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1. In this paper we are concerned with certain groups of rational
integral matrices, and all matrices considered here will be of this Kind.
The phrases lower triangular matriz and upper iriangular matriz will
always refer to a square matrix having zeroes above or below the main
diagonal and all the diagonal elements 1.

Let o be the 2¢ X2t matrix defined by

=[]

where I is the ¢x{ identity matrix. Let I' = I'y be the group of auto-
morphs of J; that is, the set of matrices M such that MJ M’ = J. Clear-
ly, J is skew-symmetric, that is, J' = —J. The group I" is called the
symplectic modular group. This group hag been studied extensively by
M. Newman, J. R. Smart, I. Reiner, and L. K. Hua. L. K. Hua and I. Rei-
ner determined the independent generators of the symplectic group
in [1]. M. Newman and J.R. Smart, having déveloped results for mo-
dulary groups of ¢ Xt matrices in [3] extended their study to the symplectic
modulary groups in [4]. ' '

The purpose of the present paper is to extend the work of M. Newman
and J. R. Smart on symplectic modulary groups. To this end automorphs
of arbitrary non-singular skew-symmetric matrices which are not neces-
sarily unimodular are considered. A number of difficulties arise since
the skew-symmetric matrix K may not be unimodular and K itself is
not in general a member of the group.

Several theoréms for unimodular matrices with rational integral
elements are proved. in section 2 which can be applied in section 3. These
theorems, although they are stronger than is strictly necessary for this
paper, are of interest in themselves.

* Digsertation submitted to the Faculty of the Graduate School of Arts and
Sciences of the Catholic University of America in Partial Fulfilment of the Require-
ments for the Degree of Doctor of Philosophy.
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In section 3 after the definitions of the K-symplectic group and the
K-symplectic group modulo n, & few observations are made concerning
the structure of elements of the K-symplectic group. There follows a dis-
cussion of matrices modulo # in lemmas 3, 4, and 5. Finally in theorem 3
there is shown that given M, a K-symplectic matrix modulo », there is
a K- symplectm matrix ¥ such that

N = M(modn)

Having established the key theorem 3, applications to modulary
groups can be made in g very similar manner as in [4]. This discussion
is treated in section 4.

2. In-this section we establish several results concerning unimodular
matrices, that is, matrices A with rational integral elements and deter-
minant 4+1. : ,

LEMMA 1. The group of Xt unimodular matrices is generated by lower
triangular matrices and wupper triangular matrices.

Proof. Let
00...0 (—1)
10...0 0
Po=lo1...0 0 )
00...1 0

01]. 11].
Ii=T= 10 i, Bi=8= 01 i,

where + is the direct sum. Then TP; = (1)+P;,_, and T = SWS, where
W = 8. Hence 7 is the product of upper triangular matrices and lower
triangular matrices. Suppose that P;_, is the product of such matrices.
Then P; is also. But P, satisfies

0 —1
Py = [1 0] = 8 W8yt

It follows that P; is always of the desired form. Since 8§ and P; generate
the unimodular group [1], the truth of lemma 1 follows.

TeEOREM 1. Let f be an integer such that (f,n )= 1. Let A* be an
arbitrary wnimodular matriz. Then there is a unimodular matriz A such that
A = A*(modn) and A is in upper triangular form modulo fo

Proof. By lemma 1, 4* = LU, LIT,... L% U, for some m, where
each Li denotes a unimodular matrix in lower triangular form and each
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U, % unimodilar matrix in upper triangular form. Set Ij = (k). Since
(f,m) =1 there is a solution to the congruence fry = If; (k) (modn),
P>, Deﬁne .

0, i<y,
Lk = lm(k) where li:,- = 1, 7= j,

f?‘{j, i >j.

Then Iy = I(modf) and Lj = L(modn). So
CA* =L¥ULAU,... Ly U, = LULU,.. . Ly Uy, (modn).
Set
A = LU0, LU,...LyUp.
Then
A = A*(modn)

and 4 modulo f is the produet of unimodular matrices in upper triangular
form. Clearly, a product of such matrices is again such a matrix. So 4
modulo f is of the desired form and the theorem is proved.

We remark that the following lemma is true.

LuMMa 2. The set of unimodular matrices which are in upper trwngular
form modulo f forms a group.

