The remainder of the proof goes through without change. Therefore (3.13) holds without exception.

We now substitute from (3.6) and (3.12) in (2.10) to get

\[
\left(\frac{hh}{p+1}\right) \sum_{n \equiv 1 (p+1)} \frac{B_0\left(\frac{\mu + y}{h}\right)}{B_1(y)} = \frac{(hh)^{p-\sigma}}{p-1} \left(\sum_{n \geq 1} \frac{B_0\left(\frac{\mu + y}{h}\right)}{B_1(y)}\right).
\]

This evidently completes the proof of (1.10) when \(p > 1 \).

When \(p = 0 \), we have

\[
S_0(h, k; x, y) = \sum_{n \equiv 1 (p+1)} B_0\left(\frac{\mu + y}{h}\right) = B_0(y),
\]

so that

\[
S_0 = \lambda \left(\frac{B_0\left(\frac{\mu + y}{h}\right)}{B_1(y)}\right).
\]

On the other hand,

\[
(Bh + Bk + ky + kx) = \lambda B_0(y) + \lambda B_1(x).
\]

Since \(0 < \sigma < 1 \), it is clear that (1.10) holds when \(p = 0 \).

References

Errata zur Arbeit "Eine Bemerkung zur Fermatschen Vermutung"
(Acta Arithmetica 11 (1965), S. 129-131)

von

M. Eichler (Basel)

S. 129³ statt "zu 1 teilerfreien Zahlen" lies "zu 1 teilerfreien Zahlen";
S. 131³ statt "\(\sigma > r+1 > 1 \)" lies "\(\sigma > r+1 < 1 \)".