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On the divisibility properties of sequences
of integers ()
by

P. ErDOS, A. Sirxdzy and E. SzeMEREDI (Budapest)

Let a, < g < ... be & sequence A of integers. Put A (z) = > L

a; <%
The sequence is said to have positive lower density if
lim (4 ()/z) >0,
T—c0
it is said to have positive upper logarithmic density if

-— 1 1
Him E —> 0.
z=c0 108X & a;

The definition of upper density and lower logarithmic density is
selfexplanatory.

Begicoviteh ([2]) was the first to construct a sequence of positive
upper density no term of which divides any other. Behrend ([1]) and
Brdos ([4]) on the other hand proved that in a sequence of positive lower
density there are infinitely many couples satisfying a;]a;, Behrend in
fact proved this if we only assume that the upper logarithmic density
is positive. .

Davenport and Erdos ([3]) proved that if 4 has positive upper
logarithmic density there is an infinite subsequence a;, 1 < j < oo sati-

sfying a"‘!la‘f-i-l'
Put
flx) = 2 1.
ab<h
It is reasonable to conjecture that if 4 has positive densgity then

1) im 7@ _
@

We have proved (1) and in fact obtained a fairly accurate deter-
mination of the speed with which f(»)/z has to tend to infinity, this
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strongly depends on the numerical value of the density of 4. We will
prove (1) in a subsequent paper.

Throughout this paper ¢, 6, ... Will denote positive absolute con-
stants, not necessarily the same at each occurence, logrpz denotes the
k-fold iterated logarithm. In the present paper we shall prove the
following

THEOREM 1. dssume that the sequence A has positive upper logarithmic
density and put

— 1 1

(2) lim — =0
IOgm a;<T a”"

Then there is a ¢, depending only on ¢, so that for infinitely many »
(3) fla) > etallonsmPloesz

On the other hand there is a sequence A satisfying (2) so that for all »
@ F() < agfatoss Posss

Tirst we prove (3). Our principal tool will be the following purely
combinatorial

THEOREM 2. Let & be a seét of n elements and let By, ..., B,,2 >¢,2"
(¢, < 1) be subsets of &. Then if n > nq(cs) one of the B’s contains at least
o5 o8n of e Bs, where ¢5 depends only on .

Before we prove Theorem 2 we show that apart from the value of
¢; it is hest possible. To see this let the B’s be all subsets of % having ¢
elements where $n+cn'® >t > jn—cn*®. A simple computation shows
that for suitable ¢, z > ¢,2" and every B contains fewer than gormfH1ogn
other B’s.

o To prove Theorem 2 we first note the well known fact that for suit-
able ¢

Q PREEPMHES L

where in Zl,.j < jn—cn® and in )y, j > 3n+¢yn'®. Because of (5) we
can assume without loss of generality (replacing ¢, by }¢,) that |B| denotes
the number of elements of B

(6) In—en'® < |B;| < nt-eyn™

Del}ote-b.y & the family of these B’s which have precisely j ele-
ments (j satisfies (6)) and denote by BY, ..., B, the sets of &¥. Clearly

7 Y gy Bon o B
(") D < e <<

hn..@
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where in > the summation is extended over those j’s for which g(j)

2" .
< % (”) . By (7) and ("?) < f/f we can assume without loss of generality
2 \] J €%

that either g(j) = 0 or g(j) > ¢, and that

®) Sg(i) > eVn.
We obtain this by considering only the B’s which have j elements where
g(j) > 30s. ‘

Put

2
§ = [—]+2.
G4

From (8) we obtain by a simple argument that for a suitable ¢y,
there is a sequence j, < js < ... < js satisfying

9 . g > %en, T=1,..8
and
(10) Gror—gr >0, r=1,...,s-1.

From (10) we obtain by a simple computation that

(11) (F) >, =1,

Jr—1

We are going to show that ¢; can be chosen as ic,,. In fact we shall
show that if we consider only the set of S p=1,...,s and denote
these sets by Bj, ..., By, then there is a B’ which contains at least

(12) ecsnllg logn,

o

05 = 3011

B’s. Assume that (12) is false for sufficiently large n, we will arrive at
a contradiction. Denote by IU? the subsets of & having j, elements which

contain at least ¢’™*1%¢" of the sets B. By. our assumption the families
100 and U7 are disjoint. Denote IV U U0 = VU0, Put

[0 = (), 179 = o (jn).