‘We are now prepared to give the proofs of the theorems of section 3.

3. Let M be a 2¢ X 2t rational integral matrix of the form M = [‘g _g]
where A, B, ¢, and D are txt matrices. Let K be the rational integral
matrix \

1 - 0H
W =|_mo

where H = diag(hy, hyy -y Be)y Biz , divides h;, and h;> 0, for all 4,
1 <1<t Then K is skew symmetrlc and it is known that an arbitrary
non-singular skew-symme‘mc matrix, K*, is necessarily equivalent to
one of this form. -

Tf K* is an arbitrary non-singular skew-symmetric - matrix, define

I'ee = {M{ME*M' = E*}. '
Tf M is a member of I'g. then M is called K*-symplectic. The set TK. forms
a group which we call the K*-symplectic group. It is easy to show that it K
is given by (1) then M is K-symplectic if and only if
AHD'T—BHG’ =H, AHB =BHA’', C(HD' = DHC.

M is called K*-symplectic modulo n it M belongs to
{M|ME*M' = K*(modn), (det K*,n)

I'gv(modn) = =1,n is an integer}.
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Notice that a K*-symplectic matrix modulo # is not necessarily K*-sym-
plectic.

Let K* be an arbitrary non-singular skew-symmetric matrix. Then
there is a matrix K of the form (1) with the properties given with (1) and
a matrix V such that VEK*V' = K. Thus if M is a member of I'g.
then M(VEV-Y)M' = VIEV™Y or VM(VEV)M'V' = K and
(VMV-O)E(VMVY = K. So

FK = V[‘K‘V ']'.

Hence it is sufficient to treat skew-symmetric matrices K of the form (1)
with the properties given with (1). Thus in the remainder of this section K
will refer to a skew-symmetric matrix of this type.

We first make some observations concerning the structure of elements

of the K-gymplectic group of the form [OA 1(;] Let M be a member

of the K-symplectic group and of the form M = [é‘t ]())

]. Then AHD' = H
or D =HAVH™'. Let A=Y =@ Then

dy dyy .. dlt# -hx gu g - glt- 1/hy

oy oy Aoy hy 0 o Gor -o- Gu 1/hy 0

........ I IR | IS | M
__du Gy - du_ ] by gu G - Gu | 1/h

g (mfh)gy - (hufh)gy
(s hy) go1 [/}3] oo (g fh) ga

| (hefh)gn (hefba) gy - Gut
Thus dj, % > j, is a multiple of h; [hy, since the elements of & are rational
integers.
Having made these observations we can prove theorem 2.
. THEEOREM 2. Let A be a unimodular matriz with A modulo hy in upper
iriangular form, where hy is the largest tnvariamt factor of H. Then there

18 .6 matriz D such. that [61 1(;] is a K-symplectic mairiz.

Proof. If 4 is unimodular and 4 is in upper triangular form modulo
by, t]}fan by lemma 2 A~ is in upper triangular form modulo %;. Hence
HA™"H™* has rational -integral elements. Then AH(HA-'H™'Y
= AH(H'A7'H)=H. Thus the choice D = HA"VH~' makes the

l4a0
mairix [0 D] K-symplectic.

hn..@

285

Generalization of the symplecti dular group

Now in theorem 3 it will be shown that given a matrix M which is
K-symplectic modulo n there is & K-symplectic matrix N such that
N = M(modn). The theorem is preceded by several lemmas.

Tuyma 3. Let n be an integer such that (det H, n) = 1. Let A be a ma-
iz with AH = (AH) (modn), that is, A is H-symmeiric modulo n or
AH is symmetric modulo n. Then there is an H-symmetric matriz S such thai
8 = A(modn).

Proof. Let AH = (AH) (modn) where A = (ay), H = diag (hy, ks,
..., k). There is a g;; which satisfies ay+ngy = 0(modh;) since (n, k)
— 1. This determines a matrix @ such that 4 +nG = 4, = A (modn) and

P h,
HAH = ((a@-f+ngﬁ) 7’_)

hag integral elements. Then A H = HA,(modn) and 4, H =HAH'H
(modn) or )
(Ay—HAHH = 0(modn).

Define H, so that HH, = H,H = I(modn). Then

(Ap—HAH HH, =0(modn) or A4, = HAH "(modn).

