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but 2 < ¢,slogsloglogs clearly implies that for s > sy = s4(¢)), & <s
(since @, = p2—p, > ¢, slogsloglogs). Thus

841 r
B(s)+2t = D'pit D) oy,
i=2 =1

gives a representation of B(s)--2f as the sum of s distinet primes or squa-
res of primes where p and p? are not both used.

Assume next n = B(s)+4-2¢-++1. Then n = A(s)-4-24;, 24 < cslogsx
xloglogs. Thus the same proof again gives that » is the sum of s distinet
primes of squares of primes where p and p* are not both used. Thus (12)
and hence our Theorem is proved (the cases s < 8, can be ignored becauge
of Lemma 1).

Finally we remark that f;(s) > B(s)—2 since B(s)—2 can not he
the sum of s distinet infegers > 1 which are pairwise relatively prime.
To see this we only have to observe that by considerations of parity no
even number can occur in such a representation.
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Further developments in the comparative
prime-number theory V

(The use of “two-sided” theorems)
by
8. KNarowsKI (Poznan) and P. TurAN (Budapest)

1. This paper means in thig series a methodical digression; its aim
is at the same time modest and pretentious. It is modest since we are
going to prove a theorem which we proved in stronger form in a previous
paper (see Knapowski-Tur4n [1]). It is still pretentious for the following
reason. The second of us observed some years ago that several problems
in the analytical number-theory can be reduced to the following “two-
gided” theorem.

If m is a positive number, further

(1.1) 1=y > (o] = ... = |24l
and
2
(1.2) B‘l_i’niin]Z’b,-bo,
i=1

then there is an inleger » satisfying

(1.3) m<Lry <mtn
such that
n 7 B
n
(1.4) \me > (—ge(m—]—n)) 2n°

J=1

He had in mind further applications too, a typical one being the ex-
plicit numerical determination of an X such that for a suitable 2 < 2y < X
the difference m(z)—Liz would change sign at o =@, (Littlewood’s
problem). But he came soon to a conclusion that such an application can
be expected only after having instead of the “two-sided” theorem (1.1?-
-(1.4) a “one-sided” one, assuring the existence of integers #, and », in
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an interval of type (1.3), for which we should have a positive lower bound
for

n
Re Dbyt
7=1

and a negative upper bound for

n
Re D' b2,
f=1

both independent of the configuration of the z,’s, apart from an “argument-
restriction”. He has found such a theorem gince (see Turdn [1]) and this
was indeed a starting point for a mass of researches, among others for
& solution of Littlewood’s problem by the first of us (see Knapowski [17)
and for several in the comparative prime-number theory. However, the
verification of the argument-restriction presents difficulties to be over-
whelmed in each case by individual ideas, whereas the two-sided theorem
does not contain such restrictions. This fact makes it desirable to be
able to use for these aims the two-sided theorem. Recently we observed
that a slight modification of an ingenious idea found by G. Kreisel (seé
Kreigel [1]) for the solution of Littlewood’s problem gives a possibility
for such proofs. Applied to Littlewood’s problem it would give a very
short solution. However, we shall illustrate this new turn of our methods
not on this but on a.not;her example, where previously we applied the
one-gided theorem (see Knapowski-Turén [1]), in order to get some com-
parison of both forms. This analysis leads to the conclusion that where
both methods work, the one-sided theorem leads generally to stronger
theorems but then the new form. works in some cases when the one-sided
theorem fails. So illustrating this thesis on the comparison of

Z A(n)  and 2 A(n),
n<e (]
nal(k) nal(k)
this new turn leads to the following
TamoREM. If for a 0 < <3  and for(Y)

(1.5) & > max (¢, e0)
no L(s, x)-function with (1) 1, belonging 1o the modulus k, vanishes for

(1.6) ls—1] < $+496,

() e1 and later on ¢y, o, .

