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the conclusion follows from (22), (23) and the multiplicative property
of the norm.

Remark. In connection with Theorem 5 let us remark that the
theorem of Bauer gives an answer to a question of D. H. Lehmer ([6],
p. 436) concerning possible types of homogeneous polynomials F(x, )
of degree {g(n) such that when (=, y) =1, the prime factors of F(z,y)
either divide n or are of the form nk41. (If f(x) = 2+ 2’ — 2z —1, then
¥*f(xly) is an example of such polynomial for n = 7.) The answer is that

Tp(n)
all such polynomials must be of the form A4 [] (#— o;y), where ¢; runs
i=1

through all conjugates of a primitive element of the field Q(Z cosin)
7
and A is a rational integer.

Note added in proof. In connection with Theorem 2 a question arises
whether solvable fields of degree p* (p prime) are Bauerian. J. L. Alperin has
proved that the answer is positive if the field is primitive and p > 3. P. Roquette
has found a proof for the case where the Galois group of the normal closure is a
p-group (oral communication).
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An extension of the theorem of Bauer and
polynomials of certain special types

by

D.J. LEwis* (Ann Arbor, Mich.), A. ScHINZEL (Warszawa)
and H. ZASSENHAUS (Columbus, Ohio)

1. For a given algebraic number field K let us denote by P(K) the
set of those rational primes which have a prime ideal factor of the first
degree in K.M. Bauer [1] proved in 1916 the following theorem:

If K is normal, then P(Q2) c P(K) implies Q> K. (The converse
implication is immediate).

In this theorem, inclusion P(Q) c P(K) can be replaced by a weaker
assumption that the set of primes P(Q)—P(K) is finite, which following
Hasse we shall denote by P(Q) < P(K).

In the preceding paper [8], one of us has characterized all the fields
K for which P(R) < P(X) implies that 2 contains one of the conjugates
of K and has called such fields Bauerian. The characterization is in terms
of the Galois group of the normal closure K of K and is not quite explicit.
Examples of non-normal Bauerian fields given in that paper are the
following: fields K such that K is solvable and (:—IK{-II—, |K |) = 1(%), fields
of degree 4. The aim of the present paper is to exhibit a class of Bauerian
fields that contains all normal and some non-normal fields. We say that
a field K has property (XN) if there exists a normal field L of degree rela-
tively prime to the degree of K such that the composition KL is the nor-
mal closare of K. We have

TasoreM 1. If K and Q are algebraic number fields and K has pro-
perty (N) then P(Q) < P(K) implies that Q contains one of the conjugates
of K.

* This paper was written while the first author received support from the
National Seience Foundation.

(}) We let | | denote both the degree of the field over @ and the order of the
group.
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Not all fields K such that X is solvable and (-:—g, IK}) = 1 possess

property (N). We have however
L
B Oy A
the Galois group of K is supersolvable, then K has property (N).

In particular K can be any field of prime degree such that K is sol-

THEOREM 2. If K is a number field such that(

n—
vable or any field generated by Va, where a, n are rational integers and

6 ,—
{n, tp(’)ib)) = 1. The field §(V'2) does not possess property (N), it is however
Bauerian. (It follows from a theorem of Flanders (cf. [7], Th. 167) and

no—
results of the preceding paper that Q(l/a) is Bauerian if # s Omod8.)
We have no example of non-normal field X with property (N), such that K
is non-solvable however one could construct such a field provided there
are fields corresponding to every Galois group.

The original Bauer’s theorem has been applied in [2] to characterize
polynomials f(z) with the property that in every arithmetical progres-
sion there is an integer  such that f() is a norm of an element of a given
normal field K. The method used in [2] can be modified in order to obtain

TEEOREM 3. Let K be a field having property (N) and let Ngo(w)
denote the norm from K to the rational field Q. Let f(z) be a polynomial
over § such that the mulliplicity of each zero of f(w) is relatively prime to
\E|. If in every arithmetical progression there is an inleger x such that

f(®) = Ngo(w)  for some weK,

then
f(:l?) = -NK]Q (CD (.’17))

’l‘]-le proofs of Theorems 1-3 given in §3 are independent of the
preceding paper [8] and assume only the original Bauer’s theorem. They
are preceded in § 2 by some lemmata of seemingly independent interest.
Theorems 1 and 3 could be proved by the methods and results of [8]-
We retain the present proofs since they use, as do the statements of the
theorems, only the language of field theory. We refer to [8] for examples

§howing that an extension of the theorems to an arbitrary field K is
impossible.

for some o(z)eK[x].

