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ACTA ARITHMETICA
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On the abstract theory of primes III
by
E. FoceLs (Riga)

Introduction

1. In the previous papers ([10], [11] and [12], §§ 14-18) we have
been dealing with an infinite semigroup ® on a countable number of
generators b, the elements of ® generally being denoted by a. We have
supposed the following:

(i) The elements ae® are distributed into classes H; (1 <j <h)
forming an Abelian group I', and the mumber of classes satisfies

1) 1<h<D

where D is a parameter > D, > 2 which may increase indefinitely.

(ii) There is a homomorphism N of @ into the multiplicative semi-
group of real numbers >>1 such that the images a = Na for all . > 1
satisfy ,

(2) D1 =w+0(Dw), »= D
aeH;
a<T

where the constants 7, ¢,, # do not depend on j (081<1,0 <6 <1,
0<#<1).
({if) If in (2) ¥ < }, then for a suitable constant ¢, > 0 we have (1)

1 1
3) lim (Z—-Z—) > D4
z-s00 Vo @& & a
o<T asz
where I denotes any subgroup of the group I' with the index 2.

(t) By the sum over all ael” in (3) we actually mean a double sum over all
aeH with H running through all the classes Hyel". A similar remark concerns the sum
over all a¢I”.
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(iv) There is a homomorphism I of & into a multiplicdtive semigroup
of complex numbers such that the images

Ion=Vae™ (a=Na>1,0<a<1)
of the elements ae® next to (1) and (2) satisfy

(4) T 1= wm0(DW), 0 <9
eH;
asﬂ:,ﬂsf«&r ’
(with ¢ independent of j) uniformly in 0 < ¢ < 1.

Using (i), (ii) and (iii) in [10] we proved the existence of a generator
beH with Nbe(w, D%) for any class H and any @ =1, ¢; = ¢(6y, ¢, 9, 1)
being a suitable positive constant. After adding condition (iv), we proved
in [11] the existence of beH with Ib in the region

o< Nb<auD%, o <a< a(modl).

In [12], §§14-18 we proved similar regults with smaller intervals for
Nb and a, .

In the present paper we shall consider some particular semigroups &
for which conditions (i)-(iv) are satisfied.

The most important example iy given by the arithmetical progressions
Du+r (w =0,1,...) of natural numbers prime with respect to D. Bv-
idently ‘they form a group I' and satisfy (2) with & =1, ¢; = 1.

JFrom: this example we arrive by generalization at classes Hmodf
of ideals in the algebraic field K, of degree n and discriminant ‘4. These
classes form a group (cf. [18], Satz XXX) and the number % of classes
satisfy (1) with D = |A4|N¥, where NT is the norm of the ideal f (cf. [8],
Lemma 2). Using Landau’s method in §2 we shall prove for any 2 >1
the estimate :

® e 1= ato@ieoen),
Nt:gz

‘where .

(6) e =h"'"D0 (D e0).

Thus for the classes  condition (ii) is satisfied with & = 2 [(m--1).
I n =2 (the quadratic field), then ¢ > }, whence in this case (iii)
is superfluous. For any n > 1, the left-hand side of (3) .being the value
{(1, %) of the Hecke L-funetion with a real non-principal character y
(ef. [10], §19), the inequality is satisfied by [6], p. 105.

D -?Ehus (iif) holds for any K, (independently of & > % or < }) and in-
stead of .(5) we conld do with [7], (8) which is & weaker result. Never-
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theless we shall go through a brief sketch of the proof of (5), since the
result may be interesting in itself as providing a non-trivial example
of a semigroup ® (namely that of the ideals in any quadratic field) for
which (iii) is superfluous because of & > 4.

In the further part of the present paper we shall confine ourselves
to the case » = 2. Following Hecke [14] we shall replace ideals by a ho-
momorphic system of ideal numbers. In this way we establish the homo-
morphism I on which relation (iv) rests.

In §§ 3-6 we shall prove that the estimate

(" X 1 = wpw+0 (D"
aed, Na<<
ay<a<a)+@(modl)

with any fixed 6 > £ holdsfor allz > 1 uniformlyin0 <oy <1, 0 <@ <1
Hence for the ideals in any quadratic field K, condition (iv) is satisfied.
Conditions (i)-(iii) being satisfied as well (by what was said before), we
deduce that the two-dimensional distribution theorems of [11] and [12],
§§ 15-18 hold for the ideal primes over K,.

In §§ 7-10 we shall deal with primitive binary quadratic forms

P2, ) = a}+ boy oyt ou;

where the coefficients and variables are rational integers, the discriminant
being
D = b*—dac = 4Q*

(4 — fundamental discriminant). It has been shown by Hecke ([14], § 8),
that to any representation p = |F(x, %,)| of a rational prime p in the
field K, generated by V4 corresponds a representation of an ideal prime x
by a linear form a&;#;-+a,%,. And all the ideal integers representable
by the latter form are = g (mod ) where p is a fixed ideal integer and r
tuns through the rational integers. In a metric associated with the form F
for any two rays Ol and Ol drawn from the origin O we shall define (after
Hecke) a non-Euclidean measure ¢ of the angle 107". Then from the result
of [12], §18, we deduce the following

THEOREM. For appropriate absolute constants ¢’y ¢, 0 (0 < 6 <1)
and for oll¥w > |D|” in the region

o < |F(zy, @)| < 040’
in the x,x,-plane between any two straight lines starting from the origin

and forming an angle with the non-Buclidean measure ¢ > x~° there is
a lattice point (z,, 2,) af which \F(x;, x,)| represents a prime.
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A gimple interpretation of the non-Euclidean angle ¢ by a Fuclidean
area will be given in the Appendix, §21.

CoROLLARY. Let q be any natural mumber, prime with respect to D,
and let @ > |Dgl”. Then for any number v of the reduced seb of residues
modgq in the domain defined by the theorem there is a lattice point (v, ay)
‘b which |F (2, 3,)| represents o prime = r(modg).

The proof will be given in § 10.

In §§ 11-15 we shall prove an estimate for the least prime represent-
a.}ole by a primitive ternary quadratic form f(@, @,, #;) with the condi-
tion that the point (@, @y, #5) 18 in & given cone having its apex at the
origin. '

Ag another application of the general theory in § 16 we shall prove
an estimate for the least pair of primes representable by two given linear
forms in two variables. ' ‘

Tn § 17 it will be shown that from the theorem of [10] we can deduce
results about irreducible polynomials of the form

g(@) = r{w)+Qf ()

wherfa r(x) and f(») are any given polynomials with rational integer
c(_)etfflcients of absolute value' 4 (4 > 2) and with no common polynomial
divisor, It will be proved that for a suitable natural integer @ < A° (where
the epnstamt ¢ depends merely on the degrees of  and f) the polynomial
g(z) ig irreducible in K,. This is an analogue of Linnik’s theorem (about
the smallest prime =7 (modD)) for irreducible polynomials == r(2)
(modf (2)).

Iu'§ 19 we shall prove the corresponding theorem for the general
al.gebraac field K, (which in particular for n = 1 coincides with the pre-
vious result). The proot is given in full for » = 2 and outlined for larger »
({see the end of § 18). An analogous theorem for polynomials over a finite
field of coefficients will be proved in § 20.

- Su_xce a}.hnosb all polynomials over the ring of rational integers are
qrgduclble in K, (cf. [21], p. 161), it seems probable that one could easily
find some shorter proof for the irreducibility of g(w) than that given in
the present paper, in which our aim has been to give various 'applica,tions
O.f the general theorems (proved in [10] and [117) aboub ?{e distribu-
tion of. gel{erators in a semigroup. Reducible polynomials being very
scarce, it might seem more natural to prove that there is one of the form
1‘(?)+Qf (z) (Q rational integer). However, such a theorem is not true.
If for example 7(#) = 2’4+ 4u+1 and f(x) = 40*-- 4w+ 4, then r(x)+

;ﬂ:) is irrequeible in K, since (4Q+ 4)*—4 (4@ +1) is never a rational

h‘l‘l@
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wo o Prootof thesestimate (B) 7ol vyl

2, Let D = |A|N{, where A.denotes the discriminant of the algebraic
tield K of degree n > 2 and N the norm of the ideal f, and let $ be any
olags of ideals mod¥. For D < 1iand z->1 Landau (sée [187, Satz XCVI,
and [19], Satz 210) has proved the estimate SRR -

b Z 1 = xw_}_o‘(mmz/(n-i-l))" :

2, vonon I S
where the constant x = »(X, f) does not depend on 9. By the same method
one- can prove (5), which is the vorresponding result for D—~oo.

Denoting by £(s,z) the L-functions of Hecke on the field K with
characters ymodf and writing. L o

. fo0) =26 DEA—8,D)
we have

. - N 2 (4
®) fo3. 20 = (—W NP (%Zi—,’ﬁ‘:—)f(;),'
‘where o

9 (&) = (I'(s) " (sindrs) " (cosms) T4 02" (2w

7, denptes the number of real conjugate: fields, POy =mn, [W(x) =1
and ¢ stands for a rational integer [0, 7] (cf. [18], pp. 105, 89 and 99).

Let F(m) denote the number of ideals a, prime with respect to f,
with Na = m. Then for all z >1 ' '

(10) S EIm g it 0<o<t,

: e " ] : .
O F(m) 2/3 TS

(11) Fm)  psg—s i 9>1.

The constants implied in the notation in these and further formulae may
depend on the degree of K, but not on D, x or other parameters.
(10) and (11) may be deduced from the estimate

> F(m) = Am-0 (D=2 ) = 1)°i1> (D > 00)

(see [7], (95‘"a,nd [61, (13)) by means of Abel’s identity (see for example
[22], p. 371). )
For any w >0 let

3/2+1i00 .

(12) L(w) = f&5 ) mds

3/2—ic0
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and let B(w) denote the sum of residues of the integrand at s =1 and
8 = 0. Writing

K (w) = L(w)—2niR(w)

and following Landaun’s arguments (see [19], Satz 207, and [18], p. 119)
we can prove that

(13) K(w) < DH—1127»,1'011—112—1/21»7 K(n)(’w) < Dl/zw'llz-.mn.