S0 A, = HA;H '—nE where E is integral. And AH—HA; = nEH.
Also by taking transposes, HA,—AH = nHE'. 8o HF' = (EH) = —EH
or BH is skew-symmetric. Let BH = (e;};). Define (BH)* = }(eyh;i+
+ |eshyl). Then (EH)T is obtained from FH by replacing all negative
entries of B by zero. Also since EH is skew-symmetric, (EH W= 3 —euhi+
+ lesihyl). Thus

BH — (EH)*—(BH)*', and AH—(AH) = nEH = n(BH)* — (BH)™)

or
AH—n(BH)Y = ((4.H)— n(EH)").

Note that (EH)* = EtH since all elements k; in H are positive, and H
is a diagonal matrix. So 8 may be chosen as § = Ag—nEt = A+ n(G+ET)
and

S = A (modn).

LEMMA 4. Given M where M = 4 g , a K-symplectic matriz mo-

E
dulo n, then there is an H-symmetric matriz X with (det (A+BX), n) = 1.

Proof. Tt is sufficient to show that for every prime p, where p di-
vides n, there exists an H-symmetric matrix X, such that ptdet(4d+BX,).
For then, since clearly a linear combination of ‘H-symmetric matrices


Pem


286 8. K. Kolmer

iy an H-symmetric matrix, by the Chinese remainder theorem: there i

an H-symmetric matrix X such that X = X,(modp) for every p divid-

ing n. Since ) "
det(A +BX) = det (4 +BX,)(modp)

this implies that

(det(A —[—BX) n) = 1.

Let p divide n and let U and V be unimodular matnces such that
A, = UAV is diagonal and det 4, = 0(modp). The case 4 = 0(modp)
Wi]l be treated at the end of the proof. Let @ = {h,, hy, ..., hs} be the set
of invariant factors of H.. Then clearly h; i3 the least common multiple
of the elements of @ and (%, #) = 1. So by theorem 1 there are unimodular
matrices U, and V, which are in upper triangular form modulo h, and auch
that

U, = U(modp) and ¥V, = V(modyp).

By theorem 2 U, and V, determine ummodula;r matnces W, and Z,

such that
U, 0 Vyp 0
[ ] e 573

are K-sympléctic. Then
[0, 0 1[4 B][V, 0] _[U,AV, U,BZ,
o Wolle pllo- 7, =|w,ov, w,nz,

Let Y, = Z,'X,V,. Then

jL

[‘3‘” D ](modp)

A,+B,Y, = U,AV,+U,BZ,Z; XV, =
Hence if

Up(A+BX,)V,(modp). -

pYdet(4,+B,Y,) then ptdet(4-+BX,).

Determine X by the Chinese remainder theorem such that X Xﬂ(modp
for every p dividing %. Then (det(A+BX);m) =1.. .
80 we mneed only determine an H—symme‘mc matrix Yp such tha,t

ptdet(4,+B,Y,) for every p dnndmg n. We know 4, = [E }(modp
where E is diagonal and non-smgular modulo p. B, can be written B,

=z Bm] where B has the dlmensmn of BE. We compute. that

1 'Bll le EHIBII ‘EHIBZI
__[0 0][0 HQ][BH 2=l o 0. (mod:l?)
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Where H is partitioned so that H, has the dimension of B. By symmetry

modulo p we conclude that B, = O(modp) and so B, = [5” g‘zl (modp).

Hence the tx 2t matrix [4, B,] satisfies

mum—ﬁg?Bﬁm@

50 that detB,, == 0(modp) since (det.M)* = 1(modn). Let

(@) %, =[o 9]

where I is the identity and has the dimension of By. Obviously Y, is
H-symmetric. Then

— E 'BIZ
Ap+BpY, = [O Bzz] (modp)
and
det(A,+B,¥,) = (detF)(det Byy) (modp)
so that .
ptdet(4,+B,Y,) since pidetE and ptdetB,.

The above is true for all p where p divides n. Thus ¥, as in (2) is the
required H-symmetric matrix.

X, is H-symmetric since Y, = 75XV, or Y,H =Z2;"X,V,H.
ThenZ =HV,*H "' and Y, H = (HV,,H“) X H)(HV o, Thus X, H
is symmetnc or X, is H-symmetric, and the lemma is proved except
for the special case 4 = 0(modp). :

If A = 0(modp) where p dlwdes n, then M = [00 g] (modp). But
detB = 0(modp). Let X =I. Then det(A+BX)=detBX = detB
= 0(modp). Thus (det(4+BX),p) =1 where p divides =.