2. Levma 1. Let fields K and L have the following properties: L is

a‘wrmw‘l, (degree K, degree L) = 1, KL is normal. Then for any field Q the
inclusion

(1) QL - KL

implies thal Q contains one of the conjugates of K.

hn..@
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Proof. It follows from (1) that

(2) QFKL = QL.
Since KL is normal and L is normal, we have
|Q||EL|
12 = —
(3) |RKL| G~ KL’
’ Loz — 12U
@ : 12~ I

{CE. [61, §19.5, Satz 1).
Sinee clearly |KL| = |K!|L|, we get from (2), (3) and (4)

) 0 ~ EL| = |E||2 ~ L.
Let ® be the Galois group of KL. And let $, 3, N be subgroups

of @ corresponding to K, @ ~ KL and I, respectively.
In view of ()

[B: $][6: 3], ISIIS1 (18], [N = 1.

On the other hand, since HN = G, and N is normal, it can be
easily shown that

thus and

FN = (TN ~ HIN.

Thus S and SN ~ H are two representative subgroups of 3N
over M and by Theorem 27 ([9], Chapter IV) they are conjugate. The
theorem in question had been deduced from the conjecture now proven
[3] that all groups of odd orders are golvable. It follows that J is contained
in @ certain conjugate of 9, thus 2 ~ KL contains a suitable conjugate
of K and the same applies to 2, q.e. d.

The first two assumptions of Lemma 1 are necessary as shown by
the following examples

L E =gy, L= (/2), 2 = Q" V2)0),
2. K =Q(i), T=9Q0/2), 2=0(V-2).

As to the third assumption, namely that KL is normal, we can show
that it is necessary provided that there exists a field with Galois group G,
where ® is the wreath product of &, acting on 4 isomorphic copies of
the simple group ®,g. Then in the counterexample, K is a field of de-
gree 7* corresponding to the wreath produet of &, acting on 4 isomorphic
copies of a subgroup D of B, of index 7, L is a normal field of degree 24
corresponding to the product of 4 copies of ®14. The construction of £

(2) We owe this example to Mr. Surinder Sehgal.
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and the proof that it furnishes a counterexample is complicated and will
be omitted.

LeMMA 2. In any supersolvable group ® for each set IT of primes either
there is & normal II-subgroup # 1 or there is a normal Hall(®) [}-group #1
(ﬁ is the set of all prime divisors of |®| not contained in IT).

Proof. If this lemma would be false, then there would be a super-
solvable group & £ 1 of minimal order for which it would be false.

If IT or IT are empty then the statement is trivial. Let I7 and I7 be
non-empty. Since ® 5= 1, there is a maximal normal subgroup M = G.
Since G is solvable [B: IM] is a prime p. If M contains a normal I7-sub-
group N == 1, then <N®) is a normal /7-subgroup # 1 of B, a contradic-
tion. Hence M contains no normal I7-subgroup. Since M, a subgroup
of a supersolvable group, itself is supersolvable, it follows from the mi-
nimal property of ® that 9N contains a normal Hall fI—gl‘oup 3. A normal
Hall subgroup of a solvable group is the unique subgroup of its order
(cf. [4], Th. 9.3.1). Therefore 3 must be a characteristic subgroup of M
and hence a normal subgroup of G. If p /7 then I is normal Hall .ﬁ~group
of ®, a contradiction. Hence peﬁ. It follows that
(8)  the index of every maximal normal subgroup of & is a prime number

belonging to I

Now let N =1 be a minimal normal subgroup of ®. Since ® is
supersolvable, it follows that N is of prime order, say ¢. Since we have
assumed & does not have a normal IZT-subgroup, qEﬁ. Suppose G/N
containg a normal /I-subgroup H/N = 1. Since H is solvable it contains
a g-complement J £1. The group § is a Hall II-subgroup of 9.
If J is normal in 9, it follows (cf. [4], Th. 9.3.1) that & is a characteristic
subgroup of 9 and hence J 51 would be a normal IT-subgroup of G
contrary to hypothesis. It follows that S is not normal in $. In particular
3 does not commute elementwise with 9. Thus § is not contained in
3y the centralizer of OX.