In the proof we use the expansion

. 1
F(85 ) = Aoft/3=gmniitozt=4) (1+0(7)) (6 =o-+it, o<1, t 1),
where
Ay< DY and A (which is real)
do not depend on # (cf. (8), (9) and [19], Satz 166). We use the fact that
in (12) the integrand has a simple pole at ¢ = 0 with residue —1—'— w"f(0; x)
where by (8) and (9) f(0; y) < D'
Writing ]
: n
4K (w) = og (wl)"‘l(l ) K(w+ W)
<n g

and using (13), by the arguments of [19], Satz 208, we can prove that
forw>1and 0 <v<w

D1+1/zn n—1/2—1/2n
(14) 4,K (w) < v ’

Dllz,un,wljz.-llzn

Having these estimates we can follow the proof of [19], Satz 210 (cf.
a,lso. [18], Satz XCV), except that dealing with 4,7 (x) we divide the sum
%’ into two parts, >, and 3, corresponding to m < m, and m > m,

respectively, where
my = z_Dllz-H.lzn, 2 = m(ﬂ-—l)[(n-‘.l).
In estimating 3, and 3, we use (10), (11) and the two inequalities (14)

(the 'ﬁrst one for 3, and the second one for ). Proceeding as in [19]
we first deduce that for a primitive principal character 1= Xo

(15) ;‘ 2(8) = o(x)z40 (DN TNy gy 0.
Na<z

By means of this result we can prove (15) (but with ¢(y) = 0) for any

p-rimitive character y = y, (cf. [18], p. 121). Let us denote the left-hand
side of (15) by H(x; y). '
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For any non-primitive y there is a primitive character X such that

x
H@; ) =Zy(b)X(b)H(ﬂ, X),
bif
() being the Mébius function of ideals. From this and (15) we deduce
that for any yx (primitive or not)

H (®; 7) = oy(g)o+0 (DTl DI+),

where ¢,(x) = 0if ¥ # x,. Now proceeding as in [18], Satz XCVI, we get (5).
By [18], Satz XOVI, the constant = in (3) i3 the same for all classes
$Hmod f. By a theorem of R. Brauer :

hoe = Rest(s, z0) = D" as D -—oo
s=1

(cf. [6], (13)), which is equivalent to (6).
The exponent of D in the remaining term in (5) could be improved,
but it is of no importance in the present paper.

Proof of the estimate (7)

3. We begin by a short description of the system 3 of ‘ideal’ numbers i
as introduced by Hecke [14].

Let & denote the ordinary classes of ideals ¢ in a given algebraic
field K of degree n, and let &, ..., & be a bagis of the group of classes
R. Having chosen fixed ideals b, e, ..., 5;eR;, we can represent any
ideal in K as
(16) a = gbf1...bj?

where o ig a number in K and the exponents a; (1 <j <) are rational
integers. Each a; is unique except for additive multiples of the least
natural number k; such that b)Y is a principal ideal:

() By = (8y).
The number B;eK in (17) is unique except for a factor » which runs
through the unities of K. '
Introducing the numbers
s By —
(18) B =V

(with some arbitrarily fixed values of the surds) we may replace the ideals
(16) by the isomorphic system 3 of complex numbers

(19) fi = off1... B
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with-a unique factorization. Then to every ideal aeX corresponds a prin-
cipal ideal (i) such that (&) = () if and only if 4 and f; are associate
numbers, i.e. if 4 = ni (where % is & unity in K) and vice versa. Gen-
erally the numbers je3 are not in K.

.. The numbers ge3 can be distributed into h = hy...h; classes )
such that the sums and the differences of numbers of the same class [

are again in ®. Tt in the set of the conjugate fields of K there are complex
conjugate fields K and XK'(say), then the values of the surds in (18) are
chosen in such a manner that B; and B; are conjugate complex numbers.

" Denoting by @ (g =1,...,n) the ideal numbers corresponding

to conjugate fields, we define the norm
(20) Nio= p®... 5™,

If a denotes the ideal corresponding to &, then from (16)-(20) we deduce
that Mz is in modulus = Na. ‘

4. In this section our aim is the proof of condition (7) for the semi-
group of numbers representable by binary quadratic forms of discrim-
inant d = 4Q* (4 — fundamental diseriminant). In the proof we shall
use the Hecke zeta-functions with Grossencharaktere on the quadratic
field K generated by l/Z.Using the system 3 of complex numbers P
= Nae*™™ Hecke gets a representation of the ideals by two-dimensional
vectors.

In the following let y((x)) denote the group characters of the ideal
classes Hmodf (see [18], p. 67). '

First let us consider the case of d < 0 or that of an imaginary K.
Then the Grdssencharaktere are (cf. [14], § 9)

. e
{21) - : X{p) = (———) 2((m)
: , lul
where g denotes the number of units modf (in general ¢ = 1) and m is
any rational integer. The function

1 X&)
22 X)=— -
@2 te, X) 74 Nal

(¢ >1)

(where ¢' denotes the number of units in K and i runs through all ideal
integers s 0) admits of analytic continuation over the whole plane,
except for a simple pole at s = 1 with residue g, > 0 in the case where

1 it g,f are prime to one another,

X(p) = Xo(pt) =
) o) '0 otherwise.

hn..@
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In the cage of a primitive character y the function {(s, X) satisfies the
funetional equation ‘
I'(1—s+4gim|)

(23) £(s, X) = W(X)A™ I'(s+4glml)

t(1—s, X),

where .
1

W@ =1, 4= VANT

(see [14], pp. 34, 44). The Dedekind zeta-function of the field K, {x(s),

being & product L,(s)L;(s) of Dirichlet L-functions with the principal

character and, respectively, a non-principal real character modulo D
= |4|Nf, we have in ¢ >1

24) t(o+it, X) < Lx(0) = Lo(0)Ly(0) < &(0)La(0) < (0—1)7"logD

(ef. [20] 1, p. 83; III Satz 882 and [24], p. 31). By the identity I'(s+1)

= sI'(s) and the asymptotic estimate
D(o+it) = Vom e ™Bir 21 4+0 (1017} (0 <1, [f] = o)

([22], p. 395) for any even g|m| = 2% and ¢ = —8--it (0 << 6 < §) we have

I'(l—s+3giml)  k+é—it k—140d—d 2+6—it_1’(2+6—it)
T(s+3giml)  k—1—0-+it k—2—é8+dit ~1—é+it I'(1—d+1)
k+8 k=146 244 o2
=13 *—s—s 1—s T
— — 1+8/2
<k1+6/(k 1) 148/(k—2) +4j A )

1—68)(k—1) 1—8/(k—2) "~ 1—6/2

1+a/(k—j))

k-2
< k(l+ |il)1+256x'p (2 ].Og —].T(s_/—(_k—:—j—)
F=1

k
<R exp (20 31 +a) < BTHLHI < (LHmOLHDF -

Fam1

In the case of an odd glm| we use the same reduction in the I' factor
until we .arrive at

T+ 8—it)|D(§— 6+it) < (L)
and get the same estimate. Hence, by (23) and (24)

(25)  C(—0-it, X) < DL+ |ml)(1-+ 1)} *6 " log D.
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Argiiing as in [6], p. 91, we ¢an prove that (25) holds as well for any
non-primitive y.

From (23) and a theorem of Doetsch (see [22], p. 400) W(; can deduce

that in —}<<o<$
(s, X)| < ¢4(D, m)exp (e's).

Hence, by (24) and (25), we have
(26) Loty X) < 67D {(1+ m|) (1 + [t))}**+*“log D

uniformly in —§ <o <1+4 (0 <8 <1/logD < }). For the principal
character X, this is true with the restriction |s—1] >} (cf. [6], . 93).

5. Let a be that ideal in K which corresponds to the number j in
(22). Then, by § 8, No = |Ni| and writing X (a) in place of X (), we have
X(a)

(21) D= Y5

(0>1).

Hence, by a generalization of Landau’s formula (cf. [22], p. 3176),

. - AT 2 7 g
X(0)— —— f e Xds € —2 4T g
Zul .- 2mi o 8 ! T(g—1) T Tt
Nogz

where >1, T'>1, 1<y <2, ¢>0 stands for an arbitrarily small
constant, and the constant implied in the notation depends on e. ‘Writing

X(a) = g(6)™™, o = a(a),

we deduce
Bl M 2 0 148
@) Y e MO [ Lt Dt < e + 2
L, 7 T (n—1) T
. Now let

2>D>e 1+iml <o®, n=1+1flogs, (1+|m|)T = o™

We rep‘lace the path of integration by straight lines Ly, L,, Ly joining
suceessively the points »— 47T, 1 flog Dys— 4T, 1 flog D4 4T, 54T, By (26)

o
1.( — (8, X)ds < D1+ |m|)Tlog Dalog Dloge < DM+,

. 'fL' < max {D"*(1+ |m|)log Dlog Dw, «T~'log Dlogu} < D%+,

iom®
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Since T > «*", the right-hand side of (28) is < 2***. The function
£(s, X,) (corresponding to y = y,, m = 0) has a gimple pole at 8 =1
with residue

o = Relsé"(s, Xo) < Iy(1) < logD
e

(cf. (24)). Hence, by (27),

(29) 2 ezmima — lmm—l-O(D’”m”“’),

aed
Na<z

where 1, = ™'y, if m = 0, and A, = 0 otherwise.
If 1 <o <D, then (29) holds trivially by the estimate

D)1 = Aa+0(D*a)
P
(see [7], (8)), which has been proved for any » >1.

