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The expression of a polynomial
as a sum of three irreducibles®

by
D. R. HAvEs (Tennesgee)

1. Introduction. Let % be a finite field of ¢ elements, and let k[«]
denote its polynomial ring. The leading coefficient of a polynomial M
in k[#] is denoted by sgn M. If sgn M = 1, the polynomial is said to be
primary. The “absolute value” of a polynomial A4 in k[z] is defined by

(1.1) |4| = g4,

A polynomial A is even if it is divisible by an irreducible P such that
|P| = 2; otherwise, A is odd. It is clear that even polynomials can occur
only over the finite field of two elements.

According to a famous theorem of Vinogradov, every sufficiently
large odd integer can be epxressed as a sum of three primes. In this paper,
we prove the following analog of Vinogradov’s theorem for the polynomial
domain %[x].

TrroREM 1.1. Let M be an odd polynomial in k[wx] of sufficiently
high degree r (i.e., v is greater tham o fized positive constant which depends
only on k). Suppose a, f, and y are any three non-zero elements of k& such
that o+ B+ = sgn M. Then there exist primary irreducibles Py, Py, and
P, in k[x], each of degree r, such that

(1.2) aP,+fPy+ yPy = M.

The restriction that M be odd is necessary. Consider, for example,
the even. polynomial M = o" over the finite field of two elements. We
must choose a = f = y =1 sinee there is no other non-zero element
of the field. If we were to have &” = P, +P,+P;, then we would have
P,(0)+P,(0)+P,(0) =0 upon substituting ® =0. Now for ¢>1,
P,(0) 5 0 since otherwise P, would not be irreducible. Hence, Pi(0) =1
and P,(0)4+P,(0)+P3(0) =1+1+1=150, a contradiction. Thus,
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there are even polynomials of arbitrarily high degree which cannot be
expressed as a sum of three irreducibles of the same degree.

Theorem 1.1 is proved by first deriving an asymptotic formula
for the number of representations of a polynomial M in the form (1.2).
The asymptotic formula is then used to show that the number of repre-
sentations becomes infinite as 7 tends to infinity. One can also let ¢ tend
to infinity in this asymptotic formula, obtaining the following result:

THEOREM 1.2. Suppose k 4s a finite field with o sufficiently large
number of clements (i.e., q is greater than a fized absolute constant). Then
for any odd polynomial M in k[z] and any non-zero field elements a, f,
and y such that at+f-4y = sgn M, there are primary wreducibles Py, Py,
and P, having the same degree as M such that (1.2) holds.

There are in the literature two lines of attack upon Vinogradov’s
theorem. The first line of attack, due to Hardy-Littlewood ([6]) is tech-
nically less complicated than the second, which is due to Vinogradov
([11]). However, the Hardy-Littlewood line of attack requires the validity
of an as yet unproved hypothesis concerning the location of the zeros
of the Dirichlet L-functions. The Vinogradov method is based upon
the same idea as that of Hardy-Littlewood but avoids the above
mentioned unproved hypothesis by means of a highly ingenious estimate
for a certain exponential sum. Both these methods rest heavily on analytic
techniques; and the Hardy-Littlewood approach requires in addition
the so-called Farey dissection of the unit interval. Excellent expositions
of these two lines of attack can be found in [9] and [5] respectively.

The method used in this paper to prove Theorems 1.1 and 1.2 uses
& polynomial version of the Hardy-Littlewood line of attack. The ratio-
nal function field K = k(x) is completed with respect to an appropriate
valuation to a field K, which, as a complete valued field, provides
a suitable analog of the real numbers. The “unit interval” of Ky, e,
the open ball of radius 1 about 0, turns out to be a compact additive
group. Using the Haar integral on this group, one can parallel the Hardy-
—I.«ittlewood proof rather closely until an analog is required for the Farey
disgection. The Farey dissection depends upon the order properties of
Fhe real numbers, for which there appears to be no satisfactory analog
%n the field K,,. Fortunately, there is a “natural digsection” of the unib
interval of K, which can be used in the proof. However, since this dis-
section is based upon a different principal (namely that K,, is rather
badly disconnected as a topological gpace) than is the Farey dissection,
the analogy with the Hardy-Littlewood proof breaks down to a certain
extent. One finds that, in order to make proper use of this dissection,
a more general class of I-functions is required than the strict polynomial
a)nalf)g of the Dirichlet L-functions. (These L-functions are described in
Section 5.) For Theorem 1.1, one must have for these L-functions exactly
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the same hypothesis which is required in the Hardy-Littlewood proof
for the Dirichlet L-functions. Thanks to the work of A. Weil, one has
at hand even a Riemann hypothesis for these L-functions, which is more
than is required. For Theorem 1.2, one must have a somewhat stronger
hypothesis than that required for Theorem 1.1; but the fall strength
of the Riemann hypothesis is still not needed.

Tt is probable that one could also devise a proof of Theorem 1.1 using
the Vinogradov line of attack. Such a proof would presumably avoid
the Riemann hypothesis and also the analog of the Farey dissection.
However, the use of the Riemann hypothesis in the Hardy-Littlewood
method almost certainly leads to a better error term in the asymptotic
formula for the number of representations than could be obtained without
it. Also, it does not seem likely that the Vinogradov line of attack would
lead to a proof of Theorem 1.2.

One might conjecture that every odd polynomial over a finite field
can be expressed as a sum of three irreducibles. Theorems 1.1 and 1.2
reduce this conjecture to a finite calculation. Some preliminary inve-
stigations seem to indicate that the constants in the asymptotic formula
are not so large as to place this calculation beyond the practical limita-
tions of a modern electronic computer.

The author wishes to acknowledge his debt to two papers of Carlitz
([1], [2)) in which a general method for attacking additive problems
in the arithmetic of polynomials is developed. This method is essentially
equivalent to the method used here. Carlitz second paper contains the
idea which led to the “natural dissection” of the unit interval of ..