- denote always positive numerical, explicitly cal-
culable constants, :
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then if

(1.7) & > max (c,, ¢i10e°%)
and '

(18) b = elogzu(légloga)s’

we have for suitable 2, and ®, in [a, b] the inequalities

———46

. 2
(1.9) D A= Y Ay =
n<L) n<m1
nelk) nel(k)
and
\ 31—45
(1.10) D Am— D A < —a
n<Ty nTy
nesi(k) n=l(k)

Here not only the localisation of @, and », is worse than in our paper
[1], where the interval had the form [a, a*], but also the one-sided theo-
rem worked there in the case, when instead of (1.6) the weaker Hasel-
grove condition was fulfilled, whieh required only the' existence of an
n >0 such that no L(s, y)-function mod% would vanish for

=1, B <n

2. First we expose the (slightly modified) idea of Kreisel. Let with
§ = o+t be

B
(2.1) s = [ B

1

with a real B(z)-function such that f(s) be regular in the closed half-plane
o >1 and all integrals
[ 1B(@)log'
—dz
(2.2) lf L

exist for » = 0,1,2,... Then for ¢ > 1 we have

B(x 1oga;

(2.3) FO(s) = (—1) f

Suppose, we have for an (1 <) & < b, for an appropriate integer vy > 3,
1y >10 and 14ty = 8, the inequality

(2.4) s > If(”°‘(l)l+2(%(¥o, @)+ 2 (%, b))
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where w, and y, are determined by

fIB .'Jz:)ll(),gr.accZ o <, ),

(2.8)

|B w)[logm

(26) | — < palv, ).

Then we assert that B(w) necessarily changes its sign for @ < @ < b. Tor

if not, then we have on the one hand

b
]
dm]g f (B @)1, ast 7,
@&

det

(2.7) U,

z0

be (2)log"w

and on the other

F1B(@)|1
08 T [ — [ ZOE 4y 00001 o)t
1 b
and
b a
B : r
@) T (e [ HEE o] =)ty [ — (e [
a 1

<1 (1) 1 (9, @)+ pa (%o, D)

Putting (2.8) and (2.9) into (2.7), we get a fortiors

lf("o)(go)i It |+2(‘P1 (05 @)+ (v, )):

vﬂu‘ch contradicts to (2.4). Hence (2.4) will imply indeed that B(x) changes
sign for @ < @ < b. This is the form of Kreigel’s idea on which we shall
base our further considerations.

3. It will be enough to deal with (1.9); the proof of (1.10) goes ana-
logously. We choose for our B(x)
1 —]——46
- Z A(n)—x* )

n<w
n=l(%)

(3.1)

1
(in the proof of (1.10) we had only to replace -—m?—M by »*

. Th
have for ¢ >1 ) onwe

_ (B,
(3.2) f(s)_lfT = qu(k)Z( (8, 1)— 1}14-45'

hn..@
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Hence f(s) is regular also for ¢ > 1; since for # > ¢*, say, the inequality
@
— 2 Vloga:
(3.8) | 3 Am——| <ae
KZI (k)

n=l(k)
as is well-known, holds also (2.2) and (2.3) are in our case verified. Re-
stricting at this moment », only by

(3.4) 10loga < %, < 10loga-+klog* 'k,

we remark first that owing ot (1.7), choosing ¢, in (1.5) sufficiently large,
we have
(3.5) 10loga < v, < 1lloga.

Then we have

a a
" log" 1
fw ar < 2fydm < 2log e < v
= 2
1

if ¢, is sufficiently large; thus we can choose
= !,

In order to determine v, (v, b), we use (3.3). This gives for sufficiently
large ¢;

(8.6) P1(ves @)

[By(a)] < 6=,

and hence
_031/555

© - ool 0
6 | |Bo(o)|log J og"we
¥ @ o

But from (1.8) and (3.5) we get for sufficiently large ¢

4y, 2)
e |

oo
dw =2 pRotle= dqy,

‘/log b

Viogh = loga(logloga)®® > vlog™s, (>

1
. — 503" N .
ie. %1 TV gocreases monotonously in our interval and hence here

~Byy108 514,

1
37
+ 2w+ 2
29 16 2 5[4,‘,0) Yo 18 <

< (vlog
if ¢, is sufficiently large. Hence the last term in (3.7) is

© o,
<2 [T ar<1l<in
yiogh
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anl we c¢wn choose
o (v B) =%‘”o!-
Hence the relation we have to prove takes the form
(38) S sa) > )] et

4. Next we give an upper bound to [f0(1), using (1.6). Standard
use of the theorem of Hadamard-Carathéodory gives the estimate

logk

62
for all L(s, y) with y # y,, valil in the circle

S0

L'(s _
T ) %)

(4.1) ls—1| < 3+ 36.
Hence here we get .

loghk logk
F(6)] < (Bout 1) o= = o

and by Cauchy’s inequality
loghk({ 2 \®
(1) < 6 — [ —— ',
IFD < e 5 (1+65) v

Hence (3.8) will be true a fortiori if we prove

1, logk({ 2 ™
(4.2) ‘;0‘!‘|f(0)(30)|7> (05+1)T(1+65) i

and having this we can be sure that By (z) ch.‘mgesv gign in (a, b), which
will give exactly (1.9).