By I. M. Vinogradov’s lemma there is a periodic function f(a) with
the period 1 such that

fla) =1 in a given interval [a,, a,](mod1l) of the length ¢ = a,—
—a (0<g<1);

0 <f <1 in the intervals [¢;—4, ;] and [d,, a,+4] (where 0 < 4
< $1—-@); :

f =0 for other a,
and such that the coefficients in the Fourier-expansion

flay =3 dnemm
M= 00

satisfy
(30)  dm < min{jm|™’, || [Am[T}  (m #£0), dy=9p+4,
where r denotes any natural number (the coefficients implied in the no-
tation depending on 7. Cf. [11], §11). Taking 4 = o~ '#** we deduce

fla) = 2 dmezm'ma_‘_o(» Z‘ m—1—3n)_
imi<zll® moal /3
For r > 1/e the latter sum being < 27!, we have

(31) D= 33 dn ™0 (7))
e

aed 1/8
No<z Nao<z Imi<e

— Z Zl %ez"im-{-o(h*lluo—I—Dzlaw'zls).
A misan
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By (29) and’(30) ;

P PR

e,

= dyAg@r+0 (D + logw) = Jopw+0 (D log ),

a 1/3
PR

whence by (31)
(32) 7 3 fla). = Hopo+0 (DY)
Nada
for any 6> §+¢ (with the constant impliéd in the notation depending
on 6). Taking'p' = 4 from (32) we deduce that each of the sams
. 1, N . 1

g e 0an) s G0 1)

is. < D**s". Hence the sum’
1

e, Na<z
ayKaag(mod 1)

differs from that of (32) by at most < D¥®. This proves estimate (7)

with % = uo/h for any imaginary quadratic field.
6. For the real quadratic field K the characters X (cf. [14], § 10) are

PR . .
X(ﬁ)=(—”‘—) (‘—’;T) ()™, 0= ali) =

1
- = ——log
o] 2logn

_f‘_H
‘ul ’

where 7 denotes the fundamental unit modulo § (7> 1), the logarithm’
has its principal value and a;, @, have the values 0 or 1. Supposing %’

to be a primitive character, the functicn (27) gatisfies the functional
equation . '

L(s, X) L ,4
11(1—3—‘-6&1 wim )F(l—s-{—az _ im )
— W(X)A 2 2logn 2 2logn ti—s, X)
P(s+al + nim )F(H—% im ) : 8, &)
2 2logn 2~ 2logn
‘where

WE@i-1, A=2 WART| = _;_pm.

hn..@
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For s = —d-it (0 < 8 < }) the term with the I" factors satisfy
1+64a; ( b0 t) 1+6+a, ( Tm t
] s Y (LA | o - 5
]( 5 \Zlogy 2 2 N Zlogy T2
—0+a; [ Tm t) —0+4a, ( T t)
T W\ r _ .
T( 2 +%(210gn * 2 ) ( 2 v 2logn 2
14340 d—tg 148+4ay §—ay
m t Tt M t‘ 7t
14— —— 1 —
<(+ 2logn 2) (+ 210gn+2)
m  \Mfz+ot(ar—agiz m t [\U2rot(m—ani
=14 —— —= _
( + 2logn 2 ) ( ‘ 2logy *3 )

< (L4 Im|) 2 (L ).
Hence (25) follows for the real quadratic field and (since (24) holds

algo in this case) we may proceed as before. At the end we deduce that (7)
holds as well for the real quadratic field.

On primes representable by binary quadratic forms

7. Let K be the quadratic field generated by V4 (4 — fundamental

discriminant) and let a;, a, be ideal integers of the same class R (as de-
fined in § 3), prime to one another. The linear form L(®, @) = a4+
+ &,,, where @; and @, run through the rational integers, will be called
a primitive one if the equality Z = 0 implies , = @, = 0. In the present
paragraph we shall merely quote some results from Hecke [14], § 8.

(i) For any primitive quadratic form F (1, ;) = aai+ bty @y + €2
with rational integer coefficients and discriminant b*—4ac = AQ* (where
is a natural integer and @ > 0 if 4 < 0) there is a primitive linear form
L(m,, @) = 0,%+ 0@, such that if @& denotes any fixed number re-
presentable by L(w, ) and @ denotes the corresponding number for
the conjugate field, then we have identically

o' |

\ 2 , ool . - Y ~r
(33) awy + by oy + oy = Y (01 @1+ Ga@a) (0101 + A Bp) -

(i) For any primitive linear form L(w;, %;) there iy a quadratic form
F(x,, ®,) with the properties mentioned above. In the case of 4 <0
(the imaginary field) the quadratic form is unigue. If A >0 (the real
field), then the linear form L gives rise to two quadratic forms with coef-
ficients @, b, ¢ and —a, —b, —c¢, respectively.

(iii) There is an ideal integer be.@ such that the set of numbers o
representable by the primitive linear form IL(wy, #,) is identical to that
of the numbers = r¢(modQ) where 7 runs through the rational integers.

Acta Ariithmetica XI3 20
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8. Let us consider first the case 4 < 0. Then the term |wvad’|(wa’)~!
in (83) is 1, and denoting by m the natural numbers representable by the
given quadratic form F, we have

(84) m=Np, p=ro(modq).

To ?Jny pfmir gf rational integers ®,, @, with F(»,, 4,) = m there is
a unique p = 0@+ 0,2, satisfying (34) and vice versa (see [14], §9).
The Dairs &, @ and y,, ¥, are said to be associate mod @ if such are the
numbers i = L(z, 2,) and ¥ = L (Y1, ¥a).

The exponent o in the factor

(35) (__‘lj__)ﬂ — eZTvia

1
in (21) is evidently a function of the place in the x,;w,-plane. We ma
suppose that a has the same value at all points of any fixed ray 1 startinz
from the origin (since for all ¢ > 0 we have ti/|ti] = f/ji]). At any two
rays ! and I' which are associate mod@ function (35) hags the same value
whence the values of o differ by a rational integer. There are g ra;ys’
l=1 (0<j<g—1; I; corresponding to the numbers ue*™ with
#>0) along which a = 0(mod1).

In the @,2y-plane with a ‘cut’ along the ray I, we can define a single-
valued and continuous function o which has the value j at the points
of I; (0 <j < g—1); further, let a be that particular function. Then for
any two different rays I, I’ starting from the origin the values of a differ
by a number ¢ (’0 < ¢ < g), which is called the non-Euclidean measure
;f the %nfle 1, 7). In the _Appendix (§ 21) we shall prove that for an
ﬂ}l)fr;g;?c 31 :roriztra;;m ;)o (which depends on the discriminant, but not on
(36) @ = A (2)]z,

where A (x) denotes the Euclidean area of th !
vire P e o sector between 1, I’ and the

In the field K generated by V4 the ideal i i pri i
divided into classes HmodQ: v el ntegers i prime fo @, it

# =ro(mod@) (r and  fixed, depending on 9H)

and if mod@ associate numbers u are considered as identical, by §1

(with f = [@]) evidently satisfy the conditions of the two-dimensional

distribution theorem. Hence i i i i
o on thoorer . e in any class 9 there is an ideal prime number

a rational prime) and 7 is in the gi

L ; given sector.

Sﬁf&‘;ﬁr the cp(Q) different classes $ which correspond to & fixed o

e gy o 7 runing througy the reduced set of residues mod@Q (cf.
» 33), and using the isomorphisms considered in §§ 7 and 1, we deduce
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the result stated in the theorem of §1 for primes representable by a po-
sitive definite binary quadratic form(2).

9. Now let F(#;, ) be a primitive indefinite form with the diserimi-
nant 4Q* > 0. Then the pair of lines F(z, #;) = 0 divides the @ x,-plane
into four angular regions &7y, ..., &, such that in two of them F(w;, ;)
— |0&|(@&')'LL is positive and in the other two negative. Let us
consider for example one of such regions &, in which (cf. (33))

B >0, p=ILw,m) = a0, -+ 0y @y

Then (34) is true again and we may proceed as in § 8, except that now

£
‘Ztl
(n — fundamental unit modqQ) is a single-valued continuous funetion
of the ray ! starting from the origin. To each I there is an infinite sequence
..., 7,... of associated ones such that for any two consecutive rays
of the sequence the values of o differ by unity. If les/ turns about the
origin in a proper sense, then o changes monotonously from —eo to oo.

Other conclugions remain as in § 8.

By the definition of 4 (ef. [20] I, p. 172) the quadratic form F(z,, #2)
with D = @ has so far been excluded from our considerations. Since in
this case the form F is a product of two linear forms with rational integer
coefficients, the points (;, ,) at which |F| represent primes are distribut-
ed along four straight lines (cf. (8], ». 268) and the theorem of §1 is no.
longer true.

10. In the present paragraph let F(w, 2,) be a primitive quadratic
form with the diseriminant D = A4Q? 2z 0 (4 — fundamental digcriminant)
and let ¢ be any natural number, prime with respéct to D. Then for any
pumber 7 of the reduced set of residues modg there are rational integers
7, 7, such that F(r,r,) = r(modq) (see §23). Hence for all rational
integers @, @

. 1
f— = —]
@ = o) = Fiogp ¢

F(ry4 gy 7o+ %) = 7(modg).
Let L(@y, @) be the linear form which by (33) corresponds to F,
and let

(87) i = L(ry+ g1, 12+ 4%) -

(*) Vaitkevidiug [25] tries to prove that in any class D of ideals in the imagi-
nary quadratic field there is an ideal p which belongs to a given sector with the non-
Euclidean angle ¢ and such that the norm Ny is a prime < (D/@)° (where ¢ stands
for a suitable absolute constant). The theorem is true-and some. parts of the proof
are correct. However, in the proof of the main auxiliary theorem (p. 32) there are
two capital errors which destroy the result.
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Then

B = (@84 )+ (Ga 71+ Qo) = gL (21, @)+t
(say). Since, by § 7, L(w,, #,) = ro(mod@), we have g = j o
(say). Si = ) Ve 4 == fro-+ gre (mod
g = 7,0 (mod@). In order that the numbers w,-+ gre a,n(;l qq()el()e Opﬁgl)’
to- one another, it is necessary and sufficient that ‘

(38) (foyg) =1 and  (ro+gr,@) = 1.

The first of the conditions (38) is satisfied, since for ¢ i
g s e (38) , 8ince for an appropriate
foflg = + T (ry, 1) = =r(modg).