2. Preliminaries. Let K =1%(x), the field of rational functions over
the finite field k. Blements of k¥ will be denoted usually by lower case
Greek letters, and polynomials in %[x] will be denoted by capital Roman
letters. On K one has the valuation » associated with the “infinite prime”
of K and defined by
(2.1) »(0) = oo and »(A/B) = degB—degd
for every non-zero rational function A/B. The valuation » has the fol-
lowing easily established properties:

(2.2) v(ab) = »(a)+v (D),
(2.3) »(a-+b) = min{r(a), »(b)},
(2.4) p(a) = oo if and only if & =0

for all a,beK.
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Let K, denote the completion of K with respect to the valuation ».
Then every aek,, can be expanded in a unique way in a convergent
“gurent series” in 1/m, i.e., in an infinite series of the form

o= 2 as (%)S (ag ek)

where all but a finite number of the coefficients a, with s < 0 are zero-
Addition and multiplication of elements of K, when written ag infinite
series are formal. The field K,,, of course, containy & as a subfield.
In terms of the representation (2.5), K is just the field of quotients in
Ky, of the ring k[x], which is identified in the obvious way with the
set of all those elements of K, whose Laurent series (2.5) have a; =0
for all s > 0. The extension of the valuation » to K, can also be deter-
mined in terms of the representation (2.5). If & 7 0, and @ has the Laurent
expansion (2.5), then -

(2.6)

(2.5)

v(a) = the smallest s such that a, 5 0.

The properties (2.2)-(2.4) also hold, of course, for the extended valuation.
A discussion of completions together with proofs for the assertions of
this paragraph can be found in [12], §1.9.

Given acK,,, the “absolute value” of a is defined by

(2.7) Ial _— q—v(a)‘

With respect to the metric ¢ defined by

(2.8) 8(a, b) = |a—b]

for all a, beK,,, the field K,, becomey a metric gpace, which ig of
course complete by construction. It follows from (2.2) and (2.3) that
K, is a topological field in the topology induced by this metric. The
metric & is actually an wlirametric in the sense of Diendonné ([4], § 3.8,
Ex. 4). Thus if any two open balls in XK, have a non-vacuous intersec-
tion, then one must be contained in the other. From this it follows that
any open ball in K, is both open and closed in the metric topology.
It is easily verified that the set ¥,(a) defined for a given aely, and
a given natural number n by

(2.9) Vala) = {teKyl »(1—a) > n}

is an open ball with center a. Further, the family {¥,(a)}r., is a base
for the family of neighborhoods of a.

Consider now the “unit interval” of K,,; ie., the get & defined by

(2.10) P = {teK | »(t) > 0}.

h“dD
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The set # is just the open ball of radius 1 about 0 or, alternatively, the
set of all Laurent series (2.5) with a; = 0 for s < 1. It is clear from (2.3)
that # is an additive group. Further £ is compact in the relative metrie
topology and hence is a compact topological group. This result is well
known. A proof can be found, for example, in [12], § 1.9. Alternatively,
the reader can verify that & is a closed and totally bounded subset of
the complete metric space K.

3. The Haar integral and the character E on £. In this section,
some caleulations are performed which will be used throumghout the re-
mainder of the paper. These calculations involve the Haar measure and
the Haar integral for the compact additive group #. A rather complete
account of the Haar integral can be found in Nachbin ([10]). Actually,
for our purposes, little more is required than the existence of a transla-
tion invariant (positive) integral for the continuous complex valued fune-
tions on Z.

DEFINITION 3.1. Let ¢ denote the Haar measure on & normalized
so that ¢(#) = 1.

DEFINITION 3.2. For a given non-negative integer j, let #; denote
the set defined by

(3.1)

In particular, #, = #.
TuroREM 3.1. For every non-negative j, Z; is a subgroup of &. Further,
each P; is open in F, and

(3.2)

Py = (te? | 5(t) >}

o(@) =q7.

Proof. Bach & is a subgroup by (2.3), and each is open by (2.9).
For a given polynomial A of degree less than j, let

By = (A)2)+ 25

Then since @4 is just a translate of #;, #,4 is open and hence measurable.
Further, by the invariance of the Haar meagure

(3.3) e(B4) = o(F))

for every such 4. We now show that the sets {#,}, where 4 runs through
the polynomials of degree less than j, form a disjoint cover of #. First,
disjointness: Suppose #y, ~ L, # @. Then (4,/7)+1, = (Ayfa’)+ 1, for
some ¢, and ?,¢%;, and hence (Al—Az)/mf =ty—t P, From this it
follows that »((4d,— A,)/o')>j. But »((d;—4,) Jof) = j—deg (4, —4,)
50 that we must have deg(4,—4,) <0 or 4, A;. .

To show that the sets &4 cover, we pick an arbitrary a<# and write
it as a Laurent series (2.5). If we take 4 = a, @'+ apd 4. .+ ay,

Acta Arithmetica XI.4 o
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where the a's are the coefficients of the Laurent series, then it is clear
that a— (A /o/)eP;. Thus ae%, for this A.

Now, since the sets {#,} constitute a finite disjoint cover of &, we
have, by the additivity of the measure, that

1=0(@) =D ol@a) =D e@) =d el
A A

by (3.3), as there are exactly ¢’ polynomials in %[x] of degree less than j.
Tquation (3.2) follows immediately from this last equality.

COROLLARY 3.2. Given ac, let & be the open ball about « defined
by

B = {teP | v(t—a)> j}
for a given mon-negative integer j. Then
(3.4) o(®B) =g,

Proof. It is immediate from the definition that # = ¢+ ;. Thus,
by the preceding theorem and the invariance of the measure, we have
0(B) = p(#;) = ¢. This completes the proof.

DEpINITION 3.3. Let A be a fixed non-principal character (into the
complex numbers) of the additive group of the finite field k. Tor every
ackK,, define E(a) = Fi(a) by

(3.5) E(a) = A(ay)

where «, is the coefficient of 1/x in the Laurent expansion (2.5) of a.
THEOREM 3.3. The function B is a character of the additive topologi-
cal group K.
Proof. We must show that # has the homomorphism property

(3.6) Bla+b) = B(a)B(b)

and that B maps K, in a continuous manner onto a subset of the com-
plex numbers. The homomorphism property (3.6) follows from the defini-
tion. For the continuity of B, it suffices to show that Z~'(z) is open for
every complex 2 in the range of 7. Therefore, let = be a fixed element
of the range of B, and suppose aeE~'(z). Then the set ¥ = {feKyul
{#(f—a) > 1} is a neighborhood of 4. From the definitions, it is clear
that the coefficients of 1/ in the Laurent expansions of ¢ and a are equal
if te¥". Thus E{t) = B(a) = z for every t<¥ by the definition of Z;
and hence ¥° < E~'(2). Since, therefore, E~'(z) contains a neighborhood
of each of its points, E'(z) is open. This completes the proof.
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THEOREM 3.4. For every A, B and H in k[z], we have

(3.7) B4)=1
and
(3.8) E(A|H) =FE(B|H) if A = B (modH).

Proof. Since the coefficient of 1/x in the Laurent expansion of A
is zero, B(A) =24(0) =1. If 4 = B (mod H), then A = B+RH for
some Rek[x]. Thus
E(4A/H) = E((B+ RH)|H) = B((B/H)+R) = E(B/H)E(R) = E(B/H).
This completes the proof.