In what follows we shall use two known facts on the L-functions.
(a) For a guitable ¢; > 10 the domain

(4.3) : o2l t<t<Tto

contains for all real 7’s at least one zero of any of L(s, y)-functions.
(b) With the above ¢, the rectangle

(4.4) “ld <o <l, T<t<rtog
contains for each L(s, y)modk at most

(4.5) e logh(2+ 7))
zeros (counted with multiplicity).

h.n@'
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5. Now we shall dispose upon 4. Tirst we determine a 7, with
(5.1) 7y = max (40, 100‘6)
so that with ¢; in (4.5) the inequality
L 1—cosferfolh) _ ,, logk (2t )
2 o (k)ty To

holds. Sueh a 7, obviously oxists, even

(5.2)

(5.3) Ty < ket

can be asserted with suitable (large) ¢. Let y(n) be an arbitrary clé)ar-
acter mod e with y; (1) # 1; according to (a) L(s, x1) has a zero ¢, = '+
+ 9@ with

(5.4) B L o <y <ot 7o
We define the (positive continuous) function h(t) for real t-values by

(5.8) h(t) = min|i-dt— ol

where the minimum is taken over all non-trivial e-zeros of all Ls, x)-
functions belonging to modk with (1) # 1. Owing to (5.4) we have

18

(5.6) R(y®) < %
Now we define t, as one of {-values in
(5.7) I: 10+-}06<t<%+§06,
for which o
(5.8) S mink(@)

is attained. (5.6) gives at once the inequality

(5.9) ‘ h(t) < 4.
Hence we have
(5.10) 40 < 1, < 268
and if

ot =+

is the zero of the L (s, y)-functions belonging to mod% with () #1,
which is the nearest to
8y = 1+4-ty,
we have ‘
(8.11) s— ot <1, 80 <vF <3k, =1
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6. Taking in account (5.10), a standard reasoning, based again on
Hadamard-Carathéodory’s theorem, gives for all L(s, y)-functions be-
longing to modulus % in the circle |s—s, <4 the inequality

Fen- X =

e
189—2l<7

(6.1)

< g logk.

Hence from (3.2) we get in the same circle

1 1—-%(0)
6.2 <
(6.2) |fls)+ o3tz T ; o0 g(% < 2¢,logh.
le—8gl<?
Since

1 _}( 1.1
s(s—po) ol\s—o MS)

and the contribution of the second terms to the left-side of (6.2) ig abso-
Tntely

< elogk,

we geb from (6.2) for |s—s,| < 4 the inequality

’f”“LZ 7 Z =

IQ—Bnl<4

But then Camchy’s inequality gives

1, ‘ 1-7() 11
f00) (5) - (—1)"0 L4 -.
e SEED 3

lo~Sol<4

Hence taking in account (4.2), chosing ¢, in (1.5) sufficiently large,

everything will be proved if », can be chosen so within the interval (3.4)
that the inequality

1—20) 1 1
é\j o(k) E(Zx)‘ ¢ (s—eyv™

180—el<4
holds. Multiplying it by |s,—
to (8.11) a fortiori if the inequality

SEE S ey

Iso— el<4

’ < oylogk.

ey logk
4

=

(6.3)

> (654 1-4¢y)

logk( 2 \n
1+6a)

g*[’**!, the inequality (6.3) holds owing

> 2oyt oy 1) 8 ( ! )

& \1+66

iom®
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holds, and all the more if the inequality
358 3
<P(k e 30—‘9)
lsu el<4
holds. Or we have to find a suitable integer px with the restriction

(6.4) 1+10loga < p < 10loga+klog™ %,

vp+1
= 8(cs+en+1) 1+65)

logk( 1

for which the inequality

1—7%() 1 80—@*)" logk( 1 )“
©9 ‘2 b 4 > 0= ’ Bt t e
18g—ol<4

holds. This will be done by the two-sided theorem. We shall denote the
sum on the left as a function of u by Z(u).