Considering that (¢, @) = 1 we deduce that ir y i
. 3 1 any elass modg ther
are numbers » for which the second condition (38) Ibiolds. fa there
By §§ 8 and 9 for any fixed r satisfying (38) in the set of numbers

B = i+ gro(modgQ)

there are ideal primes such that the corresponding point (w;, @) in (37)

lies in a fixed regio i i .
rollary. gion as given in the theorem of § 1. This proves the Co-

On primes representable by a ternary quadratic form ()

11. In this section we shall deal with the form
(89) . fl@, my, 3) = ayaf+ gy 2+ a33m§+ 201580, By ~+ 2013 ) Wy |- 2093 0,5,

where ici i i
‘th.e coefficients ay,, ..., 24y, are rational integers having no com-
mon divisor. Then the determinant

Ay Gyp Ay
D= =
D{f) = |ty Gny g (where a; = ay; 4,5 =1,2,3)
(g, gy Qgy

z:ea, ;ft]iloml n.umber with the denominator 4. Of all the definite forms
all consider merely those who represent non-negative numbers,

which impli i

- form?ﬁsi f) i 0. Smce. D(—f) = —D(f), we may confine ourselves
s > 0. Leaving out only a finite number of form classes

we shall suppose in the sequel that D > D, = 2(*).

8) Havi .
grad §9)61 aF:visxr;zi professqr Tu.réu during the mathematical conference in Lenin-
e guggegt’ o me o 1;(2;“219 time in correspondence with him. He was kind enough
o T ek faoa thf)jg:orsrfgprot?lems aggociated with my paper [9]. The result
estions i ied i
Presen(i)p&})er. PRy foof,gnot;e(‘i)s, is embodied in §11-156 and 17-20 of the
6 could, in fact, merely suppo i
But then in the estimate p; < D¢ zf thI;PI::atﬂi;fml: r>e Vretomnfieride A

1 resent 1
elsewhere, we must replace D by 8D or by somse la.rgir mul'ba;gll: ]:)}; ch o fomm ﬁ'md
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Using the fact that for any Dbinary quadratic form of the digeriminang
d = 0 there is an equivalent form ag?+ bay + ey with [b] < la] < [l
(d = b*—4ac; of. [20] I, p. 135), by the arguments of [2], §101, we first

prove that for any form (39) there is an equivalent form ay, 0% ... such that
!a':'lll < \éAastllz, where Ay = au“m—aiza
and Al = Ay, ete. Finally we deduce that there is an equi-
valent form whose coefficients are all in absolute value < (10D)". In
whait follows we take for granted that this restriction on the coefficients
ig satistied already for the form (39). }
Further, let ¢, denote an arbitrarily large fixed constant and let o
be the region ingide a right cireular cone with the angle D™ at the vertex
which is at the origin, the axis I or %~ being any fixed ray. It is our aim.
to prove the existence of an absolute constant ¢ == ¢(¢,) such that for any
primitive form (39) with determinant D =2 there is a lattice point (@,
3y, ) e A at which |f| represents & prime < D°.

Tn the case D = 0, if f is a product of two linear forms Ly, Ly, it
may happen that they have rational integer coefficients(). In that case
all the lattice points at which |f] represent primes are evidently situated
in four plames and no such point may be in A" ’

In the proof we shall use & suitable section of the surface f{z1, @, ¥5)
= const, which reduces the problem. to the corresponding one for binary
quadratic form &(u, v), golved by the theorem of § 1. In the case of a de-
finite f we ghall have merely to prove that for an appropriate choice of
the parameters the form @ (u, v) will be a primitive one. For indefinite f
we shall have to prove moreover that the discriminant of @ will not be
a square (cf. the end of §9). :

12. In this paragraph we shall be concerned with the question of
the primitivity of the form &.
Tet us first prove that by a suitable unimodular substitution
a f v
§=1d § 'yf
alI ﬂ“ 'yll
we can ensure that in (89) @y Gudy = 0 without violating the condition
that all the coefficients are not too large (< D%, say).

() In this case the system of equations
aoy = @y, - PP = Gaa, VYL = Osss
‘pitwmf =20, antay =26, Brithy =20 -

has rational integer golutions a, ay, B, B1, ¥, v1 (and vice versa) and one can find them
by a finite number of trials. ' ’
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Suppose that f is transformed by § into f, = ap 4.5 then o
=f(a, @'y d"), a = f(f, 'y B") and agy = f(y, 5", y"). We can evidently
choose two sets of coprime rational integers a, o, d" and g, #, " in suc]y
a manner that a; # 0 and ay 7 0. Then the Diophantine equatio;

a By
a/ ﬂ, 7” =1
all /3'/ yll

hag a solution
y = A’M-{—B’D—{-O, y/ — AI%—f—B,Q)'I—O,, '}’" = .A.”%"[“BH@"I*OH
k)

where all the coefficients 4, B " ar ] i
tegen variabree y By .iy 07 are < 1 and u, v denote independent
The case D = 0 being excluded, the surface f = 0 is either a eéne

with the vertex at the origin or (i fini
i o gin or (in the case of a definite f) the origin itielf.

40 ' - ’ ’ ’
(40) @ = AutBo+0, o = A'utBo+0, @y =d"ut+B'v10"

it has at most a line % in com: i
hag at- mon. There is a lattice point oy
;V;}ll;hlls &‘1;1 :ile ;E)la,ne (40) bu1’3 not on the line %, and is I;uéh t(lz/a’tyg;’ ?;’)
. o — U ? > ’ ?
evi(_iénﬂy <'1)4.83 flyyv',9") %0, and all the coofficients of fi are

:Eul'bhel H © Suppose bha’[’ form (39) ahe&d} ha's 1./110‘ se PI oper bl@ﬂ, Le.
that all the Coefflclentls n (39) are <€ D and Ay Ggp gy 7(—“ 0.

41 = ot
(41) #y=oab, @ =Pt (aand p rational integers)
we geti the binary form

(42) &, w,) = f(at, pt, @)

o = (“11“2’[‘2“12“/3’1‘ “22ﬂ2)t2+(2“150""‘2%919”%'*" g3 03
which is certainly primitive if |ay)| = 1 |
' In what follows we suppose that .
prime dividing a,,.
its other coefficients iy

! lag| > 1 and we denote by p an
(89) being a primitive form, at least yoﬁe o);

not divisible b i
Py e y p. If one of the coefficient
2 Dossesses this property, then for a suitable choice of « a;lffil c;;e?::mz :Eé

set of =

divisiblzllrgﬂy?e;s = ](1) s’ni (modp) the coefficient 24,3 a-+ 2y = B (say) is not

or none of the,coefﬁci: rlng Separately the cases where exactly one or two

Same manner that nas @y 25y, ayy are divisible by p, we secure in the
@'+ 20,06+ ayf’ = 4 (say) is not divisible by p.
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Now suppose that p runs through all the different prime divisors
of @y, and that for each of them we have fixed values of a, f(modp) such
that one or the other of the numbers A and B is not divisible by p. Then
golving a system of linear congruences we can find values of o and fmod P
(where P < |ags| is the product of all different primes dividing ay) for
which (42) is a primitive form.

13, We suppose that the axis T of o forms an angle > }= with the
axis @, (otherwise we change the roles of the axes @, @, %). Projecting
o on the plane @,%, We get an angular region & between two straight
lines starting from the origin and forming an angle @ D™% bisected
by the projection 7, of 1. Let &' be that part of & which lies between the
trigectors of &.

Choosing a large congtant ¢; (which will be specified later on) we
denote by 4, that point of I, which is at the distance D from the origin.
Let R be a square with sides = |ag running parallel to the axes @i, 2,
and having a vertex ab.d,. Taking ¢; = 03 (¢o) large enough we ensure that B
lies entirely in «'. According to § 12 there is in E a lattice point z, = a,
%, = B such that the form (42) is a primitive one. Denoting by d its
discriminant and considering the restrictions imposed on the coefficients
Gugyoeey 289y in §12, we deduce that |d| < D% for appropriate ¢, < 1.

In the present paragraph let us confine ourselves to the case of
o definite form f. Then so is the form (42), whence d < 0. To the section
of o by the plane (41) corresponds an angular region  in the plane i@,
between two straight lines starting from the origin and forming an angle
¢, > 3D~%%. By the theorem of §1 there iz in J a lattice point
(8 = to, @5 = Uy) ab which the form ®(t, #;) represents a prime

po < ldf° < D%

Since, by (42), po = f(ate, flo, u,) and the lattice point (aty, Bloy %o) 18
in o, the statement of §11 follows for the definite forms.

14. Tn what follows we suppose the form (39) to be an indefinite one.
The digeriminant of the form (42), viz.

(43) @ = (2ppat 20y ) — bty (an @+ 2engaf + anf) = ¥ )

is itself a quadratic form in a and . In the present paragraph we take
for granted that ¥(a, ) 1s-not the square of a linear form with rational
integer coefficients.

Let o be the part of &' (as defined in §13) between two circles
with a common centre at the origin, the radii being respectively D and
2D%. Qovering &7 by. a lattice of the squares R (with the length of the


Pem


312 ) E. Fogels

side = |as|) we denote by I the number of those B which lie entirely
in &". If ¢; is large enough, then using [20] IT, (675), we deduce that

N > D 0D*s| g2,

By §12 there are in & at least N lattice points (a, 8) at which the
form (42) is a primitive one. It remains to show that the number N,
(say) of lattice points e/’ at which the form ¥ (a, B) represent Squares
ig less than N.

Any number » representable by ¥(a, ) at some point (a, B)esr”

is evidently < D*s**, the number of representations being < n"*log D,
Hence

Ny < {(BP) P2+ (m*) "} og D, where m < Dist4,
and thus
-Nl < D03+4D(2a3+s)/810gD < D(5/4)03+6'

This proves that for all large ¢, < 1 we have Ny < W, i.c. the desired
result.

