multiple of (r+1), say t = W(r-+1) where pos-
sibly W = 0; consider the sequence y,..., Y, defined by Yiyo-1)
1 o
= (—Tm (A=0,1,..,ri=1,2,..,8+1+4+7W), y; =0

otherwise; this is possible since s+1-7W < §—W—1 since n > m-+ 2.
Hence

p—1 1
T2y ees2m) =T+§fﬂ(yn ceey Yn) 2

fm(?/l).--’yn)>—’r 1 }2 EHITr)E+r)(r+1)
r

E R (e 2
_ @)t D)8 2r(r 4 1)
2(r+1){rt+(r+1)(s+ 1)}

on substituting for W and simplifying.

Hence from (2.2) we have in each case,

2(r+ 1) {rt+{r+1)(s+1)}
@r+1){rt+(r+1)s}+2r(r+1)
_ 2(r+1){{r+1)(m+1)—rn}
@r+-1){(r+1)ym—rn}+2r(r4-1)

sinee (r--1)ym—rn = (r-+1)s-+rt.

Alm, n) <

This is a better bound than r for A(m, n) unless
m

2(r+1){rt4 (r+1)(s+1)} (r+1)6—1
(2r+1){rt+ (r+1)s}+2r(r+ 1) ro-+s 7
i. e. nnless
(5.7) p<2 __t
< 2(s+1)42 T

N'ow putting s+:="%> 0 from (5.1), from (5.2) 0 > (r+1)k-+s
and sinee n >m-+3, 6 > k+3. If (5.7) holds we must therefore have

k—s

(5.8)
r+1

2k+42—

>k+3, ie. rk>ril—s

and
k—s
(5.9) _2k+2—r—+—1—>('r—|—1)k+s, ie. 2(r+1) > rk+trs.
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Since 0 < s <7, from (5.8) k=1 and k =1 only if ¢ 2> 2; in thiy
cage however r =8 and then (5.9) is not satisfied. HMence & = 2 and so
from (5.9) 2r* < 2(r-+1), ie. » <1. Thus r =1 and s = 0. From (5.8)
k>3 and from (5.9) k<4 so k =23. Now when r=1, s =0, 1 =3

[
we have (r+1){s+1t)-+s+1 >2(3'J"t)"1‘2_m 80 the only case for

whlch — i a better bound in the range m-+2 < n < 2m I8 ¥ == 1, § = 0,

m

t=23, 0=~6,1le n=29 m=~6
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Further developments in the comparative
prime-number theory IV

(Accumulation theorems for residue-classes representing
quadratic non-residues modk)

by

S. EnarowskI (Poznan) and P. TURAN (Budapest)

1. In the second and third papers of this series we introduced a new
approach instead of that of Chebyshev, in order to find a sense in which
there are more primes = [;mod % than =1I,mod % if and only if I, is & quad-
ratic non-residue, I, quadratic residue modk. We succeeded in obtain-
ing results in this direction when the Haselgrove-condition is satisfied for

k,i.e. when there is an E = E(k) > 0 such that no IL(s,y) belonging
to the modulus % vanishes for() ‘

(1.1) oz, [H<Bk) (s=o+i).

For the sake of brevity we shall call such k-values “good” k-values. We
made a comparison in the second paper for the residue-classes

=1modk and ==Imodk

(1 quadfatic non-residue mod#x) ‘in the third one for the residue-classes
=1modk and =Ilmodk

(! quadratic residue mod¥k).

In this paper we shall pass to the more general case, when we compare
the residue-classes

(1.2) =l modk and =1, modk

(4, I, both quadratic non-residues).

(1) Though no k-value is known for which this would be falge, it is desu&ble
to prove its truth at least for an infinity of k-values.
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