. LeMMA 5. Let P, @ be H-symmeiric matrices which commute such that
M= [{: 22] is K-symplectic modulo n. Then there is a K-symplectic
matric N such that o ‘

M = N(modn).

Proof. Since M = [f; ?) PHQ'
= H(modn) or PQH = H(modn). Since (detH, n) = 1, it follows that
PQH = H—nBH where B is H-symmetric and commutes with P and Q.
Then it is easy to show that

¥ = P-+nEP —~nE
nE Q

is a K-symplectic matrix and N = M (modn).

is - E-gymplectic = modulo #,
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A B ; . .
o ol ® K-symplectic matriz modulo n,
there is a K-symplectic matriz N such that N = M (modn).
A B
Proof. =
roof. Let M [ ¢ D

lemma 4 there is an H-symmetric matrix X such that (det(4-+BX), n)

= 1. Let
M=AB]IO _|44+BX B] _[4, B
! ¢ D XI_O—l—DXD*.OlD'
Then M1 is K-symplectic modulo » and (det4,, n)=1. Let a be a real
number such that aedetd; = 1(mods). Then —ad$¥BH is symmetric

modulo » since 4,HB’ is symmetric modulo ». By lemma 3 there is an
H-gymmetric matrix § such that § = —ed¥B(modn). Put

- [Al B] [1' 8][4, 4,8+B
:= g, pllo 1|0, o.8+D]

THEOREM 3. Given M =[

] be a K-symplectic matrix modulo x. ‘By

4,0 a . )
¢, D, (modn). Since (det 4,)(detD,)

= t1(modn) we can set detd; =g so that pdetD; = L1(modn).
Then FADICH is symmetric modulo #. By lemma 3 there iz an
H-symmetric matrix 8, such that §; = FADMUC0, (modn). Put

(4 07[1 o 4, 0
M3 = = 1
01 ‘Dl Sl I 01"‘.1)131 ‘Dl. ’
Then 0;+D8, = 0(modn) and so M, = [ﬁl g)
1

Determine U, ¥ unimodular such that U4,V = P where P is diagonal.
By theorem 1 there are unimodular matrices U, and V, which are in upper
triangular form modulo %, and such that U, = U(modn) and V, =
= V(modn). By theorem 2 U, and V, determine the K-symplectic ma-

. U, 0 V0
tri 1 1
ces [0 W1] and [0 Zl]. Then

A Y AR C

whgre P = U,4,V,(modn) is diagonal and @ = W,D,Z,(modn). But
@ is diagonal modulo n as Q = W.D,Z, = H(U,4,V,)" " H-(modn).
Hence by lemma 5 there is a  K-symplectic- matrix N, such that N,

= M,(modn). Since we have M, = RMS where R = [U1 %V] aﬁd
0 1

Then 4,8+B = 0{(modn). So M, = [

](modn).
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8 —[X I] [0 I][S’l I][O Zl]. We define N = R™*N,S™". Then N is

K-symplectic and
o N = R™N,87' = M (modn).

We now give some applications of theorem 3.

4. We now define I'g(n) = {N|¥Nelx and N = I(modn)}. I'g(n)
is called the principal congruence subgroup of I'z of level n. N, a member
of the principal econgruence subgroup, is said to be K-symplectic of level n.

Clearly I'r(n) is a normal subgroup of finite index in I'x. Given
the natural homomorphism of I'g into I'z (modn), it is easy to show that
T'e(n) is the kernel of the homomorphism. It follows that

TK/FK(’”/) = FK(modn)

In the remainder of the section let d = (m, n) be the greatest com-
mon divisor of m and n, and let 6 = [m, n] be the least common multiple
of m and n. The proofs of the lemmas and theorems that follow up to
and including lemma 8 are completely analogous to those of the corres-
ponding lemmas and theorems given in [3] and [4].

. TmvmA 6. Let M be a K-symplectic matriz of level d. Then there is
o matriz ¥ where Y is K-symplectic of level m and Y = M(modn).