By our assumption we have
(13) P(ie) = Bi) + 19 = 1) +4a ()
‘We will obtain our contradiction by showing: that for a suitable 7

) o3> ()
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Now we estimabe ¢(j,) from below. First of all we evidently have

(15) p(G) = 1#%] > 3, 7).
J1
Now we show that for every r <s (s = [E_]_]_ 2)
Cy

(16) # () > [r+o (1))

To prove (16) we use induction with respect to ». By (15), (16) holds
f01.‘ r = 1. Assume that it holds for r—1, we will deduce it for . To show
this we will prove that if (16) holds for »—1 then

(17) (4 > [r—1-+0(1) (J”)
By (18), (17) implies (16) for » and thus we only have to prove (17).
Consider now all the subsets of & having j, elements which contain one
of the sets of ¥Vr-1. We will estimate h(j,) from below by counting in
two ways the number of times a subset of & having j, elements .can con-
tain a set of VUr-1. First of all there are clearly ¢(j._,) (1.7‘“7:"“‘) guch
. . i - Jr—Jr—
relations, since to each of the ¢(j,_;) sets of V0r-1 therer are 1cleawly
N—jr—1 P .
(jr_jr—l) subsets of & having j, elements which contain it. On the other

hand the &(j,) sets of 16" each contain at most (J" ) sets of VUr-1 (gince
Jr.

they contain at most (;’ ) subsets having j,_, elements). The other

_
(jr)—h(]r) subsets of & having j, elements contain fewer than %""/*len
sets (?f }7"7“1). To see this observe that such a set can not contain a set
of I¥—v since otherwise it would belong to IU) and since it does nob

belong to I it contains fewer than %'/ loen Z
. g sets of U,
evidently have of 7. Thus we

(18) #ie) (2070) < (5 ) + (7)o,

Jr—Jr—1 Jr—1 r.

From (18) we obtain by a simple computation using (11) and ¢; = $o;
00 H > o (2 )7 (Pt )
?(jr-1) Jr—jr~1) (jf—l) - (J'r)6 e (.?l'r—l)

> o) (7] (7] = (Jomeene.

jf—l

hn..@
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In (19) we use
n—gei\ [jr \"1_ [ n \TH{m
(J'r—fir-l) (J'T—l) B (]'r—l) (jr)'
From (19) and the fact that (16) holds for r—-1 we have

Wi > —1+o) (1),

which proves (17), and hence (16) holds for all » <s.

But (16) implies that (14) holds for » = s. This contradiction proves

Theorem 2.
By the same method we would prove the following

9

TrEOREM 3. Let & be a set of n elements and 6t By, ..., By, 2 >c‘—/: x,
n

where > 1,2 < 2™ and ¢ is o sufficiently large constant. Then if n > nq
one of the B’ contains ab least 708 of the B’s.

Theorem 3 clearly containg Theorem 2. The proof of Theorem 3
is similar but somewhat more complicated then that of Theorem 2. We
supress the proof of Theorem 3.

The proof of (3) is now a simple task. In fact we shall prove the
following slightly stronger

TrmorEM 1. Let ay < ... < ap < N be a sequence of integers satisfying

3
1
(20) Z?> ¢y,10g N .
[

Then there is o constamt ¢;; depending only on ¢, SO that if N
> Ny(€yys €10) then

(21) 2+ ”1_ > ‘1’ cplogV

2
where in (21) the summation is extended over the a’s, which have af least
exp (¢,5(log, N Y2 log, N) divisors among the a’s.

It is easy to see that Theorem 1" implies Theorem 1. To see this ob-
serve that if (2) holds then (20) holds for infinitely many N. But if (21)
holds a simple computation shows that to each N which satisfies (21)
there is an M = M(N) < N which tends to infinity with N and for
which the number of @, < M which have at least exp(e,;(log, V) log, N)
divisors among the a’s is greater than ¢, M. Thus M satisfies (3) and
hence Theorem 1’ implies (3).

Thus we only have to prove Theorem 1’. Assume that Theorem 1’
is false. Then for arbitrarily large values of #» there exists a sequence
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@y < ... < @y < N satisfying (20) which does not satisfy (21). Then there
clearly exists a subsequence of the sequence a; << ..., 8ay by <<...<b. <N
satisfying

.
1

(22) § — > jelog N
=1 bi

80 that each b has fewer than exp (e, (log,N)"*log, N) divisors among the
b’s. We now show that this conclusion leads to a contradiction.
First we observe that by using

ZW”F

we obtain that there is a ¢ so that there is a subsequence b; < ... <,
of the »’s each of which can be written in the form °

by, =1¢, 1<r<s

where the q,va‘re squarefree integers and where

8
1 1
(23) E > g,logN.
&~ g 4

(23) immediately follows from the fact that every integer can be
written (uniquely) as the product of a square and a squarefree number.

d(n) (as usual) will denote the number of divisors of n. d+(n) denotes
th(e number of ¢’s which divide ». By our assumption we have for all
r{r=1,...,8)

(24) d*(g,) < exp(cis(log, N)log, ).
From (23) we have for ¥ > N,

N 8
N
@) Narm = 2[ > NZ——— N >0, Nlog .
m=1 J

Denote by »(m) the number of distinet prime factors of m. Since
the ¢’s are squarefree we have d+(n) <C 2"™.