The group 3y i3 normal in ®. It follows that the index [G: 3y]
ig divisible by a prime rel7.

On the other hand, the factor group of the normalizer over the cen-
tralizer satisfies

Ng/3p = B3y

50 'ol'mt it is isomorphic to a subgroup of the automorphism group of the
eyclic group N. Hence /3y is abelian and therefore contains a normal
subgroup M, /3y, of index . Henee B contains a maximal normal subgroup

() A Hall subgroup is a subgroup whose order and index are relatively prime.

hn..@
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M, of prime index r, where r eI, contrary to (6). It follows that G /RN does

not contain a nontrivial normal II-subgroup. o
Since BN is also supersolvable, it follows from the minimal prop-

erty of @ that G/ contains a mnormal Hall [T-subgroup, say H/N.

But then 9 is a normal Hall ﬁ-subgroup of ®, contrary to hypothesis.

Not all solvable groups possess the property enunciated in the lemma,
e.g. ©,. On the other hand groups possessing this property need not be
solvable, e.g. the direct produet of 9, and Z,. We have not found
another well known class of finite groups which possess the property

besides supersolvable groups.
LemMa 3. Let G(x) be a polynomial with integral coefficients, vrreducible
over Q and let G{6) = 0. Let J be any subfield of Q(68). Then

(@) = aN yo(H (@)
identically, where H (z) is a polynomial over J.
Proof: See [2], Lemma 2.

3. Proof of Theorem 1. Let L be a normal field such that
(K|, |L)) =1 and KL = K. Assume that P(Q)<P(K). We have

1) P(QL) = P(Q) ~ P(L) < P(K) ~ P(L).
Let g be a large prime, geP(K) ~ P(L) and let
q = q192.-+qg

be its factorization in K. Since K is normal we have

Nepolt) = Q'EW-

Now, let p be the prime ideal factor of ¢ of degree 1 in L. We have
(8) Nzob = NpoNerph = g5,
On the other hand,
P =00 - G
whence

L4 —
&) Nzob = [ [ Nray = .
i=1

It follows from (8) and (9) that
K K||L
i Kl EUL
g g
hence

(10) ILi|g.
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In this proof that fact that L is normal has not been used, thns
by symmetry
IKl|g.

Sinee (|K|,|Ll) =1, |K||L||g, thus g = |KL| = |E| and geP(KL).
This shows that P(K) ~ P(L) < P(KL) and we get from (7)

P(QL) < P(KL).

By the theorem of Bauer it follows that QL > KL and by Lemma 1,
0 contains a conjugate of XK, q.e. d.

Proof of Theorem 2. Let & be the Galois group of K, $ the
subgroup of & belonging to K, I7 the set of primes dividing the order
of 9. Since |8 = nm, with (n,m) =1, H is a Hall II-subgroup of &
and hence (cf. [4], Th. 9.3.1) any normal I7-subgroup of & is a subgroup
of . By Lemma 2 either there is in & a normal II-subgroup 1 or there
is a normal Hall II-subgroup. The first case is impossible since then H
would contain a non-trivial normal subgroup of &, thus there would be
a normal field between K and XK. Therefore, there is in ® a normal sub-
group N such that |[N||H| = |B|. Let L be the field belonging to N.
Clearly L is normal, (|K|, |[L|) = 1, KL = K and therefore the field K
has property (N), q.e.d.

Proof of Theorem 3. Let

(11) f(@) = efi (), () .. .fr(2)™,

where ¢ # 0 is a rational number and f,(z), fo(2), -.., f-() are coprime
polynomials with integral coefficients, each irreducible over @ and where
€1, €y, ..., 6 aTe non-zero integers. Put

F(x) = fi(2)f2(2)...fr ().

