and A is a rational integer.

cm®

the conclusion follows from (22), (23) and the multiplicative property of the norm.

Remark. In connection with Theorem 5 let us remark that the

theorem of Bauer gives an answer to a question of D. H. Lehmer ([6], p. 436) concerning possible types of homogeneous polynomials F(x,y) of degree $\frac{1}{2}\varphi(n)$ such that when (x,y)=1, the prime factors of F(x,y) either divide n or are of the form $nk\pm 1$. (If $f(x)=x^3+x^2-2x-1$, then $y^3f(x|y)$ is an example of such polynomial for n=7.) The answer is that all such polynomials must be of the form $A\prod_{i=1}^{1\varphi(n)}(x-a_iy)$, where a_i runs through all conjugates of a primitive element of the field $Q\left(2\cos\frac{2}{n}\pi\right)$

Note added in proof. In connection with Theorem 2 a question arises whether solvable fields of degree p^2 (p prime) are Bauerian. J. L. Alperin has proved that the answer is positive if the field is primitive and p>3. P. Roquette has found a proof for the case where the Galois group of the normal closure is a p-group (oral communication).

References

- M. Bauer, Zur Theorie der algebraischen Zahlkörper, Math. Ann. 77 (1916),
 pp. 353-356.
- [2] H. Davenport, D. J. Lewis and A. Schinzel, Polynomials of certain special types, Acta Arith. 9 (1964), pp. 107-116.
- [3] F. Gassmann, Bemerkungen zu der vorstehenden Arbeit von Hurwitz, Math. Zeitschr. 25 (1926), pp. 665-675.
 - [4] M. Hall, The Theory of Groups, New York 1959.
- [5] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der Algebraischen Zahlkörper II, Jahresber. der Deutschen Math. Vereinigung, 6 (1930).
- [6] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), pp. 419-448.
- [7] N. Tschebotaröw und H. Schwerdtfeger, Grundzüge der Galoisschen Theorie, Groningen, Djakarta 1950.
 - [8] H. Wielandt, Finite Permutation Groups, New York, London 1964.

Reçu par la Rédaction le 12.3.1965

ACTA ARITHMETICA XI (1966)

An extension of the theorem of Bauer and polynomials of certain special types

by

D. J. Lewis* (Ann Arbor, Mich.), A. Schinzel (Warszawa) and H. Zassenhaus (Columbus, Ohio)

1. For a given algebraic number field K let us denote by P(K) the set of those rational primes which have a prime ideal factor of the first degree in K. M. Bauer [1] proved in 1916 the following theorem:

If K is normal, then $P(\Omega) \subset P(K)$ implies $\Omega \supset K$. (The converse implication is immediate).

In this theorem, inclusion $P(\Omega) \subset P(K)$ can be replaced by a weaker assumption that the set of primes $P(\Omega) - P(K)$ is finite, which following Hasse we shall denote by $P(\Omega) \leq P(K)$.

In the preceding paper [8], one of us has characterized all the fields K for which $P(\Omega) \leq P(K)$ implies that Ω contains one of the conjugates of K and has called such fields *Bauerian*. The characterization is in terms of the Galois group of the normal closure \overline{K} of K and is not quite explicit. Examples of non-normal Bauerian fields given in that paper are the

following: fields K such that \overline{K} is solvable and $\left(\frac{|\overline{K}|}{|K|}, |K|\right) = 1$ (1), fields

of degree 4. The aim of the present paper is to exhibit a class of Bauerian fields that contains all normal and some non-normal fields. We say that a field K has property (N) if there exists a normal field L of degree relatively prime to the degree of K such that the composition KL is the normal closure of K. We have

THEOREM 1. If K and Ω are algebraic number fields and K has property (N) then $P(\Omega) \leq P(K)$ implies that Ω contains one of the conjugates of K.

^{*} This paper was written while the first author received support from the National Science Foundation.

⁽¹⁾ We let \mid denote both the degree of the field over Q and the order of the group.

Not all fields K such that \overline{K} is solvable and $\left(\frac{|\overline{K}|}{|K|}, |K|\right) = 1$ possess property (N). We have however

THEOREM 2. If K is a number field such that $\left(\frac{|\overline{K}|}{|K|}, |K|\right) = 1$ and the Galois group of \overline{K} is supersolvable, then K has property (N).