) Thus from (25) we obtain (the dash indicates that the summation
is extended over the n < N for which »(n) > log,N)

(26) Z cz+(m)>—emmog1v Nolomn <. ——chlogN

Mm=1

hn..@
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On the other hand we evidently have
N

N
J\T
y d(m) = E [ﬁ] < 2NlogN.
Mm=1

m=1

Thus by (26) there is an m satisfying »(m) > log, N for which
1
(27) a+(m) > —2—103 d(m) = TG 12270,

The last equality of (27) follows from the fact that since the ¢’s are square-
free we can assume that m is squarefree.

Now we can apply Theorem 2. The set & is the set of prime divi-
sors of m,»(m) = n. The B's are the ¢’s which divide m, ¢,5/20 = ¢,.
We thus obtain by Theorem 2 that there is a g/m for which

d*(q) > exp (cs (1Og2N)mlOg3 N)

which contradicts (24) if e is sufficiently small.

This completes the proof of Theorem 1’ and hence (3) is proved.
Tt is clear from the above proof that (21) would remain true with 1—e
instead of 3.

To complete the proof of Theorem 1 we now have to show (4). ( (We
do not give the proof in full detail.) In fact we shall prove the following
stronger

TraroREM 4. There is an infinite sequence A of positive density for
which for all «

(28) f(@) < wexp (¢y, (log, ) *log, z).

Our principal tool for the proof of Theorem 4 will be the following
result from probabilistic number theory:

THEOREM 5. Let n be squarefree. Let n = ['[p‘”) M <. < pi), be

the decomposition of m into primes. Then for every ¢ > 0 there s a ky
= Fo(ew) 80 that the density of integers n which satisfy for all &k <<k < Jv(n)

eho-ey5(logy )2

- 1/2
(29) Gek ¢y5(loggn) < p < 6

8 positive.

Theorem 5 can be proved by the methods of probabilistic number
theory ([5], [6]). We do not give here the proof of Theorem 5.

Now we show that the sequence of integers which satisfy (29) for
all % > ky(e;;) also satisty (28) and if this is accomplished Theorem 4
and therefore (4) is proved. Thus the proof of Theorem 1 will be complete.

Acta Arithmetica XT4 27
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Lebt a; < ... < @ < be the sequence of integers satisfying (29).
From (29) we obtain by a simple computation that for every r, L <r <1

(30) 1032%‘2014(10&‘%)”2 < v(ay) <logytp+26y (logya,)**.

Denote as before by d+(a,) the number of a’s dividing .. To prove
(28) it will suffice to show that for every 7

(31) @+ (ay) < exp (614(10g;2)" " logs ).

Denote by py < ... < Dya, the prime factors of ark, Asgsume a‘La,;
If v(a,) < ko then by (30) there are clearly fewer than »(a,)" < (log,z)*?
choices for a;, thus these can be ignored. If »(ay) > &, let p; be the gre-
atest prime factor of a;. Sinee a; and a, both satisfy (29) and (30) a simple
computation shows that

(32) 8 — 30y, (logea,) < v(a) <s.
Thus by an easy argument and simple compubation

) s

y 8

a+(a) < logsfo+ > > (J)
s=Tg+1 53045 (loggan) 2

< (logy@)+ -+ v (a,) () s
< »( a')scls(lugzdr)ll‘l < exp (016 (log, w)1/210g3 m) .

Thus (31) is proved (with c¢;z = ¢y).
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On sums of roots of wunity
(Solution of two problems of R. M. Robinson)
by
A. ScminzeL (Warszawa)

To Professor Viggo Brun
on his 80th birthday

R.M. Robinson ([4]) proposed the following problem:

“How can we tell whether a given cyclotomic integer can be ex-
pressed as a sum of a prescribed number of roots of unity?”

An answer to this problem follows as Corollary 1 from the theorem
below.

k
TEEoREM 1. Let Y aylr = &, where the a; are rational integers,
i=1

iy = €™, Suppose that 9 is am algebraic integer of degree @ and that
(N, a3, agy ...y ax) = 1. Then either there is a non-empty set I < {1,2,...,k}
such that

Dlaly =0

(1
or

N < d(2logd -+ 200k2log2%)™*",

COROLLARY 1. An algebraic integer of degree d is a sum of k roots
of unity only if it is a sum of k roots of unity of common degree less than
d(2log d-200k2log 2k)2,

COROLLARY 2. An algebraic integer = 0 is a sum of k roots of unily
in infinitely many ways if and only if it is a sum of k—2 roois of unmity.
k
COROLLARY 8. If 1+ 38 =0, and (N, ay, ..., ap) =1 then either
i<
there is a mon-empty set I < {1,2,...,k} such that Y (% =10 or
i
N < (200 k2log 2%)2*,

The proofs of Theorem 1, Corollary 1 and 2 are given later, Corollary
3 follows immediately from the theorem and is stated with the purpose
of asking the question how much the inequality for ¥ can be improved.
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