Lemyma 7. Let M be K-symplectic of level d. Then there is an M,
E-symplectic of level m and an M,, K-symplectic of level n such that M
= M, M,.

. THEOREM 4. The normal subgroups I'e(m), I'z(n) of I'x satisfy
TIe(mg(n) =I'(@), Ix(m)~ Ig(n)=TIx(d).

THEOREM 5. The following isomorphism ewists M(d,m) = M(n, 0)

where we define M(a, b) = I'g(a)[Tg(b), a divides b, the K-symplectic

modulary group.
‘TaEoREM 6. Let X" represent the direct product. Then

M(d, 8) == M(d, m)x M(d, n).
" CororLARY. If 7 i8 arbitrary and d =1 then
M(r, rmn) oz M(r, rm) X M(r, rn).

THEOREM 7. Let r and s be arbitrary and s = []p%. For each prime p
i

dividing s write ¥ as v = 1,p°? where (rp, p) = 1. Then M(r, rs) 8 isomor-
phic to the direct product }

[[Ms, p2*).

|3 .
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Lievma 8. If s divides r, the M(r,rs) is abelion.

We now consider the structure of M(m, mp“) where p is a prime
and p* divides m. Let B;; be the matrix with 1 in the (¢, §) position and 0
elsewhere, and pub @y = hyfhy, j >4, where by and h; are invariant fac-
tors of H. Set

I mBE, . .
8, [0 I “]’ z =4
(3) i =
I m(By~+ 0,0 . .
[0 m( 11“; i ﬁ)]’ it i<y,
I 0 . ,
[mEﬁ IJ? if =],
®) W = I 0
[ ] it i<j,
m(Eﬂ—}-mﬁEﬂ) I
_ 'I+mE¢j 0
® By = [ o0 I _m”ﬁEﬁ].

There are }(i*-1) matrices Sy, (1) matrices Wy, and * matrices
R;;. Matrices Sy, W,y are K-symplectic as are matrices Ry, ¢ # j. Matrices
Ry; are not K-symplectic but are K-symplectic modulo m® and so modulo
mp" since p* divides m. This suffices in view of theorem 3.

THEOREM 8. Let p be a prime where p* divides m for some m. Then
M(m, mp") is an abelian group of order P and of type (1", P, ..., P*)
The generators are given modulo mp™ by the matrices (3), (4), and (B).

Proof. By lemma 8 M(m, mp“) is abelian since p* divides m. Let M
be K-gymplectic of level m and of the form

W = I4+md mB
| m¢ I+mDJ

Then M is K-symplectic which implies AH = —HD'(modm), BH
= HB'(modm), and CH = HC'(modm). Since p* divides m the congruen-
ces hold modulo p*. By lemma 3 there is an H-sgymmetric matrix X and
an H-symmetric matrix ¥ such that X = B(modp*) and ¥ = O(modp").
And by the method used in lemma 3, 4, can be determined such that
Ao = A(modm) and HAH™' has integral elements. Then

— ImX|[ I O][I+m4d, 0 w
u —[o I ][mY 1][ 0 I—mHA{)H"](mOdmp )-

The matrices

I mX I 0 and I+mAd, 0
0 I} |mYI 0 I-—mHAH™
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are all expressible modulo mp* in an obvious way in terms of matrices
(8), (4), and (5) so that these indeed generate I'xz(m) modulo Tz (mp"¥).
Furthermore they are independent modulo mp“ and have period p* mo-
dulo I'g(mp").

Let m = p° and there follows

COROLLARY. If 1 <u <v then M(p°, p
order p“® and of type (%, %, ...,2"). The generators modulo p
may be chosen as the matrices (3), (4), and (8) with m = p°.

Theorem 7 and the corollary to theorem 8 imply

THEOREM 9. Let n divide m and n = [[pPs. For each prime p dividing n
DN
write m as m = m,p°® where (my,, p) = 1. Then 1 < fp < op and M(m, mn)

is isomorphic to the direct product [] M(p°e, p°*f»),
D I

“+%) s an abelian group of

ULV

Hence the structure of the group M(m, mn) where n divides m is
determined in view of the corollary above and theorem 9.

The above does not apply if g, > a,. A simple calculation shows that
two different groups of the same order have centers of different orders
and hence have different structures. Thus no group with g, > a, can be
isomorphic to a different group with 8y > ap.
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