In particular K can be any field of prime degree such that \overline{K} is solvable or any field generated by $\sqrt[n]{a}$, where a, n are rational integers and $(n, \varphi(n)) = 1$. The field $Q(\sqrt[n]{2})$ does not possess property (N), it is however Bauerian. (It follows from a theorem of Flanders (cf. [7], Th. 167) and results of the preceding paper that $Q(\sqrt[n]{a})$ is Bauerian if $n \neq 0 \mod 8$.) We have no example of non-normal field K with property (N), such that K is non-solvable however one could construct such a field provided there are fields corresponding to every Galois group.

The original Bauer's theorem has been applied in [2] to characterize polynomials f(x) with the property that in every arithmetical progression there is an integer x such that f(x) is a norm of an element of a given normal field K. The method used in [2] can be modified in order to obtain

THEOREM 3. Let K be a field having property (N) and let $N_{K/Q}(\omega)$ denote the norm from K to the rational field Q. Let f(x) be a polynomial over Q such that the multiplicity of each zero of f(x) is relatively prime to |K|. If in every arithmetical progression there is an integer x such that

$$f(x) = N_{K/Q}(\omega)$$
 for some $\omega \in K$,

then

$$f(x) = N_{K/Q}(\omega(x))$$
 for some $\omega(x) \in K[x]$.

The proofs of Theorems 1-3 given in § 3 are independent of the preceding paper [8] and assume only the original Bauer's theorem. They are preceded in § 2 by some lemmata of seemingly independent interest. Theorems 1 and 3 could be proved by the methods and results of [8]. We retain the present proofs since they use, as do the statements of the theorems, only the language of field theory. We refer to [8] for examples showing that an extension of the theorems to an arbitrary field K is impossible.

2. LEMMA 1. Let fields K and L have the following properties: L is normal, (degree K, degree L) = 1, KL is normal. Then for any field Ω the inclusion

$$\Omega L \supset KL$$

implies that Ω contains one of the conjugates of K.

Proof. It follows from (1) that

$$QKL = QL.$$

Since KL is normal and L is normal, we have

(3)
$$|\Omega KL| = \frac{|\Omega| |KL|}{|\Omega \cap KL|},$$

$$|\Omega L| = \frac{|\Omega| |L|}{|\Omega \cap L|}.$$

(Cf. [6], § 19.5, Satz 1).

Since clearly |KL| = |K||L|, we get from (2), (3) and (4)

$$|\Omega \cap KL| = |K| |\Omega \cap L|.$$

Let $\mathfrak G$ be the Galois group of KL. And let $\mathfrak H, \mathfrak H, \mathfrak H$ be subgroups of $\mathfrak G$ corresponding to $K, \ \Omega \cap KL$ and L, respectively. In view of (5)

$$[\mathfrak{G}:\mathfrak{H}]$$
 $[\mathfrak{G}:\mathfrak{H}]$, thus $|\mathfrak{H}|$ $[\mathfrak{H}]$ and $(|\mathfrak{H}|,|\mathfrak{H}|)=1$.

On the other hand, since $\mathfrak{H} = \mathfrak{G}$, and \mathfrak{N} is normal, it can be easily shown that

$$\mathfrak{IN} = (\mathfrak{IN} \cap \mathfrak{H})\mathfrak{N}.$$

Thus \mathfrak{I} and $\mathfrak{I}\mathfrak{I} \cap \mathfrak{I}$ are two representative subgroups of $\mathfrak{I}\mathfrak{I}$ over \mathfrak{I} and by Theorem 27 ([9], Chapter IV) they are conjugate. The theorem in question had been deduced from the conjecture now proven [3] that all groups of odd orders are solvable. It follows that \mathfrak{I} is contained in a certain conjugate of \mathfrak{I} , thus $\mathfrak{I} \cap KL$ contains a suitable conjugate of K and the same applies to \mathfrak{I} , K.