If # is a g-measurable subset of # and if X4 is the characteristic
function of #, then we define

(3.9) [fde = [f() Xa(t)de,
%

for every continuous function f on #. Of course, the integral on the right
is the Haar integral on Z.

THEOREM 3.5. Let aecK;y,. Then

-1 a) > —j
(3.10) [ Batyae =1 * o) > =g,
#; 0  otherwise.

Proof. If »(a) > —j, then v(at) = v(a)+»(t) Zv(a)+j+1 > —j+
+j+1 =1 for every t<%;. Hence, the coefficient of 1/z in the Laurent
expansion of at is zero; and therefore F(at) = 1, for all te&;. Thus

[Blayio = [ Xo, (Ve = (@) = ¢
7

by Theorem 3.1. If »(a) < —j, then —»(a) = j. Let § be the coefficient
of (1/&)™ in the Laurent expansion of ¢. Then § is non-zero by (2.6).
If d = —v(a), then d+1 >j+1>j so that 2~ 'eZ;. Therefore, we
have

[B(at)yde = [B(at) Xg, (Ao = [ Bla(t+az=*") Xg, (t-+ ar=*") dg
5
= [ 1(aB) B(a) Ko, (t)de = Maf) [ B(at)de
?

for every ack. Here we have used the invariance of the Haar integral,
the fact that #; is a subgroup, and the definition of E = FE,. Thus,

(1—2(ap) [Blat)do =0
2
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for every ack. But, since A is non-principal and g # 0, A(aB) # 1 for some
aek. Hence, the value of the integral must be zero.
THEOREM 3.6. Let & = {teZ |v(1—Db) > j}, where beP, and j is
a non-negative integer. Then for any aeKyy, we have
¢ Bab) if (@) > —j
(8.11) f B(at)do = ) ’
£ 0  otherwise.

Proof. We have
[Blatyae = [ Blat) Xg(t)do = [ Bla(t+b)) Xa(t+b)de
Z

= [ B(at) B (ab) Xp,(t)de = B (ab) [ B(at)de,

2y

since clearly #; = b+ # and by the invariance of the integral. The result
now follows from Theorem 3.5.

We adopt the following convention: Whenever the symbol )" is used -

in a summation over polynomials, it is understood that only primary
polynomials appear in the summation. For example, the summation in
the following theorem is over all primary polynomials of degree s.

TEEOREM 3.7. Suppose ac®. Then for every positive integer s, we
have

¢ E@’a) i v(a)>s,

3.12 " B(Ba) =
( ) degZB:s (Ba) 0  otherwise.
Proof. Since »(#™a) = »(&*)+v(a) = —(s+1)+»(a) > —(s+1),

we know by Theorem 3.6 that

B(Ba) = ¢+ [ B(a" at)de,
z

where & = {1¢# | »(t— (B/2"*")) > s+-1}. As in the proof of Theorem 3.1,
one can show that the sets # defined by the various primary polynomials
B of degree s are pairwise disjoint and cover the set ¥ = {te? |v(t—a”") >
> 1}. Thus,

D B(Ba) =g+ [B@ ayag = ¢+ [ B(a" at)dy.
¥

degB=3 degB=8 &

If »(a) > s; then »(¢**'q) > —1; and so the last integral above has
the value ¢~'¥(a"a) by Theorem 3.6. If »(a) is not greater than s, then
this last integral has the value 0, again by Theorem 3.6. Thus, the value
of the sum in question is given by (3.12).

iom®
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4. Dissection of the “unit interval” #. Theorem 3.5 of the preced.-
ing section allows omne to write down a useful formula for the mumber
of representations of a polynomial M in the form (1.2). For the remainder
of the paper, M is a fixed odd polynomial of degree r, and «, 8, and y
are fixed non-zero elements of k& such that a4y = sgn M.

DrrINITIoN 4.1. Let N(M) denote the number of triples of primary
irreducibles P;, P,, and P, each of degree 7, such that aP,-BP,+
L yPy = M.

DEFINITION 4.2. For all te#, let

(4.1) fi= D" By,

degP=r

where the summation is over the primary irreducibles in %k[«] of degree 7.
TEEOREM 4.1. We have

(4.2) N(M) = [ f(at)f(Be)f (yt) B(—Mt) de.
Proof. From the above definitions,

Faf(ft) = D B((aPy+BPs+7Py)i),

PPy, Pg

where P, P,, and P, run independently over the primary irreducibles
of degree r. Hence,

[#a)f (B0 B(—Mtydo = [ ST B((ePr-+ Pyt yPs—I)Y)de
Py,Py,Fy
= 3" [B((aPi+ pPut yPo— M) de
PPy, Py
= > 1=N
B
by Theorem 3.5, since »(aP;+ fP,+yPy—M) >0 if and only it aP;+
+pP,+yPy—M = 0. This completes the proof.

In the Hardy-Littlewood line of attack on the numl_)er-th.eoretic
vergion of Theorem 1.1, the function corresponding to f(t) is estimated
on certain subares of a circle in the complex plane. T}}es-e subarcs are
determined by the so-called Farey dissection of the unit mt.erval. Fol-
lowing Hardy-Littlewood, we will attempt to dissect the “unit interval”
 into a collection of disjoint open sets on each of which a good “@a-
Iytic” estimate for f(t) can be obtained. The remainder of this section
is devoted to a description of such a dissection of Z.
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DEFINITION 4.3. A rational function G/H in k() is called primordial
(velative to r), if it sabisfies the following conditions:

1) G/HeP; Le., degl < degH.

2) G/H is in reduced form, i.e., (G, H) = 1.

3) H is primary.

4) deg H < 7/[2.

DEFINITION 4.4, We set w = [7/2], the greatest integer which is
less than or equal to 7/2.

We shall need the following lemma, which is due to Carlitz ([2],
Bq. (3.11)).

Levya 4.2, Suppose 0 < h < w. Then the number Ny of primordial
rational funclions G[H such that degH =h ds given by

1 i h=0,

4.3 N, =
(£:3) * ¢ —g™t otherwise.

DEFINITION 4.5. If G/H is primordial, then we set
(4.4) Vg = (e | »(t— (G/H)) > h+w}

where & = degH. We call %gn a primordial subset of 2.

TrmorEM 4.3. The collection {%g} of primordial subsets of # forms
o disjoint open cover of 2.