15. In this paragraph we shall discuss the case where ¥ (a, 8) is the
square of a linear form aa--bg with rational integer coefficients a, b which
by (43) are < D%,

If we choose the values of o and B as in § 12, the form f(at, 8t 25)
is a primitive one. Its discriminant being a square, we have
(44) flat, Bt 2) = (art+b,2) (ayt+ bye),
where a,, b;, a,, b, are rational integers < D% with the greatest common
divisor
(45) (a1, b) = (ay, by) = 1.

If for gome integer values of £ and 2 [f] is & prime p,
Dose that the firgt factor in (44) is 1 (or —1)

». The first equality,
for

then we may sup-
and the second one represents
being a linear Diophantine equation, iz satisfied

t=t—bu, 2=z+tau (w =0, 41,...),
where %, 2, < D% and

(46) Gly+b2, =1 (or —1).

Substituting into P = &yt+b,2 we obtain

» = A+ Bu,
where

4 = at+-be, and B = by — ay by

hm@

On the wbstract theory of primes ITI 313

i absolute value do not exceod D. If theve is a prime p, dividing both 4
:Eld B, then multiplying the first of the relations
, ]

(47) Gglo -+ by = 0(modp,), @ by—ayby = 0(modgp,)

ing the second one and (46), we deduce that p,|b,. Hence
E{mﬁl t?ﬁ:dezilorfd relation (47) and (4p) if follows thatA P11 a‘nd fron;
(45) it follows, by the first relation (47), that p, |4 Now from (46) we get
the relation py|1, which proves that (4,]?) ——:-1. ' .
T# B = 0, then f(at, ft,2) (or —f) is a square of 2:1. hneg,r form ;11: 1,
and 2 The diseriminant d being a square = (f”“'|" bpY, we fledzucebz a,()
d = 0. To secure that B does not disappear, in the cage of o %; 30
we have only to discard the lattice points («, f) along the line aa—l—thﬂ f_ t
Tn the opposite cage when a*+b* = 0 we deduce‘ from (43) that : e .1;5(:
minord Ayy, Ay, Ay, Agy of the determinant D dlsappear. .Nt)lw we arran_,
at our aim by means of the form {1 (2, ab }) Bt} f(()))r which a similar case ¢
cur (otherwise Ag, = 0 whence D = 0). o
ot glcenoe (there are infinitely many primes g?l): A+-Bu. It iersﬁa{ﬁlst}tl(:
prove that there is a prime p = A4 -4-Bu = D (D - o0) sue a )
point (#;, &y, @), Where

B = ot = al—Dbw), @ =ft=7F0G—bu), H=2=2z+uu,

iy in . ‘
) In [12], § 18, we have proved that for some consta.nt. 6<1 .and fml
any > |2B[" (¢; = ¢;(0)) there i a prime p = .A—|-:B’M in the 11n.‘oervla’
%, 3+ a°. Hence for any ¢; there is a prime p = 4 ;I—Bulwﬂsh v lying in
31171 interval # = (uy, w;-+D " %w,), where u; = D% with appropriate
b= c (c ). . 0 . 3 e
9 If9 tlame. lattice point (v, = at, ®; = ft, @) (?mh f1xe.d a, ,3)1 ig in Ji j
then by §13 the coordinate o; =2 lies in an interval (2 , dzl
= we deduce
D%V o+ %), where 2, < Vol f|t]. Since z = 2+t
t-;—nit for all—iiai‘g)o; t == D°® (D .» co) u lies in an interval of the type /
(as defined above), and vice vorsa. This completes the proof.

Note on a problem of Loo-Keng Hua

16. Most of the results of the present paper 3.(1;;3 different %eneia]f;
izations or analogies of Linnik’s estimate p; =_D (D — ;o) ;)r oone
least prime p, = p, (D, I) representable by the linear form Dzl
sidering a pair of linear forms

(48) Liw,y) = avt+by+o, Li(@,y) = totbhy+e


Pem


314 E. Fogels
one can naturally ask for an estimate for the ‘least’ pair(°) of primes
Py, Py Such that
Po = L(w,y)

We suppose that the coefficients and the variables of L, L, are ra-
tional integers.

In 1947 Loo-Keng Hua ([15], p. 170) asked whether the system (48)
represents an infinity of prime pairs.

Writing

and p = Ly (@, y).

D=

o by

We may suppose that D > 0("). In the case of D = 0 the problem of Hua
is '(m another form) the question whether there are infinitely many
primes p, p, satisfying the linear Diophantine equation

Crmp—apy=C (0 = @, 6— ac;).

If 0 £ 0 and the equation is not evidently impossible (®), no method is
known for the solution of this problem. .’ '
The case D # 0, which is much easier, has been studied by N. Diima
F5] and A. I. Vinogradov [26]. For special values of the coefficients (e.g.
ifa, b a.nd ¢ are divisible by 4) the system of forms L, I, does not represent
any pair of primes. In the present note we shall confine ourselves to the
proof of the following result.
- Let D > 2 and let the linear forms L, L, represent a pair of primes
Pos P1, at least one of which does not divide D. Then there is an infinity of

prime pairs representable by the given forms, amo h i !
such that !I ! ’ " t o peir 2,2

(49) . p<D%,  p <D%

where ¢, denotes a switable ab‘solu'té constants > 2.

In proving this we take for granted that t e i ;
such that ; ~. gr here are integers w, ¥,

4o+ byo-F ¢ = Py, G+ by Yoo = p,
and p, does not divide D. Then for any inte er ¢ an = Y =
— &t we have v ® 0=t by =go
Gs+by+o =p;,  aw4by+o = Ditp,.

Hence by Dirichlet’s theorem there is an infini i
. , nite set of primes p = L(»
which proves the first part ‘of ‘the statement. P P @ 9

(®) E.g. with the least sum Po+p1.

i N
Eﬂ; glﬁxstllna.y be at‘tamed by changing (if necessary) the réles of I an L.
&t 18 t0 say, if the greatest common divisor of o and oy does not divide 0.
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By the theorem of [10] there iz a prime p = Di-p, = L(z,y) in
the interval (D, D). If p; < D%, then (49) holds with p’ = p,. If, on
the contrary, p, >.D%, then p, does not divide D and arguing as before
we dednce that there is a pair of primes p = L(z, y) and py = Ly(@, )
neither of which exceeds D®. Ce -

We have excluded the cage D =1 where any pair p,, p, i8 repre-
gentable by the system I, L;, bub (49) does not hold, the least prime
being > 1. ‘

On irreducible polynomials

17, In the present paragraph let f(») and r(w) denote polynomials
of degrees n > 2 and <, respectively, with rational integer coefficients,
the absolute value of which does not exceed A > 2. The coefficient of
#™in f iy supposed to be > 0. Next we suppose that f and » have no common
polynomial divisor. Then by the method of Euclid’s algorithm we can
find polynomials U (w) and V(x) over the field of rationals and a rational
number m > 0 such that for all » .

(80) (@)U (@) 7@V (@) = m.

After multiplying through by a suitable integer we may suppose
that m and the coefficients in U and V are integers. Then for any integer
© = @, the integer m in (50) is divisible by the highest common divisor
dy = (F(20), r(wo)). Let d, be the maximal divisor of m for ‘which there
is an integer @, such that (f (o), r(mo)) = d, and let @, = a(modd,) where
0 <@ < dy. Then for any number @, = a(modd,) we have dy = (f(wl),
r(2y)). Hence, writing Uy(f) = U(det+a), Vi) = V(dot+ a),

(61)  fi(t) = d5 ' f(det+a),
we have, by (50),

ri(t) = dytr{det—+-a), = &5 'm,

F @)U @)+ @)Vi(8) = m
and -for any integer ¢

(52) (fu(t), 1 (1)) = L.

The algorithm leading to (50) consists of < n divisions, the first
of them being the division -of f(») by r(z) == bo@™ ...+ by, If instead
of f(x) we divide by~™*+'f(») by (), then the coefficients in the remaind.ler
are integers. Proceeding in the same manner we can prove that the In-
teger m in (50) satisfies m < A, where o, = ¢;(n) gtands for a positive
constant which does not depend on 4. Hence

(53) dy < A%
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Now let us denote by [g{z)|| the height (i.e. the maximal moduluy
of the coefficients) of a polynomial g(x) and let us write
(54) F(t) = f(dyt+a), R(E) =r(dt+a)
Using the binomial expansions and considering that for & =10,1,...,n
(;:) < 9" we deduce that

IE @)}

)| < O DARL

(55)

LevMA 1. If the coefficients in the polynomial g(2) of degree n are
rational integers (°), then all the zeros of g(z) lie in the eirele |2] = (n-1)lg].
Proof. Outside the circle we have

0@ > 1" (1—1'”M) > o (1—

] )>wH4W~nw+1W‘>3

n-+4+1

Leymma 2. Let g(z) be a polynomial with rational integer coefficients
such that all the zeros of g(2) are in |2| <4 (A = 1). If for some integer
2y = 22, (dy = 1) we have
(56) , (@) =dp,
where p is @ prime and |d| integer < dy, then g(z) is irreduocible in the field
of rationals (Cf. [3], p. 326).

Proof. In the case of reducible g(2) we have ¢(2) = ¢:(2)¢.(2), where
1'oy a theorerfl of Gauss g, and g, are polynomials of degrees =1 with
integer coefficients. Then, by (36), ¢;(#;) = d'p where d'|d, and

galmn) = d”, @'l < dy.
F'or appropriate integer @, and a set of zeros 2 (1 <j < k) lying in the
circle Jo| < 4 < j»;, we have g,(2) = ay{2—#,)...(2—=2;), whence
Ba(@) = o —2|... |e—2 > (30))° > dy.
Thus we have arrived at a contradiction, which proves the lemma.

TB:EORE.M. Let f(m) and r(») denote polynomials of degrees n =2 and
<m, respeth.ely, with rational integer coefficients. If f and r have no com-
mon polynomial divisor, then there is a positive constant ¢ > 1, depending
merely on m, such that for appropriate positive integer @ < A° with A
= 1+max (|fll, |l the polynomial

p(@) =7(@)+Qf(2)

8 irreducible in the field of rationals.