The first two assumptions of Lemma 1 are necessary as shown by the following examples

1.
$$K = Q(e^{2\pi i/3}), L = Q(\sqrt[3]{2}), \Omega = Q(e^{2\pi i/3}\sqrt[3]{2})(^2),$$

2.
$$K = Q(i), L = Q(\sqrt{2}), \Omega = Q(\sqrt{-2}).$$

As to the third assumption, namely that KL is normal, we can show that it is necessary provided that there exists a field with Galois group \mathfrak{G} , where \mathfrak{G} is the wreath product of \mathfrak{S}_4 acting on 4 isomorphic copies of the simple group \mathfrak{G}_{168} . Then in the counterexample, K is a field of degree 7^4 corresponding to the wreath product of \mathfrak{S}_4 acting on 4 isomorphic copies of a subgroup \mathfrak{H} of \mathfrak{G}_{168} of index 7, L is a normal field of degree 24 corresponding to the product of 4 copies of \mathfrak{G}_{168} . The construction of Ω

⁽²⁾ We owe this example to Mr. Surinder Sehgal.

349

D. J. Lewis, A. Schinzel and H. Zassenhaus

and the proof that it furnishes a counterexample is complicated and will be omitted.

LEMMA 2. In any supersolvable group S for each set II of primes either there is a normal Π -subgroup $\neq 1$ or there is a normal $Hall(^3)$ $\hat{\Pi}$ -group $\neq 1$ ($\hat{\Pi}$ is the set of all prime divisors of $|\mathfrak{G}|$ not contained in Π).

Proof. If this lemma would be false, then there would be a supersolvable group $\mathfrak{G} \neq 1$ of minimal order for which it would be false.

If Π or $\hat{\Pi}$ are empty then the statement is trivial. Let Π and $\hat{\Pi}$ be non-empty. Since $\mathfrak{G} \neq 1$, there is a maximal normal subgroup $\mathfrak{M} \neq \mathfrak{G}$. Since \mathfrak{G} is solvable $\lceil \mathfrak{G} \colon \mathfrak{M} \rceil$ is a prime p. If \mathfrak{M} contains a normal Π -subgroup $\mathfrak{N} \neq 1$, then $\langle \mathfrak{N}^{\mathfrak{G}} \rangle$ is a normal Π -subgroup $\neq 1$ of \mathfrak{G} , a contradiction. Hence M contains no normal II-subgroup. Since M, a subgroup of a supersolvable group, itself is supersolvable, it follows from the minimal property of $\mathfrak G$ that $\mathfrak M$ contains a normal Hall $\hat \Pi$ -group $\mathfrak S$. A normal Hall subgroup of a solvable group is the unique subgroup of its order (cf. [4], Th. 9.3.1). Therefore 3 must be a characteristic subgroup of M and hence a normal subgroup of \mathfrak{G} . If $p \in \Pi$ then \mathfrak{I} is normal Hall $\hat{\Pi}$ -group of \mathfrak{G} , a contradiction. Hence $p \in \hat{\mathcal{H}}$. It follows that

the index of every maximal normal subgroup of S is a prime number belonging to Π .

Now let $\mathfrak{N} \neq 1$ be a minimal normal subgroup of \mathfrak{G} . Since \mathfrak{G} is supersolvable, it follows that \mathfrak{N} is of prime order, say q. Since we have assumed $\mathfrak G$ does not have a normal Π -subgroup, $q \in \Pi$. Suppose $\mathfrak G/\mathfrak N$ contains a normal Π -subgroup $\mathfrak{H}/\mathfrak{N} \neq 1$. Since \mathfrak{H} is solvable it contains a q-complement $\Im \neq 1$. The group \Im is a Hall Π -subgroup of \Im . If 3 is normal in 3, it follows (cf. [4], Th. 9.3.1) that 3 is a characteristic subgroup of $\mathfrak H$ and hence $\mathfrak T \neq 1$ would be a normal Π -subgroup of $\mathfrak G$ contrary to hypothesis. It follows that 3 is not normal in 5. In particular 3 does not commute elementwise with N. Thus 3 is not contained in $\mathfrak{Z}_{\mathfrak{p}}$ the centralizer of \mathfrak{N} .

The group 3_n is normal in \mathfrak{G} . It follows that the index $[\mathfrak{G}:3_n]$ is divisible by a prime $r \in \Pi$.