Proof. We show first that the sets %gg are pairwise disjoint. Sup-
pose that %gm and %gm have a non-void intersection, where of course
both G/H and @' [H’ are primordial. Then, since both these sets are open
balls in & by (2.9), one must be contained in the other as £ is an ultra-
-metric space. We may suppose that %gm < %gm. Then in particular
G'|H' € Uqw, and hence by definition 4.5,

(C
v > b0,

where h =degH. Thus, 2+w< w((G—’H—-GH’)/HH’) = deg(HH')—
~—deg('H—GH') = h+degH'— deg(" H—GH'), or

(4.5) deg(G'H—GH') < degH'—w.

But degH' < w since @/H’ is primordial, and hence from (4.5) we
learn that deg(6"H—GH') < 0. Thus, ¢ H—GH' =0, or ¢'|H' = G[H.
It follows that the sets are pairwise disjoint.

hn..@
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Now let ¥ = | {%m}- We wish to show that ¥ = 2. By Corollary
3.2, o(#gm) = q "~ for every primordial ¢/H. Therefore, since the sets
Ugym are pairwise disjoint, we have
w

o) = olllgm) = D Y e(%em)

GIIT h=0 G[H
degH=h

[

w

w
Z th—w—h =g+ Zmzh_gzh—-l)q—w_h

h=0 h=1
w

— q_w_!_q—w Z(qh_qh—l) — q—1lv+q_u>(q1t,= 1) = 1,
h=1

where the first summation above is over all primordial ¢/H. We have,
of course, used the value of N; given by (4.3). From the preceding cal-
culation, it follows that #\ 7 is a null-set. But, each #gm is closed in &
since # is an ultrametric space, and hence 2\ ¥ is open. If #\¥" were
not empty, then it would contain an open ball and hence would have
positive meagure by Corollary 3.2. Since it has meagure zero, it must
be empty, and thus # = 7. This completes the proof.

Il

5, Estimate for f(f) on %gy. Our principal aim in this section
is to derive the estimate (5.7) below, which gives a reasonably good,
“analytic” approximation to the function f(#) on any one of the sets
Ueym -

DEFINITION 5.1. Tet M denote the multiplicative semigroup of all
primary polynomials in k[x].

DEFINITION 5.2. Let B = ™+ 4™ 4 ...+ B be a polynomial in
M, and let s be a non-negative integer. The sequence of field elements
Biy ..., Bs is called the first s coefficients of B, it being understood that
B =0 if i > m.

DEFINITION 5.3. Given a non-negative integer s and a polynomial
Hk[x], we define an equivalence relation Ry on M as follows: polyno-
mials A and B in M fall in the same equivalence class of %y if 1) A and
B have the same first s coefficients and 2) 4 = B (mod H).

In [7], § 8, it is shown that each relation 2y is a finite congruence
relation on M, i.e., a relation which is compatible with the semigroup
structure of M and which partitions M into a finite number of equivalence
clagses. Further, with each character x of Zgm ([7], §4), we have the
associated L-function ([7], § 7), which is a function of a complex variable
defined and meromorphic in the whole complex plane ([7], § 8 and 9).

DEFINTTION 5.4. Let ©* denote the least upper bound of the real
parts of the zeros of all the L-functions associated with the relations
of the form Zm; and let 6 = max{1/2, 6*}.
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Tor the remainder of this section, H is a fixed polynomial in M such
that » = degH < r/2. The value of s is fixed by s =r—w—h. For
notational convenience, we introduce the abbreviation # = %y.

TuEOREM 5.1. If x is & non-principal character of R, then

3 (@)

degP=1r

(5.1) <¢,

where P runs through the primary irreducibles of degree r.
Proof. By [7], Theorem 2.3, we have
(5.2) Ma 3@ = 3 @t
ar degP=d ask(")
where % is an algebraic extension of ¥ of degree 7,z is a character

of the induced relation ([7], § 5), and P is irreducible. As in the proof
([7], Theorem 9.3), we have .

(5.3) D@t o) < (s+h—1)¢" < (r/2)¢”

sir_tce .s'+'h—1 = r—w—1 <r[2. It is well known that the number of
primary irreducibles of degree d in k{x] is less than or equal to q‘i/d.

Therefore,
(5.4) Ma Y (@)
djr degP=d
a<r

dir  degP=d
a<r

SZd ZI 1 <qu < (r/2)d".
it

Using the estimates (5.3) and (5.4) in (5.2), we arrive at (5.1). This comp-
letes the proof.
LeMMa 5.2. Suppose t e Uggy for some G such that G/H is primordial.

f;]: A and B are polynomials of degree r in M such that A = B (mod %),
en

(5.5) B(41) = B(BY).

Proof. It Sllfﬁces to sho that -E(( .
4 B)t 1 Since A4 =B
(mﬂdH), E((A ‘-‘B)(?/H) =1. Therefore, )

B((A—B)Y)=E((4—B)(t—G/H) B ((4—B)G/H) = E ((A— B)(t—G[H)).

I\Tow deg(4A—B) <r—s-1 gince 4 and B have the same first s coeffi-
cients. Hence, »(4—B) = —deg(A—B) > s+1—r. Also, »({—G/H) >
>‘ h+w as te%gy. Thus, we have v((A—B)(t~G/H))7 =19(4d—B)+
—,-.v(t——G/H) > (84+1—r)+(w+h) =1 ginee s =r—w—h. But this im-
plies that the coefficient of 1 /zin the Laurent expansion of (A — B) (t— G/H)

is 0, which means that E{(4— - = i
o ,pmot at B((4—B)(t—G/H)) = 1(0) =1. This completes
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By a representative set (reduced representative set) modulo Z we
mean & set of polynomials in M which contains exactly one polynomial
from each equivalence class (invertible equivalence class ([7], §3)) of Z.
Since ¥ = s+ h =r—w, it follows from [7], Lemma 8.2, that a represen-
tative set (reduced representative get) can be chosen from among the
primary polynomials of degree r. This justifies the following definition.

DEFINITION 5.5. Let #'g = %) Ugm, Where G runs through all

those polynomials such that G/H is primordial. Then for every {e¥#m,
we seb
(5.6) Ta(t) = > B(AY)

A
where A runs through a reduced representative seb modulo £ chosen
from among the primary polynomials of degree . By Lemma 5.2 above,
the value of T (f) is independent of the particular reduced representative
get used to define it.

THEOREM B5.3. If te# 'y, then
1 q
8.7 ) e e 2 ( 9l git+er
(') ') f() qsqj(H) r H() <29 q ]
where @ (H) is the number of polynomials in o reduced residue system
modulo H.