9 .
() Actually we need only the highest coefficient to be in modulus > 1.

hn..@
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Bvidently @ == r(modf) and the height of ¢ satisfies. .

llglh < {2+ wax (If], i)}
Proof. Let ¥() and R(t) be the polynomials (54) and let

(67) g(2) = R(2)+QF(2),
where @ stands for an integer such that

(68) Q> Q=T |EW)
with appropriate constant [f = B(n)>1. By (54) and Lemma 1 all
the zeros of F'(z) ave in the circle |¢| < 2{n+-1)4. For a sufficiently large
F the coefficients in ©~'g(2) differ from those in F(2) by less than an
arbitrarily small constant. The zeros of polynomial being continuous
functions of the coefficients, we deduce that all the zeros of g(2) lie in
the circle

lo| < 4(n+41)4.

By the theorem of [10] for any @ >1 and any integer D > 2 in the
interval (@, D%) (where ¢, denotes an absolute constant >1) there is
a prime p = l(mod D), it (D,7) = 1.

Supposing that the leading term in f(«) hag a positive coefficient,
for any integer #, > 2(n-+1)4 we have fi(h) > 3. Therefore using (52)
we deduce that for any o > 1 there is a prime

(69) p =fi(h)@+r(h)elw, afy (8]
Hence, by (B1), (b4) and (67), ‘
pdy = F(t)Q+R(%) = g(h)-
We may suppose that the integer !, patisfies
(60) b > 8(n+1)4A",
¢, being the constant in (53). Hence
> 20 d(n--1)4dy.

If inequality (58) holds, then by Lemma 2
dy = dy) g(t) is irreducible in the field of rationals. Hence,
(64), the polynomial

(with 4 = 4(n-+1)4,
by (87) and
Qf (dot -+ a) 1 (dot+ o)

iy irreducible and so is the polynomial
Qf (&) +r(2) = @(@),

since the linear transformation z = dy¢~a does not affect the reducibility.
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Now let us take .
@ = (filt)+In (@) 2" (n+ 1) AT+ E.
Then by (59), (55), (53) and the definition of @, (cf. (58))
Q > (n+1)2"4%"E > Q,

and thus inequality (58) holds. Now by (59) and.(60) @ < 4°, which com-
pletes the proof of the theorem.

18. In the subsequent two paragraphs we shall deal with an analo-
gous theorem in an algebraic field K of degree & > 1. We begin by prov-
ing a lemma analogous to Gauss’s theorem which we used in the proof
of Lemma 2.

“We suppose that the coefficients in any polynomial f(z) we shall
deal ‘with are ideal numbers of the same class & = & (in the ordinary
sense; cf. §3). If they are ideal integers, then the greatest common di-
visor (1) will be called the divisor of f(x); polynomials with & = 1 will
be called primitive ones. Any polynomial f(x), whose coefficients are
ideal integers of the same class &, admits of the representation

fla) = 8fi(a),
where f;(x) is a primitive polynomial.
Lemma 3. If f and g are primitive polynomials, so is the product fg.
Proof. Let the coefficients in the polynomials

) = &Dwﬂ'l' &177"—1""-”"“&1»7 and  g(w) = 3093m+51mm—1+- . ‘+Bm
be ideal integers of the classes ®; and &, respectively, with the greatest
common divisor (dg, Ay, ...y @n) = (Bos Pry--+s Pm) = 1. Then the coef-
ficients

Po = @oBos P11 = &Dﬁl"!"&lﬁo:

in the polynomial )

Flo) = fl@)g(@) = poa™ "+ 910" " 4 A Py
are ideal integers of the same class ® = RK,. If ¥ is not a primitive
lgolynomial, then there is an ideal prime # which divides all the ¢oefficients
71 (0 <1< m-n). Since 7]a,f,, we may suppose that w|d,. Then for
an appropriate index j (0 <j < ) we have
(61)

gy lay, ..., Flay, At dy..

. (ml Ie. the divisor & with the greatest |N3]. Tt is unique if the associate numbers
8 and g8 (where & denotes any unity in K) are considered as identical.

iom®
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Let » > 0 be the least index such that

(62) &'rﬁr’ ﬁlﬁr-—l: -"'A‘L‘ér—z’ (X} ] f‘lﬂo-
Then
}75+,«+1 = &uﬁf+r+1+---+&;f/§r+1+ &7‘+1I§r+ &i+2I§r—1+--'+&1+r+1ﬁo
= &y‘+1/§r+'};$

say. By (61) and (62) 7 divides 7, but it does not divide d;;, B,. Therefore
#¥714r41. We have thus arrived ab a contradiction, which proves the
lemma.

LEMMA 4. Let the coefficients in the polynomial

F(x) = qua™ -+ aqa™ . tay

be integers in the algebraic field K. If F(x) is reducible in K, then there
is a factorization
(63) (@) = f(e)g(x),
where the coefficients in f and g are ideal integers of classes & and K1,
respectively (11).

Proof. According to the lemma there is a factorization
(64) F(o) = F\(2)F;(2),
where F, and F, are polynomials over K. Then there are integers o,
ayeK such that the coefficients in the polynomials fi(#) = o, F(#) and
g1 (&) = a,Fy(x) are integers in K. By (64)
(65) oy 0, 7 () = fi(w)g:(®).
Let 8, 8,, 8, be the divisors of the polynomials F, fi, g,, respectively.
Then there are primitive polynomials Fy, fs, g, such that

F(w) = 8Fy(2), fil»)=8f®), @@ =234a0@).

By (65)
(66)
whence, by Lemma 3,

01%31’10(“') = 3182f:(m)9’2(w);

a; 0,8 = 8,86,
where & is a unity in K. Now by (66)

Fla) = & '8 (e) g2 (@),
whence (63) follows.

i (') If ¢y = 1, then one can prove that the coefficients in f and g are integers
in the field. Cf. [13], p. 341.
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Lexwa 5. Let o and B be any fized integers in the algebraic field K of
the degree k> 1 and discriminant 4, and let

(67) £ = atfr,

where © runs through all integers of the field. Then for any © > 1 and for
appropriate T = T(x) we have & = bn where O is the greatest common
divisor of a and B, and [Nz is a prime p such that

(68) z<p<z|ANB, ¢=c(k).

Proof. Writing
a = da,,
we have, by (67),
£ 1= &1‘!‘5175
4, and B, being prime to one another, by the theorem of [10] there
is an ideal prime # such that

(69)

and |N#| is a rational prime s(m,w]ANﬁll‘). From (69) we deduce (67)
with & = 8% and, since |[NB,| < |Np|, (68) follows.

TEMMA 6. Let all the conjugates of a and B be in modulus < M and let
D = |A| M. Then for any constant ¢, > 0 there is a corresponding ¢, >0
with the following property: If @ > D%, then in the previous lemma all the
conjugates of the number z(x) are in modulus > D,

Proof. First let K be the real quadratic field generated by V’Z(A > 0)
and let v = =+ %VZ be any number <K. If we cut out the rectangle
R{jm| < D™, |z, < 47D*%) and two the angular regions |4~ Py — 1]
<}, |12/ 47, +1] < 4, then in the remaining part T (say) of the -plane
|t} and |7'| are both > }D%. Having performed the affine transformation
£ = a-+fz, we get in the &plane the corresponding region ¥, whose
boundary polygone is the map of the boundary of 7. The rectangle R
goes into a parallelogram with the centre at a = gt vV A (| < M,
1] < A™¥ M) and with the length of sides < MD*. In various ways
we can choose in the &-plane two straight lines % and %' starting from
the origin and forming an angle with the non-Euclidean measure ¢ > %
{(cf. §9), such that the region G between %, &' and the curves |N&|
= x|NB|, |[N£| = z|N8||4ANBI° (where § has the same meaning as in
Lemma B) lies entirely in €. By § 9 there is in @ a lattice point & such
that the linear form a,- ;7 (cf. the previous proof) represents an ideal
prime & having the desired properties.

In the imaginary quadratic field the proof is much simpler, since now
for any 7 we have |1| = |7'| = (N7)'2

ie.

=0 (mOdﬁl)

h‘l‘l@
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In the general algebraic field the proof is similalf and it rests on the
estimate for the number N (say) of ideal primes & = a,(modf,) in a many-
dimensional sector. An asymptotic formula for N was first proved by
fecke. [14], § 7. His result was improved by Kubilius ([17], §11), who
gave an estimate for the remaining term. In those papers the discriminant
of the field remains fixed (4 < 1). By the method of [11] and [12], §1§,
it is possible to prove a satisfactory estimate for N if |4| - co and |N=|
does not exceed [4N 8,199 (%), This is what we need for the proof of the
lemma in the general case.

19. In the present paragraph we suppose that f(2) and #(2) are poly-
nomials of degrees n =2 and <, respectively, the coefficients being
integers in the field K of degree % and discriminant 4. Denoting by 4
(4 >1) the maximal modulus of all conjugates of the coefficients, we
deduce that any of the coefficients is in modulus > A-®Y and so are
the conjugates. . : :

Next we suppose that f and r have no common polynomial divisor.

Let fi(z) and #;(2) (1 <j < %) be the corresponding polynomials
over the conjugate fields K. Then the polynomials

P = [[6). and  R) = [[n@
i i
have rational integer coefficients in absolute value < (n- 14" and F
and R have no common polynomial divisor. By the arguments of § 17
we can find rational integers dq, @,

0<a<dy< (md) (e =oi(n, k)

such that for any rational integer ¢ =0 the greatest common divisor
of F(dyt+a) and R(dyt-+a) is dy. Turther, we shall use a fixed inbteger

(70) @y = dot+a = (nd),

where ¢, denotes a sufficiently large positive constant, subject to later
restriction.  Writing :

(7). o —r(@), Pp=f@), B=(up
we have
(72) INB| = dy < (nd).