On the other hand, the factor group of the normalizer over the centralizer satisfies

$$\mathfrak{N}_{\mathfrak{R}}/\mathfrak{Z}_{\mathfrak{R}} \cong \mathfrak{G}/\mathfrak{Z}_{\mathfrak{R}}$$

so that it is isomorphic to a subgroup of the automorphism group of the cyclic group \mathfrak{R} . Hence $\mathfrak{G}/\mathfrak{Z}_{\mathfrak{R}}$ is abelian and therefore contains a normal subgroup $\mathfrak{M}_1/3_{\mathfrak{R}}$ of index r. Hence \mathfrak{G} contains a maximal normal subgroup

 \mathfrak{M}_1 , of prime index r, where $r \in \Pi$, contrary to (6). It follows that $\mathfrak{G}/\mathfrak{N}$ does not contain a nontrivial normal II-subgroup.

Since $\mathfrak{G}/\mathfrak{N}$ is also supersolvable, it follows from the minimal property of $\mathfrak G$ that $\mathfrak G/\mathfrak N$ contains a normal Hall $\hat \Pi$ -subgroup, say $\mathfrak S/\mathfrak N$. But then $\mathfrak H$ is a normal Hall $\hat H$ -subgroup of $\mathfrak G$, contrary to hypothesis.

Not all solvable groups possess the property enunciated in the lemma, e.g. \mathfrak{S}_4 . On the other hand groups possessing this property need not be solvable, e.g. the direct product of \mathfrak{U}_5 and \boldsymbol{Z}_{30} . We have not found another well known class of finite groups which possess the property besides supersolvable groups.

LEMMA 3. Let G(x) be a polynomial with integral coefficients, irreducible over Q and let $G(\theta) = 0$. Let J be any subfield of $Q(\theta)$. Then

$$G(x) = aN_{J/Q}(H(x))$$

identically, where H(x) is a polynomial over J.

Proof: See [2], Lemma 2.

3. Proof of Theorem 1. Let L be a normal field such that (|K|, |L|) = 1 and $KL = \overline{K}$. Assume that $P(\Omega) \leqslant P(K)$. We have

(7)
$$P(\Omega L) \subset P(\Omega) \cap P(L) \leqslant P(K) \cap P(L).$$

Let q be a large prime, $q \in P(K) \cap P(L)$ and let

$$q = q_1 q_2 \dots q_q$$

be its factorization in \overline{K} . Since \overline{K} is normal we have

$$N_{\overline{K}/Q}(\mathfrak{q}_i) = q^{|\overline{K}|/\sigma}$$

Now, let p be the prime ideal factor of q of degree 1 in L. We have

(8)
$$N_{\overline{K}|Q}\mathfrak{p} = N_{L|Q}N_{KL|L}\mathfrak{p} = q^{|K|}.$$

On the other hand,

$$\mathfrak{p}=\mathfrak{q}_{i_1}\mathfrak{q}_{i_2}\ldots\mathfrak{q}_{i_8},$$

whence

(9)
$$N_{\overline{K}/Q}\mathfrak{p} = \prod_{i=1}^{s} N_{\overline{K}/Q} \mathfrak{q}_{i_{j}} = q^{|\overline{K}|s/q}.$$

It follows from (8) and (9) that

$$|K| = \frac{|\overline{K}|}{q}s = \frac{|K||L|}{q}s;$$

hence

$$|L||g.$$

⁽³⁾ A Hall subgroup is a subgroup whose order and index are relatively prime.

In this proof that fact that L is normal has not been used, thus by symmetry

$$|K||g$$
.

Since (|K|, |L|) = 1, |K||L||g, thus $g = |KL| = |\overline{K}|$ and $q \in P(KL)$. This shows that $P(K) \cap P(L) \leq P(KL)$ and we get from (7)

$$P(\Omega L) \leqslant P(KL)$$
.

By the theorem of Bauer it follows that $\Omega L \supset KL$ and by Lemma 1, Ω contains a conjugate of K, q. e. d.