Proof. Let A Tun through a particular reduced representative set
modulo % chogen from among the primary polynomials of degree r. Since
h < w < r, every irreducible of degree r is invertible modulo Z by the
last paragraph of [7], § 8. From this it follows that every irreducible P
of degree » is congruent to some one of the polynomials 4 modulo Z.
Thus, we have

68) fo = Y BE)=D

degP=r 4 Pe=dA(mod®)

U4
1,

Pe=.A(mod %)

B(Pt) = Z’E(At)
A

uging Lemma 5.2 to obtain the last equality. According to [7], §4 and
the last paragraph of [7], §8, for every P we have

1 if P = A(mod%),

0 otherwise,

(5.9) (L o(H) D 7 (4)1(P) = l

Z

where y runs through the characters of #. Thus, (5.8) implies that
610  f = > By Y (/g () 3 Z(A)x(P)
A P x
_ (g om) Y (3 w4 B 4n) (3 2(P),
x 4 P
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where P runs through the primary irreducibles of degree ». If 4 (r) denotes
the total mumber of irreducibles in M of degree 7, then since every such
irreducible is invertible modulo #, we have

(5.11) pi)= D %P,

deg P=1

where y, is the principal character of #. Thus, (5.10) implies that

) = (p(r) g O(E) D) 1l 4) B(AD)+
3

+ygom) 3 (X wBMU) (Y 1),

1#ry A

The first summation on the right above is Ty (¢) by definition 5.5. There-
fore, if we transpose the first term on the right above and take the
absolute value of both sides, we obtain

(3.12)  1f()—(p() /¢’ P (H))T= (®)]

<o) 3| X iapdn | X #(P)|

2#%g

<(le o) 3 | 14 B4 |

cxFxg A

by Theorem 5.1. Now, by the Cauchy inequality

(5.13) x;x' |Z Z(A)B(4n) | < ;’\;'E(A)E(At)\
<[(X(X] Y zamanf]™

Also, )1 =¢ @(H) as there are exactly ¢°O(H) characters of %. Further,

-

k4
if 4, and 4, run independently over the same reduced representative
set modulo #Z as does 4, then

S| Y zm
x
=2 (3 wanmam)(¥ ,(AZ)E(wAzt))
D B4~ —4a1) 3 (4,

i

Ay

=goE) ' B(d,—4,))
Aymdy(mod R)

=foE Y 1=(fo@E)
Ay=Ay(mod #)
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by (5.9) and since 4, = A, (mod #) only if 4, = 4,, as a reduced rep-
regentative set modulo % contains exactly one polynomial from each
of the ¢°@(H) invertible equivalence classes of %. Using these results in
(5.13), one finds that

2 2 1A BAY)| < (¢ ()",
XEXQ
which together with (5.12) yields
(5.14) If () — (w(r) g DH)) T (1)} < ¢ (¢° @ (H))E.

Since clearly @(H) < ¢", we have ¢*@(H) < ¢ = ¢ < ¢~ (1)
= ¢#2¢"". Using this bound in (3.14), we obtain

(5.15) [F()— (w(r)/g’ & (H)) Ta(8)] < g"*q/+er.
Now, as is well known, [p(r)—¢ /r| <¢". Thus,
|(w(r) /¢ @ (H)) T (8)—(d ra" P (H)) Ta ()
= (g SE)Ta(®)llw(r)— ¢ Ir] < g™ <7 < gMg™eor

gince trivially |Tx(f)] < ¢°®@(H). This last estimate together with (5.15)
yields (5.7), and the proof is complete.

6. The singular series. In this section, we investigate the polyno-
mial analog of the Hardy-Littlewood “singular series”. Our treatment
follows closely that of Landau ([9], Kap. 4) for the number theoretic
singular series.

DrrInNTIoN 6.1. For given H and L in k[z], we set
(6.1) Dg(I) = D BGL(H),
@

where G runs through a reduced residue system modulo H. By (3.8),
the value of Dg(L) is independent of the particular reduced residue
system used to define it.

DEFINITION 6.2. The polynomial Mobius funetion u is defined as
follows: u(4) = 0 if 4 is divisible by the square of an irreducible; other-
wise, u(A) = (—1), where j is the number of primary irreducibles which
divide H.

THEOREM 6.1. We have
(6.2) Dy(L)= D |Blp(H/D).

EB{E; E\L

Proof. Set

(6.3) Og(L) = > B(BL/H),
B
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where B runs through a complete residue systemn modulo H. Let L* be
the remainder left after dividing L by H. Then degL* < degH so that
»(L*[H) > 0, or L*/H . Further, from (3.8) we have Cg(L) = Cg(L").
A particular complete residue system modulo H is furnished by the pxi-
mary polynomials of degree i = degH. If we let B run through this
particular complete residue system in (6.3), then

FEGLYE) i »(L*H) > h,

L) = ) =
Ox(L) = Cx(L’) ‘0 otherwise

by Theorem 3.7. But »(L*/H) = h— deg(L*) > hif and only if deg(L*) < 0,
ie., if and only if I* = 0. Thus we have
¢ =" i H|L
6.4 Cg(L) =
-4 a(l) [ 0  otherwise.
Now, as in Landau ([9], Satz 220),
Og(D) = > Dy(L).

E\H

Applying Mébius inversion to this last inequality and using (6.4) as in
Landau, we arrive at (6.2). This completes the proof.

LeMMA 6.2. For every odd Hek[x]
(6.5) S(H) > [H™,

where ®(H) is the polynomial analog of the Euler totient function, i.e., the
number of polynomials in a reduced residue system modulo H.

Proof. Both sides of the inequality (6.5) are multiplicative functions
of H, so it suffices to verify (6.5) for H = P°, where P is an odd irredu-
cible. Setting ¢ = |P|, we have

(6.6) G(H) = |PI'— P = —c!
_ 6‘6*1(0*1) — 0(@-1)/2(01/2_0—1/2)0e/2_
The function g(z) =z—z"" has derivative 1-+2? and is, therefore, an

increasing function. Since g(¥3) = 2/¥3>1,g(z) >1 for all 23> VS3.

Since P is odd ¢ = |P| >3, and hence g(Ve) > 1. Using this estimate
in (6.6), we deduce that

O(H) > ¢ = |P|* = |P° = |H|'.
This completes the proof.
LeMmA 6.3. For every Hek[x],

(6.7) O(H) > [HM/4.

hn..@

Polynomial as a sum of three irreducibles 4717

Proof. If H is odd, then (6.7) follows from (6.5). Therefore, we may
suppose that |H| is even, which implies that ¢ = 2 and that H is divis-
ible by one or both of the polynomials # and x+1. Thus, we have

H = s (w-+1)2H,,
where H, is odd, and so
O(H) = O(a™) O ((@-+1)2)B(H,) > D) ((w+1)%) | H, "
by Lemma 6.2. But
D (a) = 29 —99~1 = 9o~ — 2~ g
and similarly
B ((@+1)%) = 27 (@+1)2 .
Thus,
O(H) > 27" 2127 (o + 1) P HL [ = o (o 1)2 H,[P)4 = [H|'" /4.