. By Lemma 1 all the zeros of the polynomials F(¢) and R(z) are in.
the. circle |¢| < (kn—+1)(n+1)"4" and so are the zeros of any f;(2) and
75(2). ‘ :

(2) I hope to réturn to this problem in some later paper.
Acta Arithmetica XI.3 21
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Writing
M = (n+1A(nd)"", D=|4iM,

we deduce, by Lemma 6, that for any ¢, > 0 there is an integer 7¢XK such
that all the comjugates of 7 are in modulus > D% and are such that

(73) a+pr =8z, where |Na|=p

i3 a rational prime. For a sufficiently large ¢, < 1 all zeros of the poly- -

nomial
g(2) = r(2)+f(2)
are in the eircle
(74) e} < 2(fn—+-1)+14%
(cf. §17), and so are the zeros of any conjugate of g(2).
If the polynomial g(2) is reducible in K, then by Lemma 4

9(2) = ¢ @)y (2);

w_here ¢ and vy are polynomials of degrees > 1 with ideal infeger coefficients.
Since by (71), (72) and (73) {Ng(m:)| = dyp, one of the rational integers
Ne(z,) and Ny(z,) is in absolute value < d,. We may suppose that

(75) @)l < do < (nd)1.
Let
p(2) = ’}A’nzl‘f‘---“‘?:'l = yo(2—21):.. (=),
Whe}“& Yoy ---; 71 are ideal integers of the same class K and 2,...,%
are in th.e circle (74). So are the zeros 2{, ..., 2{ (say) of the conjugate
polynomials ¢;(2) (1 <j < k). We have
(76) 1Ng (@) = (M50 [ [ 13— Jos— 20,
7

where |N9,| > 1. If «, is large enough, e.g. if in (70)
6o = ¢+ 2(k-+1)log4(kn+-1),

then (76) contradicts (75). Hence g{z) is not reducible in K.
.We can prove that for appropriate constant ¢; = cs(n, k) all the
conjugates of the number v in (73) are in modulus < D%. If in fact |t| > D%

for any ¢; (when D runs to infinity over a suitable sequence of numbers)
then on the one hand ’

(77) IV (a+ B7)| > DD

(since for a sufficiently large ¢, all the conjugates of § = f(w,) are in mo-
dulus > 2, but those of a = r(z,) and 7 are < M and > D%, respectively).
On the other hand, by (68) and Lemma 6,

1¥ (a+pr)} = dop < (nA)'2|ANB|® = (nd)1D+™,

hn..@
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where ¢;, Cs and ¢ do not depend on ¢;.-If ¢5 is large enough, this contra-
diets (77)-
- This we have proved the ewistence of an integer veK oll the conjugates
of which satisfy the inequalities
12440 < |79 < |244|

with appropriate positive constants cg ond 6 (depending merely on k and n),
and such that the polynomial ‘
' o g(&) = (@) +f(2)
is irreducible in K (*%).

- Tfin particular K is the field of rationals, then k =1, 4 = 1 and we
get-the theorem of §17. .

90. Tn this paragraph we shall deal with polynomials f(t) whose coef-
ficients are the residue classes of a fixed prime g. If ¢* i the highest power
of t whose coefficient a, = 0(modg), then ¢" will be called the norm of f
and denoted by [f]. The polynomials with the highest coefficient a,
= 1(modg) will be called primitive ones. Evidently there are ¢" different
primitive polynomials of the degree n. S

Chooging a fixed primitive polynomial M(#) of the degree m > 1
we divide the polynomials f() into classes mod M. In the same class
H = Hy are all the polynomials ) .

f = R(mod M),

Wh;are R is any fixed polynomial. If R and M have no common polynomial
divigor, then the class Hg Wwill be called a reduced one. If we write

D =q" =[M],
the number kb of the reduced classes satisties 1 < h < D.

In 1914 Kornblum [16] proved that in ‘any reduced class mod M
there are infinitely many irreducible polynomials. As an application of
the theorem of [10] we shall show the existence of an absolute constant ¢
such that in any reduced class mod M there is a primitive irreducible poly-
nomial of the degree m < om (m being the degree of M).

The reduced classes Hmod M form a group and in any class the number
of primitive polynomials f with [f]=¢" n>m, is "™ = D¢ (see
[16], pp. 100-102). Hence, if @ =1, ¢, 4", ..., then

N1 =D"2+0(D).
feH
[]=x
(%) Asserting in [10], p. 140, that this result follows from the theorem of thatb

paper I had overlooked some arguments by which we ensure that no zeros of the poly-
nomial g(z) and neither those of the conjugate polynomials, are too large in modulus.
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Thus the conditions of [10], Theorem (i) (with ¢ >1, & =1, ¢, =1,
I= —1—log(l—g ")/logD) are satisfiedl. Hence for an appropriate
¢ < 1 there is a primitive irreducible p(t)eH with [p] < D = ¢"™. This
implies the result stated.

We could still impose the restriction n = r(modk) (r and % —

arbitrarily fixed integers, k = 1; cf. [16], § 2) for the degree n of f, but
then the constant ¢ would depend on k.

The general theory of algebraic functions over a. finite field of coet-
ficients was developped by E. Artin [1], F. K. Schmidt {23] and other
writers. It procures many other applications of our theorem (with ¢ > 1),
but they are of little interest, since sharper results follow from the Riemann
hypothesis, which A. Weil ([27], p. 82) proved for the corresponding
ZL-functions. Including in [10] the case ¢ >1 (which made the paper
very intricate) we aimed at getting a possibly general theorem.

Appendix

21. In this paragraph our aim is the proof of the relation (36). All
the premises and the notation remain the same as in §§ 7-9. The guadratic
form F being primitive, we deduce that the numbers ¢ and Q are prime
to one another. By 4,,4;,... we shuall denote positive constants which
may depend on the discriminant D, but not on the particular form. F.
First we shall consider the case D < 0, » > 0.

Let A,(z,f) be the number of ideal numbers u = rg (mod@) with
a fixed r, prime to @, such that |Nu! <2 and a«(g) is in a given angle
#(ly, ;) with the non-Euclidean measure ¢. Then by (7) for any fixed
d<tand allz>1
(78) 4@, 4) = hgw+0(D¥a').

Summing 4,(x, #) over the reduced set of residues rmod Q- we get
an estimate for the number of such representations m = F(x,, x,) where
the peints (2, a,) belong to the sector § (#,m < z) and the greatest
commeon divisor (m, @) is 1. It is also the number of representations by

the linear form i = aym,+ay2, with (#,Q) =1 (since Nj = m).
Now let Az{x,#) (for any natural integer -d|Q) be the number of
lattice. points (), ,)¢§ such that in the representation Do -
£ = rp(mod @)

(r fixed rational 'mtegef)

of the number 2 = a;o,+a,2, we have (r,Q) = d. Dividing through

by d and writing I
r

- d

O

=11

d = ¢,

alw

h‘l‘l@
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we deduce R
ay = 110(mod@y), (7, Q) = 1.
Since Npi < @, we have
. g 1.
N, szd— = ?Nﬂ <

If i belongs to the angle .#, so does iy, since division by a positive
number d does not change the value of « in (35). Hence, by (78),

, ) 23 g \1-7
sionr=sa 3ol )

S. Summing (79) over the
the results over all @@

(19)

Let N be the number of lattice points i¥1
reduced set of residues r;mod@/d and summing
we deduce

(80) N = Jgz+0(1 D" "?).

then
curve

= 2 i duced quadratic form,
I Pz, @) = ami+ by o+ o0y 35 2 10 !
(ef. [20]1, 11)’ 1235) 18] < a < |$D'?, whence for any fixed » >1 the
. =144/, .
F(a,, ;) = o is in the rectangle oy < 2|D|"Ve, |m <2|D)| 1/“1/:/05 The
vefore the perimeter L of the sector S does not exceed O(|DI"z").
Denoting by 4 () the Huclidean area of 8, we have (cf. [20] IT, (675))
(81) N = A(@)+0(L) = A@)+0(1D"a*).

Comparing with (80) we deduce that

(82) =l FO(DM0™%), Ay =4

A (o)
@
Keeping the angle 4 (, ll)k fixed but increasing @, we can see b.y
geometri%algconsidersftion that the area A () igcrea.ses in the. same ratio
as @, whence ld (0)/z is a ‘constant. According to (82) (with @ »1?:)
it; differs from @ by less than an arbitrarily gmall constant. Hence equality
(36) follows.
I F is not a reduced form, ¢
< D[+ By~ "%, where B may be arbitrarily large,
6) follows again. '
o ?YTXE esl;iie(iagthod may %oe aged in the case D > 0. Supposing a >1
we consider that the perimeter of the sector S(l.,, L |\ (w1?w2)l <wl
between the positive @-axis I, (say) and the nearest Tay I, with ¢ =
does not exceed O(nl/:;;), where n = n(D) = T+ U.l/ D zi.nd T; U deno}tle
the least natural integers satisfying Pell’s equation t° —Du* = 4. The
same estimate of the perimeter L holds evidently for any smaller angle

‘fhen the remaining term in (82) is
but independent
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S, ;) with ¢ < 1. Arguing as before we prove an analogous - relation
(82), where appears an extra term O (y2~**) corresponding to the Temaining

term O(ZL) in (81). This is in general the worst term, since from the for.
mula

— 1 1
i Lglogn 1

Do logD PR

due to I. Schur ([24], § 5), we deduce that for any constant & > 0 there
is a sequence of discriminants D — oo such that

(83) 7(D) > exp (D).

In ordinary cases, however, n (D) does not exceed some -power of D.
If for example D = 4n°+1 (n = 1, 2, ...), then the equation £#—Du? = 4
has the solution ¢ = 167°+2, u = 8n, whence 7 < t-+uVD < 8D. A great

many other examples were given by Buler and later writers (cf. [47,
Ch. XII).