Since the discriminant of F () is not zero, there exist polynomials A (x),
B(z) with integral coefficients such that

(12) F ()4 (x)+F (0)B(z) = D,
identically, where D is a non-zero integer.
Let 6 be a zero of some f;(x) and set Q = @(6). Let L be a normal

field postulated by the assumption that K has property (N) and let

g<P(QL) be a large prime. Clearly geP(R) and by the theorem of Dede-
kind, the congruence

fi(#) = 0(modg)
is soluble. Let 2, be a solution. By (12) we have F'(2,) %= 0(modg), whence
F(m+q) # F(z,) (modg?).
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By choosing #; to be either x, or 2, ¢, we can ensure that
fi(@) = O(modg),  F(,) = 0(modg?),

whence fi(x;) & 0(modg®) and fi(x) =#* 0(modg) for i = j. By the hy-
pothesis of the theorem there exists «, = #,(modg®) such that

(13) f(z:) = Ngjp{w) for some wek.
Trom the preceding congruences we have
(14) F(z.) = 0(modg%), fla) # 0(modg7™).
Let the prime ideal factorization of g in K = KL be
q= 4Gz -.- Gg-
Since K is normal, we have
Nt = ¢V,
Write the prime ideal factorization of  in K in the form
(0) = 42 ... @AV,
where 2, B are ideals in K relatively prime to ¢. Then
(15) Nxjolw) = qFerrert ol N o (U) Ngjo(B) ™

and Ngo(¥), Ng;o(PB) are relatively prime to g.
Tt follows from (13), (14) and (15) that
|K|(ay+ oyt +ag)fg =¢;, thus  |Kl|eg.

However, we assumed (|K|, ¢;) = 1, whence \K Hg. On the other hand
geP(L) and so by the argument in the paragraph culminating with (10),
1L]]g. Sinee (|Ki, |L])) =1, |K| !L}}g, thus g = |KL| and geP(KL). This
shows that P(QL) < P(KL). By the theorem of Bauer it follows that
OL > KL and by Lemms 1, Q contains a conjugate of K, say K'. Ap-
plying Lemma 3 with G(#) = f;(#), J = K’ we conclude that

fil@) = a;Nxqo(H;(2),
where H;{x) is a polynomial over K'. Clearly
fi(w) = ;N rp (H;i (),

where Hj(z) is a conjugate of H; with coefficients in K.
By (11) and the multiplicative property of the norm, we get

f(@) = aNgjq(h(z),
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where h(z) is a polynomial over K. By the hypothesis of the theorem,
taking x to be a suitable integer, we infer that & is the norm of an element
a of K. Putting w(x) = ah(z), we obtain f(z) = Ngj(w(w)), identically,
q.e. d.
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‘We have proved in [2] the following result: Let f(?) be a polynomial
with integral coefficients and suppose that every arithmetical progres-
sion contains an integer ¢ such that F(w, y,1) = #*+4*—f(f) = 0. Then
P(u(t),y(),t) = 0 identically, where x(f) and y(f) are polynomials with
integral coefficients. This can be extended to F(z,y,?) = Ay —F (1)
provided z(f), y(t) are allowed to have rational coefficients. An example
is given in [5] showing that an analogous theorem does not hold for a gen-
eral polynomial F(z, y,f) even if we assume solubility for all integers i,
and the question is raised there of the connection between the solubility
of F(x,y,t) = 0 in rationals =, y for a suitable ¢ from every arithmetical
progression and the solubility in rational functions z(#), ¥ (?) (cf. also
[4], Problems 5 and 6). In this paper we prove (Theorem 2) that such
a connection does exist if F(x, y, t) is of degree at most two in # and .
‘Whether, under the last assumption, the solubility in integers implies
the solubility in polynomials with rational coefficients we do not know
even in the simple case

F(z,y,t) = a(t)oy+b{H)z+c(i)

(a solution in polynomials with integral coefficients need not exist as is
shown by the example a(f) = 0, b(t) = 2, ¢(f) = #(t+1)). On the other
hand, it is easy to deduce from our Theorem 2 the result on sums of
two squares mentioned at the beginning.

We start with a theorem on quadratic forms over Q (t), where @ de-
notes the rational field.

TeroREM 1. Let a(t), b(t) be polynomials with integral coefficients.
Suppose that every arithmetical progression contains some integer t such
that the equation

(1) at)*+b(t)y* ==
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