This completes the proof.
LEMMA 6.4. For every non-negative h,

b1
(6.8) Z e <hH-

deg H=h

Proof. We have

ot = m [ [ 1= )z [ ] 5

PE PIH

where P rung through the primary irreducible divisors of H. NowP]g 2
I
is just the number of primary square-free divisors of H and hence is less

than or equal to v(H), the number of primary divisors of H. Thus,

deg H=h eg H=h deg H=h

The last summation above was found by Carlitz ([3], §4) to have the
value (h-+1)q" This completes the proof.

LemMMA 6.5. For every non-negative h,
’

1
(6.9) ‘ ——— < A(h1) g™
deg H=h QE(H)
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Proof. By (6.7) we have 1/O(H) < 4|H|™"". Therefore,

1 r4H[T" -z NV 1 g2
M o< L _gge Y s <l
de?HJ=h QH(H) degH =N @(H) degH=h¢(H)
by (6.8). This completes the proof.
THEOREM 6.6. The “singular series”
(6.10) z{— ),

®*(H)

where the summation is over all primary H in k], is absolutely convergent
for every N ek[w]. '
Proof. Trivially, | Dg(—N)| < ®(H). Therefore,

H)

( v 1
23(H)\!DH(*N)|<2 @2(H 2 _E:/:

h=0 di

<

DMs =

$(h4+1)g ™ < oo,

>
]

U]

by Lemma 6.5. The singular series is thus absolutely convergent by
comparison. This completes the proof.

TrrEOREM 6.7. For every N <k[wx],

(6.11)  S(N) =ﬂ(1+ (1P|—1)° )H(l—ﬁﬂ?—_;\?lﬁ)’

Ev
where in the first product P runs through all the primary irreducibles in
k[x] and in the second through the primary irreducible divisors of N.
Proof. The proof follows Landau ([9], Satz 247) in every detail.
THEOREM 6.8. There is an absolute positive constant d (independent
of q!) such that 8(N) = d for every odd polynomial N in k[x].
Proof. It suffices by Theorem 6.7 to show that the second factor
in (6.11) is bounded below by an absolute positive constant d, since the
first factor is clearly greater than 1. Since N is odd, we have

1 1
(6.12) ﬂ(l" IP|2~31P|+3)>L_[(1_ 1P|2——3\P[+3) _

Podd

] 1
>1-— SRS
Z PP—3|P|+3

Podd
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Now #2—32-+3 = (22/4)+3(2/2—1)2 > #%/4 for every real z. Therefore,
the summation on the right in (6.12) is bounded above by

Z =] Zq*m 21"424‘h_‘ (g—1)"

deg H =l

Tn partieular, the infinite produet in (6.12) is convergent and hence differ-
ent from zero, since as one easily verifies, a factor of the product can
vanish only if |P| = 2, which does not ocecur. Further, if ¢ > 7, then
1—4[(g—1) > 1/3, so that this infinite product is bounded below by

1/3. Thus, one can take for d the minimum of 1/3 and the positive values
of the infinite produet in (6.12) for ¢ = 2, 3, 4 and 5. This completes
the proof.

7. Coup de grace. In this section, we derive an asymptotic formula
for N(M) and prove Theorems 1.1 and 1.2.

LemMA 7.1, If G/H is primordial, then for any teUgm and any non-
zero 8¢k, we have

w(H) P B(6d (t—G[H) if v(t—G[H) > 7,

(1) Ta (1) 0  otherwise,
where s =r—w—h and h = degH.

Proof. Let B run through the primary polynomials of degree s,
and let ¢ run through the polynomials of degree less than h which are
prime to H. We claim that then the polynomials 4 = o HB-+( run
through a reduced representative set modulo Z# = Zg taken from
among the primary polynomials of degree r. Clearly each polynomial A
is primary and has degree ». Further, each is invertible modulo # by
the last paragraph of [7], §8, since (4, H) = (C, H) =1. Also, there
are formally at least ¢°®(H) of the polynomials A, which is the number
of polynomials in a reduced representative set modulo #. Thus, it remains
only to show that the polynomials A are pair-wise distinct modulo #.
Suppose that #¥HB;-+-0; =" HB,+C,(mod #). Then in particular,
these polynomials arve congruent modulo H, which shows that €y =
= 0, (mod H) or that ¢, = C,, since each polynemial ¢ has degree less
than h. As degC < h, the first s coefficients of A are determined by the
summand #° HB. Thus, 4*HB, and #”HB, have the same first s coef-
ficients. But this occurs if and only if B, and B, have the same first s
coefficients ([7], pp. 117, 118), ie., if and only i B, = B,, as
degB, = degB, = s. It follows that the polynomials A4 are distinet
modulo & and hence that they constitute a reduced representative set
modulo Z.
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In definition 5.5, let A run through the particular reduced repre-
sentative set defined above. Then

(7.2)  Tg(st) = D) B(Adl) = DV B(4d(t—G/H) B(ASGH).
A4 A

Now, E(AG/H) = B((«"HB+0)6G/H) = B(50G[H) by (3.8). Algo,
since

»(8(4 —a" HB)(t— G[H)) = »(60(4—G[H)) = »(0)+»(t—G/H)
=y(t—G[H)—degC > w+h—(h—1) =w+1 >1
a8 te%gg, we have
E(6(A—o"HB)(t—G[H)) =1 or E(8A(—G/H)) = B(6«" HB(t—G[H)).
Therefore, from (7.2)
(7.3) Tg(61) =Z'E(6w“’HB(t~G/H))EE(&OG/H)
5}

B

= (D) Bléa” HB(1—GH))) Du(5G)
B

= u(H) ) B(sa” HB(i—G/H))
B

by Theorem 6.1. Since
v(62"° H (t—G[H)) = »(t—G[H)— deg (2" H)
= »(t—G/H)— (0+h) > (w-+h)—(w+h) = 0,
Theorem 3.7 shows that the last summation in (7.3) has the value
FE(BHE—GIH) if v("HE—G/H) >s,
0 otherwise.