22. Using an elementary geometrical method in some cases we can
improve the remaining term in (7). ‘

Let F(w,, ;) = azi+baw,+cai be a primitive quadratic form
with & >0 and the diseriminant D = 4@* < 0. Choosing any fixed
sector {1y, by F(wy, #;) < @) we denote respectively by A(x), I and N
the area, the perimeter and the number of lattice points (2, #,) 8 such
that F(w;, 2,) and @ are prime to one another (IV is also the sum over
appropriate classes HmodQ of the left-hand sides in (7); cf. the end of
§8). Let us cover the sector S by a lattice of squares R having their
sides of the length @ parallel to the coordinate axes and let us consider
merely those R which have at least one point in common with 8. Any
such square will be called an inner one or a peripherial one according
to whether all its points are or are not in §.-The total number of lattice
points in the peripherial squares is evidently < Q*L-< |D|L.- ---

Further we consider that whenever the lattice poi;:xts (5, ;) -and
(r1,1,) are eongruent mod@ (by which we mean that @, =7 and-w; =
=r,(modq)), then F(x,s,)=F(r,r)(modQ). Hence the-greatest
common- divisor & = (@, m) of Q and numbers m representablé:by F is
the same at all congruent points. # being a primitive form, in any inner
square R there is at least one lattice point (115 73) with d = 1. Hence the
number of lattice points with d = 1 is the same for all inner R; denoting
it by 2, we have 1 <1< Q> : - R

If I denotes the number of inner squares E, then by (81)

-2
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whenes N = AI+0(D|L) = A4 (#)+0(|D|L).
Supposing F' to be a reduced form, we have I < |D|"*z'? (cf. §21) and
thus
(84)
ich is the desired result. o .
Whmgjisana.logous result can be proved as well for primitive forms with
ositive diseriminant. But now, the estimate L < nVo being worse
p fp (83)), the exponent of D in the remaining term in (84) ma,y.exgeed
gily ﬁxeé consbant. This makes the formula useless for our applications
(ef. § 1)(*). -
23, Tn the subsequent §§ 23-25 we shall prove the following lemma,
which we have used in §10 (the result may be known, but I cannot
ive any reference). o ‘
e Tavma 7. Let B, y) = aa®-+bwy+oy® be a primitive form wz.th the
diseriminant D = b —4ac %= 0 and let g be any natural number with the
catest common divisor (¢, D) = 1. Then for any number T of the reduced
Z:t of residues modgq there are rational integers m, y such that F(w,y)
= l(modg). ‘
Note. The condition (g, D) =1 cannot be replaced by the weaker
one
(85)

N = kA (2)+0( DI "),

(q,Q) =1,

(%) The estimate (7) actually holds for any consftm:étf 6> } and it can be proved
ing i i ts of §§ 4-6.
the following improvements in the argumen ]
R i) Considegring separately the cases |t| <k and |tj > % one can provef Zh: eIﬁ;t
timate < 1+ [m]+ (14 [E)1F% (0 <& < 1/log(1+ |m|)) for the I-factor o .
lso for the I'-factor of § 6. .
holds (;)SOH ?:x [6], Lemma 3, we have F(a+t) < U+ (14 t]) (the other conditions
remaining as before), then

F(o+it) < (T+ [y E-o)(E-a)yE=aB=9) (2 <0 < B)-

This can be proved by the method of [8], § 6, if in.the definition of g ({8),37’; rev?}lla‘;:i
a and f everywhere (except in the exponent) respectwely‘ by aa{ ?.71f a.;:; ) 1
Uy = UY, And in the definition of f(s) we take‘ g(s./ U;) insteas to A 026;~
By means of (i) and (ii) we get the following improvement o (26):

E(o+it, X) <€ {14 |m|+ [ +2-95"1D0~W1ogD (-8 < o< 1+d)

. . . — 1,2’
for any positive 6 < 1/logD (14 [m|). Using this in (28) and tak'm_%1 11‘] ermmin (1;1;;
< #l/2+¢ (where & denotes any positive constant) we get for the remaining o in (35)
the estimate < D45pl2+e, Now using 4 = o~ ?+% and estimating sepa.ra.t}n; yt the
contribution of the terms with |m| > #!/2 by the arguments of § 5 we prodea 1?] o
remaining term in (7) does not exceed < D4/z/2+¢. The example considered in [117, (*),
shows that (7) cannot hold for 6 <3 (Added 17th May 1965).
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where Q2 is the factor in the representation D = AQ* (4 fundamental
diseriminant). If for example F = 2* ¥ then @ =1 (cf. [20] I, p. 172)
and (85) imposes no restriction on ¢. However, F does not represent
numbers = 3(mod4). :

And, since the same form does not represent numbers = 3(mod?9),
we conclude that also the restriction (I, ¢) =1 is necessary. )

Proof. In the present paragraph we shall consider the case ¢ = 2*
(k integer > 1), | any odd integer. Since (D, g) =1, we deduce that b
is odd. - .

First let £ = 1. Since

art+zytecy if  ac is odd,

(mod2)F (x, y) = § ar+ay if ¢ is even,

Yy if 4 and ¢ are even,

in the first and third case taking odd values for z and y we get an odd
F(z,y). In the second case we get an odd F(z, y) by taking xy odd, if a

is even; otherwise we take x odd and y even. This proves the lemma in
the case ¢ = 2% & =1. :

TUsing the method of induction we suppose that for a fixed k> 1
and any odd I there are integers z,, y, such that
(86) F (a1, 31) = l(mod2¥),

whence for any integer u, o

F(x,+2%u, y,+2%) = 1(mod2").
Now we are going to prove that for appropriate u, v

Floy+ 2%, 4+ 2%) = L(mod 2%+,
ie.

(8T)  alm+ 20 + b+ 2%u) (y, + 2%) + ¢ (y, + 2%0) —1 — ok (t even).

) Since by (86) aai+ bayy,+ey; = 14+ 2%, (1, — inbeger), the left-hand
side of (87) is evidently ’ )

= b8y, u+ 2k$10)+276t0(m0d2k+1)
Hence tls even if ' T
524y, u+ 2%, 0) 125, = 0(mod 2¥1
This is equivalent to the condition '

U+ 20 = to(niodé) ,
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which evidently can be satistied, sinee z,, y, are not both even (otherwise
in (86) 1would be even). If 1, is even, then we take even values of u and v.
Tn the case of an odd t, we take one of the variables u, v odd (that one
which has an odd coefficient) and the other even. :

In 4 similar way we can prove that there are also values of « and v
such that - . - :

F (5,4 2, 4,4 2%0) = 142 (mod 277

Since for I running through the reduced set of residues mod 2 the numbers
and 1-- 2% represent the reduced set of residues mod 2"+, we have proved
the lemma for ¢ = 2% -

24, Tn the present paragraph we ghall prove the lemma for ¢ = p",
where p denotes a fixed prime >3 and % is any gatuml number.

Being a primitive form, F(, y) = ag®-+-bwy ¢y’ represents a num-
ber which is not a multiple of p: If ptaor pte, then F(1,0) or F(0, 1)
possesses the required property; if pla and ple, then 15, \iv’henee
F(1,1) = b == 0(modp). Replacing F (if necessary) by an eqt?valer_lqt
form we may suppose that p¥a. Since 4aF(w, 1) = (2az+ by)*—~Dy",
writing ¥ (%, y) = 1(modg) we deduce

(88) 4al = (2az-- by)*—Dy* (mod q).

Tirst leb us congider the case where —D is 1ot a quadratic regidue
modg. Then the right-hand side of (88) with y = 0 and a variable » Te-
presents all the quadratic yegidues modg. Since for any flxed- y there is
an ¢ = ®, such that 2ex+ by = 0(modg), the right-hand side of (85)
(with a variable y and @ = ;) ‘evidently represents all t]ELe quadratic
non-residues, Hence 4al (and simultaneously I) for appropriate z, ¥y re-
present any number of the reduced set of residues modg.

Now let us suppose that —D is a guadratic residue modg. Then we
‘consider the following cases (i) and (i) separately. -

(i) There are numbers x, and y; (p 79, sueh that for @ = &y and
y = y, the right-hand side of (88) represents a number # W]chh.ls x_mt
a quadratic residue modgq bus is in the reduced set of residues. Multiplying
by £ where # runs through the reduced seb of residues modg, we de'duce
that the right-hand side of (88) represents all the quadratic non-residues
modg. Since (with y = 0. and a variable ) it also represents. all the
quadratic residues, we deduce that I represents any number of the reduced
set of residues modg. e . o=l

(ii) Tt (i) is impossible, then for any x, y the right-hand side o_f:(.88)
either iy divisible by p or represents a quadratic residue modg. Wntmg
—D = é*(modg) we can find an integer ¢ such that ee; = 1(modg).

By the assumptions of the .case we are dealing with, - (200--be;)* +1
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is either a quadratic residue modg or a multiple of ». For -ap-
propriate @, we have 2az,+be, = 1(modg), whence (2az,+ be,)?+1
= 2(modgq) is a quadratic residue modgq (since p 1 2). Now for approp-
riate o, we have (2am,-+be)’ = 2(modg), whence (2am,+be,)* -1
= 3(modg) is a quadratic residue modg (if p 1 3), ete. Proceeding in
this way we deduce that all the numbers 1,2, ..., p—1 are quadratic
res.idues modg. Simunltaneously they are quadratic residues modyp, which
being impossible, disproves the case. This proves the lemma for ¢ = _’pki

25, In the general case (where g is not a power of a prime) there is
a representation ¢ = ¢,¢,, where ¢; >1 and ¢, > 1 are prime to one
another. Let us suppose that for ¢; and ¢, the lemma has been proved.
Then for any I with (I, q,¢,) =1 there are integers ;, y, and z,, ¥, sat-
istying » Y2
(89) and

F(@,,y) = Umodg,) Pz, ;) = Umodgy).

Since (g1, g2) =1, there are integers #, y such that

@ = @;(modgqy), y =y (modg,),

@ = Ty(mod g,), Y = y,(modgs,),

whence, by (89),

F(z,y) = l(modg,), F(z,y)=1Ulmodg,)

and thus F(x,y) = l(modg). This completes the proof of the lemma
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