Proof of Theorem 2. Let $\mathfrak G$ be the Galois group of $\overline K$, $\mathfrak H$ the subgroup of $\mathfrak G$ belonging to K, Π the set of primes dividing the order of $\mathfrak H$. Since $|\mathfrak G|=nm$, with (n,m)=1, $\mathfrak H$ is a Hall Π -subgroup of $\mathfrak G$ and hence (cf. [4], Th. 9.3.1) any normal Π -subgroup of $\mathfrak G$ is a subgroup of $\mathfrak H$. By Lemma 2 either there is in $\mathfrak G$ a normal Π -subgroup $\neq 1$ or there is a normal Hall $\hat \Pi$ -subgroup. The first case is impossible since then $\mathfrak H$ would contain a non-trivial normal subgroup of $\mathfrak G$, thus there would be a normal field between K and $\overline K$. Therefore, there is in $\mathfrak G$ a normal subgroup $\mathfrak R$ such that $|\mathfrak R||\mathfrak H|=|\mathfrak G|$. Let L be the field belonging to $\mathfrak R$. Clearly L is normal, (|K|,|L|)=1, $KL=\overline K$ and therefore the field K has property (N), $\mathfrak q$. e. d.

Proof of Theorem 3. Let

(11)
$$f(x) = cf_1(x)^{e_1}f_2(x)^{e_2} \dots f_r(x)^{e_r},$$

where $c \neq 0$ is a rational number and $f_1(x), f_2(x), \ldots, f_r(x)$ are coprime polynomials with integral coefficients, each irreducible over Q and where e_1, e_2, \ldots, e_r are non-zero integers. Put

$$F(x) = f_1(x)f_2(x)\dots f_r(x).$$

Since the discriminant of F(x) is not zero, there exist polynomials A(x), B(x) with integral coefficients such that

(12)
$$F(x)A(x)+F'(x)B(x)=D,$$

identically, where D is a non-zero integer.

Let θ be a zero of some $f_j(x)$ and set $\Omega = Q(\theta)$. Let L be a normal field postulated by the assumption that K has property (N) and let $q \in P(\Omega L)$ be a large prime. Clearly $q \in P(\Omega)$ and by the theorem of Dedekind, the congruence

$$f_j(x) \equiv 0 \pmod{q}$$

is soluble. Let x_0 be a solution. By (12) we have $F'(x_0) \neq 0 \pmod{q}$, whence

$$F(x_0+q) \neq F(x_0) \pmod{q^2}.$$

By choosing x_1 to be either x_0 or x_0+q , we can ensure that

$$f_i(x_1) \equiv 0 \pmod{q}, \quad F(x_1) \not\equiv 0 \pmod{q^2},$$

whence $f_i(x_1) \neq 0 \pmod{q^2}$ and $f_i(x_1) \neq 0 \pmod{q}$ for $i \neq j$. By the hypothesis of the theorem there exists $x_2 \equiv x_1 \pmod{q^2}$ such that

(13)
$$f(x_2) \equiv N_{K/Q}(\omega) \quad \text{for some } \omega \in K.$$

From the preceding congruences we have

(14)
$$f(x_2) \equiv 0 \pmod{q^{e_j}}, \quad f(x_2) \not\equiv 0 \pmod{q^{e_j+1}}.$$

Let the prime ideal factorization of q in $\overline{K} = KL$ be

$$q = \mathfrak{q}_1 \mathfrak{q}_2 \dots \mathfrak{q}_g$$
.

Since \overline{K} is normal, we have

$$N_{\overline{K}/Q}\mathfrak{q}_i=q^{|\overline{K}|/g}.$$

Write the prime ideal factorization of ω in \overline{K} in the form

$$(\omega) = \mathfrak{q}_1^{\alpha_1} \mathfrak{q}_2^{\alpha_2} \dots \mathfrak{q}_g^{\alpha_g} \mathfrak{UB}^{-1},$$

where $\mathfrak{A}, \mathfrak{B}$ are ideals in K relatively prime to q. Then

(15)
$$N_{K/Q}(\omega) = q^{|K|(a_1 + a_2 + \dots + a_g)/g} N_{K/Q}(\mathfrak{U}) N_{K/Q}(\mathfrak{V})^{-1}$$

and $N_{K/Q}(\mathfrak{A})$, $N_{K/Q}(\mathfrak{B})$ are relatively prime to q. It follows from (13), (14) and (15) that

$$|K|(a_1+a_2+\ldots+a_g)/g=e_j$$
, thus $|K||e_jg$.