But (@ H(t—G[H)} = »(t—@/H)—w—h is greater than s if and only
if »(t—G/H) > s+w-+h=r. And if »(i—G/H) > r, then

v(82* T (H— o) (1 — G[H)} = »(t— G/H)—w—s— dog (H — ")
>r—w—s—(h—1) =1,
a8 H is primary and of degree h. Thus,

B(8a"(H—a") (t— G[H)) =
or
E(ém“’*"’H(t——G/H)) = B{oa™ Mt —Q[H)) = B(8" (t—@G[H)).
Using these results in (7.3), we arrive at (7.1). This completes the proof.
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TEEOREM 7.2. The number of representations N(M) of M in the
form (1.2) (see definition 4.1) is estimated by

(7.4) N(M) =**S(ll[)-{—0( UsgGli+o))

where 8(M) is the singular series (6.10) and r = deg M. Further, the con-
stant implied in the O-notation is independent of both M and g¢.

Proof. According to Theorem 4.1,
(7.5) N(M) = [ f(at)f(B0)f (1) B(—Mt)do
=3 [ fla)f(e0f(vt) B(—M1)de,

GIH g

where f(t) is defined by (4.1) and where the summation is over all pri-
mordial G/H. For given primary H such that degH =h < w, we seb

(76) 90 = 0alt) = gz Tal)

for every te# 'y (see definition 5.5).
Step 1: We first estimate the absolute value of

I = [fla)f(Ofit) B(—Miyde— > [ glat)g(Bt)g(yt) B(—Mt)de,

&TH %Gy
(7.7)

where G/H runs through all primordial ¢/H. We have
(7.8) 1< ) [ Iret)f(B0f () —g(at) g (B9 (1)l de-

TH 2

Now for every te g,

Ha)f(Be)f (v8) — g (at) g (Bt) g (1)
= (f(at)— g(at) F(BOF (v1) +(F (1) — g (1)) g (at)f (1) + (F(y1) — g (v0)) g (at) g (B
Therefore, on Zgz we have
(1.9)  If(at)f(BOf (1) —g(at) g (B)g(y1)]

< If(at)—g(at)| [F(B0)] 1F (v0) |+ 1F (BD) — g (B0)] Ig (at)] If(v2)| +

+1f vty — g ()] lg(at)] 19 (B2

< 2¢ MU £ (B0 1 (1) lg (@] IF(0)] + g (at)] g (BE)I)

by Theorem 5.3. Now
lg(at)] IF(x0)] < (lg(at)2+ IF(v8)1%)/2,

Acta Arithmetica XI.4 o
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so that (7.9
() (BOF () — gty g (B3 (1)
< 2¢O £ (B If (0] -5 If (y0)]13) -+
+ 2¢O (g ()] 19 (B 4% 19 (at)[?)

) implies that

for every te¥gm. Using this estimate in (7.8), we find that

(7.10) 11} < 2¢O (14 T)

where

(7.11) L= [ (FBO1FI+3If (01 de
Gl Uy

and

(7.12) L= [ (glat)llg(Bt)l+lg(at)®)de-
G/H %qg

Now since the sets %gy form a partition of Z,

(1.13) 1, = [If(p)] [ (v0)lde+3 [ (w02 de.
And
(714)  [Ifonede = [funfinde = [ Z’E(y(P,—Pm)de

= M[Bly(@,—P)Y)de =

Plz

where P, and P, run through the primary irreducibles of degree r and
where »(r) is the number of primary irreducibles of degree 7. Here we
have applied Theorem 3.5. Also, since

$ha(), B (0> = [ T (8)ha (1) dp

is an inner product on the vector space of all continuous functions on 2,
the Schwarz inequality yields

FBOL IF DD < AFEBLL IFEIDEF DI, D
(1/) 1))1/0 ,',))1,2 — 7}'(74) < qr
as in (7.14). Using these estimates in (7.13), we find that

(7.15) Il <

0] o

q‘r < SQT-
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We turn now to I,. If Bgp = {{<? | v(i—G[H) > r}, then by Lemma,
7.1, Corollary 3.2 and (7.6),

(7.16) f(!TH ad)|| T (B0 + 31T () 2) do

ey

1
< 21 1.9 28 % 28 d
(g %) 2 &0 (H) gG/H(q +31q7)do

GIH

(q”/ﬂ)y:,@(g o (%)

= 61 Y g

GIH

- " [2r2) ; 1
(3¢ /%) Z d5 (H) <
deg Hw [z3
@H)=1
= (3¢"/2r2) E 1 ’
O (H)
deg H<w

as G/H runs through the primordial rational functions. For the last sum-

mation above, we have by Lemma 6.4 that

1 _ v\ 1\ _ (w1 (w+2)
2 @(H)—Z Z @(H)<A(h+l) =TT e
deg H<w h=0 degH=h h=0

1(r r r?
< sz +1 3 +2) =— + +1
Using this bound in (7.16), we find thab

1 3 1
(7.17) I, < (342) (g +=+ 7) <—

Finally (7.17), (7.15) and (7.10) show that

1 (5 )r
(7.18) 1} < 12q q .

We have, therefore, by Theorem 4.1 that

(a0) |Nan— 3 [ alag(ngtn B(—Mnde = 111 < 124 g+

& %gm
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Step 2: We have now to evaluate the integral

Iga = [ 9(a)g(B)g(y)) B
Koz

— Mt)do,

which by (7.6) and Lemma 7.1 has the value

LI (o) T (B) T (1) B (— M)
QSS@(H)%L re(at) T (60) T (o) B(— M)
37‘,’, .
:E_%_S/(_ [ )4 B (- y)al (- GIED) T~ 1) g

BqH

=(‘~’3r)(“ ) pi—cim [ B((at g0 )t~ 61 de

oH el 4

where Bgm = {teP |»(t—G/H) > r}. By the invariance of the Haar
integral, the last integral above has the value

fE((a+ﬂ+y)w —~M)t)de = ¢

by Theorem 3.5 as v((a+ﬂ+y)w —M) = —deg(( (a+B+y)a"— M) > —7,
since deg M =r and c¢-+p+y = sgn M by hypothesis. Thus,

_ (g7 ([ &H)
1o = () i) 2
that

o (%)(ﬁs‘f;))m—mm
2 G H)

degH’<w
Z I

deg H<w

—GM/H).