7. Before applying the two-sided theorem, we remark that if we know
in it for » only an upper bound ¥, then on the right of (1.4) we can replace n
by N everywhete The role of the #’s will be played by the numbers
(So— /(so— 0); the normalisation-condition (1.1) is owing to the defini-
tion of o* fulfilled. The role of the b;-coefficients is played by the numbers

1—z() 1
ek) ¢

and we have to give a lower bound for B in (1.2). What i3 the error in B,
replacing ¢ = -4y by iy? Using (4.5) with = = {,— 4, this error is abso-
Tutely less than

2 1 logk(24-1,) logk (24 7)
— —s < 2¢ < 4o —_—
;‘ o (k) %: P (e R
I8o—eal<4

using (5.1), which is in turn owing to (5.2)
1 1—cos(2x/p(k))

2 elhn
Hence

1 1—cos(2rfp(k)) _ G2
. >o >
(7.1) B 2 o(k)T, g

using (5.3). Owing to (4.5) we can use as N the quantity
(7.2) N = e3klogk

with a suitable ¢;; and as m we choose

(7.3) m = 1+ 10loga.
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Then the interval (m, m+N) is contained in the interval (6.4) and thus,
choosing for u the value » given by (1.4), the 1cqu11uncnt (6 4) is not
violated. But then we.get, using (7.1) too,
e klogh enkloglk ¢ 1
2 ()] = G .
] 8e(1-+loga— ¢y klogh) 2k" czlklogh

Taking in account (1.7) and choosing ¢, in (1.5) sutficiently large we get,
using also the second half of (1.5) and (7.3),

0y \CBF10EE 1 \™ logl
1Z ()] >(i@) > 1160 3(es+enn+1)— 5

logk 1\
& \1+66

((15 +en+1)—
indeed.
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Rational dependence in finite sets of numbers
) by
B. G. STrAUS (Lios Angeles, Cal.)

J. Mikusiriski and A. Schinzel ([1]) proved that, in a finite set of
points on the real line so that every distance except the maximal one
oceurs more than once, all disténees-are commensurable. This theorem
was. discussed in the Undergraduate Research Program in Mathematics
at UCLA under the author’s direction; and the proof developed there
leads to a generalization which was conjectured (and proved for the case
m' =2 in [2]): - .

THEOREM. Let @, &, .. ., ¥, be real numbers and let m be the dimension
of the ector space, V, spanned by {m;—ajl4,j =1, ..., n} over the rationals.
Let wm' be the dimension of the rational vector space, V', spanned only by
those @; — a; for which ;— w; &, — @ whenever (4, §) # (k, 1). Then m' = m.

Proof. Assume, without loss of generality, that «; = 0 and let
N1y Mag -evs ey D a basis for V', and oy, - By ooy T DO a basis for V.

m
Decompose the n-tuple X = (#,,...,@,) into Y X®p, where the
s=1

X gre n-tuples of rationals, not all of them 0. By this construetion
we have #{9 = af) for all s > m’ whenever #;—; is attained for a unique
pair (i, §). Whenevel #;— @ = @, — @ we obviously have zf—af? = af) —
—af® for all s =1,...,m.

Now assume m > m' and let X(f) = X +tX™, ¢ real. There may
be a finite number of choices of ¢ so that z;(t) = #;(t) for some ¢ #j
(at most one choice for each pair (7, j)), we exclude all those t. Obviously

— ;1) = ay,(8) — m(?)

for all £. Since X™ =£ 0 the elements of X (t) become unbounded ast — oo
while @, (f) = 0 for all ¢. In particular, for ¢ sufficiently large, m.aaxmi(t)—
v

Thus @;(t)—

B— @y = By — 2 2 0;(1)

—ming;(t) = 4;(8) — 0 (1) > Tp— >y xx(f) is a unique dif-
i

ference among the x;(t) and therefore #;— w; is a unique difference among
the ;. But we have

@y (t) - mk(t) = T;— 2+t (mgm) - mgcm)) > Tp—
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