However, we assumed $(|K|, e_j) = 1$, whence |K||g. On the other hand $q \in P(L)$ and so by the argument in the paragraph culminating with (10), |L||g. Since (|K|, |L|) = 1, |K||L||g, thus g = |KL| and $q \in P(KL)$. This shows that $P(\Omega L) \leq P(KL)$. By the theorem of Bauer it follows that $\Omega L \supset KL$ and by Lemma 1, Ω contains a conjugate of K, say K'. Applying Lemma 3 with $G(x) = f_j(x)$, J = K' we conclude that

$$f_j(x) = a_j N_{K'/Q} (H_j(x)),$$

where $H_i(x)$ is a polynomial over K'. Clearly

$$f_i(x) = a_i N_{K/Q} (H_i'(x)),$$

where $H'_j(x)$ is a conjugate of H_j with coefficients in K. By (11) and the multiplicative property of the norm, we get

$$f(x) = aN_{K/Q}(h(x)),$$

ACTA ARITHMETICA XI (1966)

where h(x) is a polynomial over K. By the hypothesis of the theorem, taking x to be a suitable integer, we infer that a is the norm of an element a of K. Putting $\omega(x) = ah(x)$, we obtain $f(x) = N_{K/Q}(\omega(x))$, identically, q. e. d.

References

- [1] M. Bauer, Zur Theorie der algebraischen Zahlkörper, Math. Ann. 77 (1916), pp. 353-356.
- [2] H. Davenport, D. J. Lewis and A. Schinzel, Polynomials of certain special types, Acta Arith. 9 (1964), pp. 107-116.
- [3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), pp. 775-1029.
 - [4] M. Hall, The Theory of Groups, New York 1959.
- [5] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper II, Jahresber. der Deutschen Math. Vereinigung 6 (1930).
 - [6] O. Haupt, Einführung in die Algebra II, Leipzig 1954.
 - [7] H. Mann, Introduction to Algebraic Number Theory, Columbus 1955.
- [8] A. Schinzel, On a theorem of Bauer and some of its applications, Acta Arith., this volume, pp. 333-344.
 - [9] H. Zassenhaus, The Theory of Groups, (second edition), New York 1958.

Reçu par la Rédaction le 12. 3. 1965

Quadratic Diophantine equations with a parameter

b;

H. DAVENPORT (Cambridge), D. J. LEWIS (Ann Arbor, Mich.) and A. SCHINZEL (Warszawa)

We have proved in [2] the following result: Let f(t) be a polynomial with integral coefficients and suppose that every arithmetical progression contains an integer t such that $F(x, y, t) = x^2 + y^2 - f(t) = 0$. Then F(x(t), y(t), t) = 0 identically, where x(t) and y(t) are polynomials with integral coefficients. This can be extended to $F(x, y, t) = x^2 + \Delta y^2 - f(t)$ provided x(t), y(t) are allowed to have rational coefficients. An example is given in [5] showing that an analogous theorem does not hold for a general polynomial F(x, y, t) even if we assume solubility for all integers t, and the question is raised there of the connection between the solubility of F(x, y, t) = 0 in rationals x, y for a suitable t from every arithmetical progression and the solubility in rational functions x(t), y(t) (cf. also [4], Problems 5 and 6). In this paper we prove (Theorem 2) that such a connection does exist if F(x, y, t) is of degree at most two in x and y. Whether, under the last assumption, the solubility in integers implies the solubility in polynomials with rational coefficients we do not know even in the simple case

$$F(x, y, t) = a(t)xy + b(t)x + c(t)$$

(a solution in polynomials with integral coefficients need not exist as is shown by the example a(t) = 0, b(t) = 2, c(t) = t(t+1)). On the other hand, it is easy to deduce from our Theorem 2 the result on sums of two squares mentioned at the beginning.

We start with a theorem on quadratic forms over Q(t), where Q denotes the rational field.

THEOREM 1. Let a(t), b(t) be polynomials with integral coefficients. Suppose that every arithmetical progression contains some integer t such that the equation

$$a(t)x^2 + b(t)y^2 = z$$