Step 3: We have from step 2

— MG/H)
(GH) 1
w(H)

= (qzrhz) —Q—s(-_ﬁ_)'DH(—M)’

Thus, (7.19) implies that

(7.20) \N(M)——(q”/’ra)

2, @a(H?)DH M)‘ <124 2(4 )

deg H<w
Step 4: Now let

I, = lS(M)—' Z

deg Hw

u(H)

iy Da(—0];

h‘l‘l@
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Then sinee trivially |Dg(—M)| < o(Hy,
+| w(H) ro 1
7.2 < —_— —M) < e
(7.21) < ) o 1 Dr(—MDi< ) S
deg H>w deg H>w

- 5: Z'ﬁg 2 L41)g ™"

h=w+1 deg H=h h=w+1
by Lemma 6.5. Now
o
zh-)-l — w+2/(1—-2)
h=tw+1

for every z such that |¢| < 1. Differentiating this equality, we get

hisd w1
(D) = - (w+2—(w+1)7) < (w+2)e" (1—2)~
(1—2)*
h=w+1
if 0<z<l If z=g " then we get

o0
L 41) M < 40+ 2)g VR — g7 < B6(w+2) g
h=w+1
since (1—g~P)2 <(1—27") = 6+4V2 < 14, as ¢
result in (7.21), we find that

> 2. Using this

T, <56(w+2)g " < 56(—’;— +2>q-’"‘.

Thus,
(¢" ") I, <56 (% +T_93)q§r< ISSQ‘Z*T - 108 qmgéw)r
as 7 >1 and @ > 1/2. This last estimate together with (7.20) shows that
IN(M)— (¢ [r*) S (M)| < ISOQ%QGW)T‘

This completes the proof.

COROLIARY 7.3. There is an absolute positive comstant cs such that
N(M) >0 (M odd) provided that

(7.22) 3——4@——% >0

and

~ P4 1 Cs

(7.23) /(3 — 4@_—
logq
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Proof. If follows from Theorem 7.2 that

or

N =L 18(M)] = 6y0(q, 7)

¢}
for some absolute positive constant ¢,, where o(q,7) ——qll4q( ve)r .
By Theorem 6.8, S(M) > d > 0 since M is odd, where & is also an abso-
Iute positive constant. Therefore,
(:r@)

g
7,3

N(a)
o(g,r
3 1
Now (—4——@)7 7= -Z(

ki _ 0 oo o __a)“ ﬂ_oga_>‘.£( Ly
g =D S Vi e | B TR 3_4@_7)'

n=0
4 4
> dloga)’ [1’(3-—4@——1~) - 02—4]
414 7 (loggq)
where ¢, = 4!4%¢,/d. Therefore, N(M) >0 provided that the second
factor on the right above is positive, i.e., provided that (7.23) holds with
63 = ¢, This completes the proof.

We are now in a position to prove Theorems 1.1 and 1.2. It is clear
hat, for fixed ¢, both (7.22) and (7.23) will hold for r sufficiently large
f3—40 >0, ie., if ® < 3/4. Thus, by the above. corollary, we have:

Theorem 1.1 is proved if @ < 3/4.

Also, if r > 2, then

4@———) >0 by (7.22), and hence

Thus
N(HM)
alg, )

TIM (3._4@__ _1;) > 4 (3_4@~i>‘
7 PYA

and, therefore, both (7.22) and (7.23) hold for all r > 2 provided that
3—40—% >0 (ie, 6 < 5/8) and provided that q is chosen sufficiently
large. Now any polynomial of degree 1 has trivially a representation
in the form (1.2) since all first degree polynomials are irreducible. Thus,
by Corollary 7.3, we have:

Theorem 1.2 is proved if © < 5/8.

From the Riemann hypothesis for function fields proved by A. Weil,

it follows that actually @ = 1/2 (see [8]). Thus, the proofs of Theorems
1.1 and 1.2 are complete.
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If we put ® = 1/2 and use Theorem 6.7 in (7.4), we obtain the fol-

lowing asymptotic formula for N(M):

N(II) ~G_H(

PIM

=

and where the constant implied by the O-notation is absolute.

raprs) W)

where

Postscript: If one examines the above proofs, he will find that
it is nowhere actually required that deg M = 7, except in step 2 of the
proof of Theorem 7.2 where deg M <7 and a+f+y =0 would also
suffice. Therefore, if one wishes, he can fix M and let 7 tend to infinity
independently of 3, provided only that «-+p-+y = 0. In this way one
can show that any odd M can be represented in the form (1.2) with perhaps
degP, = degP, = degP, = r greater than deg M and a+f+y = 0. In
doing this, one is perhaps “not playing the game” since a good deal of
cancellation occurs in the addition of the higher order terms in the poly-
nomials Py, P,, and P,. In the number theoretic case, of course, no can-
cellation can occur.  Therefore, one should probably view Theorem 1.1
as the “correct” analog of Vinogradov’s theorem.

References

[1] L. Carlitz, Represeniation of Arithmetic Functions in GF[p™, x], Duke
Math. Journ. 14 (1947), pp. 1121-1137.

[2] — Representation of Arithmetic Functions in GF[p™. «], II, Duke Math.
Journ. 15 (1948), pp. 795-801.

[8] — The Arithmetic of Polynomials in o Galois Field, Amer. Journ Math.
54 (1932), pp. 39-50.

4] J. Dieudonné, Foundations of Modern Analysis, New York 1960.

[5] T. Estermann, Introduction to Modern Prime Number Theory, Cambridge
University Press 1952.

[6] G. H. Hardy and J. E. Littlewood, Some Problems of ‘Partitio Numero-
rum’: On the expression of a number as a sum of primes, Acta Math. (Stockholm),
44 (1923), pp. 1-70.

[7] D. R. Hayes, The Distribution of Irreducibles in GF [g, »], Trans. Amer.
Math. Soec. 117 (1965), pp. 101-127.

[8] — A Qeneral Character Sum, to appear.
[9] E. Landau, Vorlesungen tiber Zahlentheorie, Band 1, Teil 5, New York 1947,


Pem


488 D. R. Hayes

[10} L. Nachbin, The Haar Integral, Princeton 1965.

[11} I. M. Vinogradov, Representation of an 0dd Number as a Sum of

Three Primes, Comptes Rendus (Doklady) de 1'Académie des Sciences de
15 (1937), pp. 191-294.
[12] E. Weiss, Algebraic Number Theory, New York 1963.

THE UNIVERSITY OF TENNESSEE

Regu par la Rédaction le 7. 12. 1965

T'URSS,

ACTA ARITHMETICA

XI (1966)

Correction to the paper
“Binomial coefficients in an algebraic number field”
by
L. Carrrrz (Durham, N. C.)

Mr. Williamm Leahey has kindly drawn the writer’s attention to an
error in the statement of Theorem 1 of the paper [1]. The theorem should
read as follows:

THEOREM 1. The binomial coefficients (;) are integral (modyp) for
all aeKp and all m > 1 if and only if p is & prime ideal of the first degree
and moreover P? does mot divide p.

The former proof applies with very minor chaunges. If the field K
is normal the original statement of the theorem is correct.
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