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The discrepancy of random sequences {kz}
by
H. KusteN (Ithaca)

1. Introduction. It was R. Bellman [2] who first suggested the
investigation of the limit distribution -of

N
D'f(y+ka; a,b)—N(0—a)

(1.1)
k=1
if the pair x,y is a random variable, uniformly distributed in the unib
square and if, for 0 < @ <bkl,
£ b 1 if e<ELD,
. a.b) =
FEaD =1, 4 o<t<aob<e<l,

F(E+15 a,b) =f(&; a,b).
N
If {& = &—[x] denotes the fractional part of £, then kZ’ fly+ks; a,d)
=1

is simply the number of k,1 <k <N, with {y-+kz}ela, b] and (1.1)
measures the deviation of this number from its average.

In [4] and [5] the author found the limiting distribution of (1.1).
In this note those results are extended by studying the discrepancy

N
1
(1.2) Dy () =¥ sup Ef(ka:; a,b)—N({b—a)|.
o<agh<l+a i

(If 1<b<14a we define f(&; a,b) in an obvious way, namely as
f(&; &, 1)+f(&; 0,b—1).) Our main result is Theorem 2 below for
which we consider  as a point from the measure space [0, 1] with Lebes-
gue measure.

THEOREM 2.
N Dy (2) 2 .
mﬁ»? in measure on [0,1] as N — oco.

The first part of the proof (section 2) gives an agymptotic expression
for Dy(x) in terms of the continued fraction denominators of #, which
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may have some independent interest. Tt is a slight refinement of work
of Ostrowski [10] and Behnke [1] and even thongh methods similar to [10]
and [1] have been used by others, Theorem 1 does not seem to appear
in the literature. By means of Theorem 1 the proof of Theorem 2 reduces
to a metric problem for continued fractions which is solved in section 3
by means of known probabilistic results on continued fractions. Some
easy corollaries of our proof are given at the end of section 3.

2. A relation between Dy(£) and the continued fraction of &
We recall that every irrational number £¢[0,1] bas an infinite regular
continued fraction which we always write as

(2.1) [ (&), ae(E),...] = ‘-w———-—%w—i—-—— = £.
o (€)+ O
The convergents p:((;)) satisty (¢f. [3])
228) Po=0, P=1, Pu=0@PratPua =2,
and
(2.2D) Bw=1, Ga=0, ¢=0h1th1, n>2.

Since ¢ < gnp1 < (@ns1+1)gn We can expand any positive number 2
in a unique way as

2= D on(2, £)4(8)+{)

=0

(2.3)

where ¢; is an integer satisfying

(2.4) 0 < cu(2, &) < tnpi(8)
and
(2.5) ra(2, §) = 2— 3 ailz, £)au(E) < gnlé)

=N
(compare [107). Actually the sum in (2.3) only runs as far ag m == m(z, &),
which is determined by

(2.6) In <2< ny1-

If 2 i3 an integer the term {2} in (2.3) vanishes.
If not. expligitly stated otherwise, an expansion of the form
%= Dle;qi+{e} will always stand for this unique expansion.
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LeMMA 1. For each & > 0 there ewists a u = u(e) such that

¢4 (&) Degy ey (£) <“““(E)(a c(5) (1*0: c(E))—H)
M1 N+l

whenever

(2.7) pa(E)Zzu  and 0<e< a1 (&) (¢ integer).
For any integer 0 < ¢ < Anyr(£)

(2.8) ¢qn(£) Deg, 1y (£) < 2e.

This lemma will be proved together with the next lemma which
gives a lower bound for D.
For any o and b we can find integers ji, j» such that
Ji—s b Jat1
AT —
qn 9n

(2.9) a=

with 0 < s,t < 1. Of special interest to us are those a, b which for some
large u satisfy the conditions

@100 0<i<l—s<1, 0<s<%, ‘t~-&rcl(—5‘<%

or

@1y 0<s<l—t<1, \s——-—c—-—lg-l—, o<i<t,
Any1(8) % u

as well as

(2.12) 0 <jp <jo € (&) and  f—jit+s+i<g(8).

Tisna 2. For each &> 0 there evists a u = u(e) such that if (2.7)
and (2.12) hold and either (2.10u), in case n is even, or (2.11u) in case n 8
odd, then

can(f)

(213)  Rege(&; a,b) = D F(hE; a,b)—0gu(E)(0—0)
k=1

S a2 _f_-(l _“—)-)
A P R ) B

Proof. For convenience we drop the argument £ in most functions.
Consider now R, (&; @,b) and write a,b in the form (2.9), with
0<s, t<1. I j; =>q [o,d] will mean {@,1]w[0, b] with the cor-
responding meaning for f(&; a,b) (ct. comment to (1.2)).
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It is well known (ef. [3]) that

—1)" O,
(2:14) Eﬂ% - Qn(“;wr(l%j’q'nj - —!_1—1:,
where
“;w+1 = a’n-|—l+[a‘n+27 Ay 8y o]
and
(=1
(2.15) On = PR

Moreover, by Theorem 130 in [3],

(2.16) (.'p'rn qu) = (Qn—l’ ) = 1.

For the remainder of the proof we shall only consider the case n
even and thus &, > 0. One only has to change the role of s and ¢ to treat
odd values of n.

By (2.16), the numbers kp,, k = v, v+1, ..., 0+ ¢n—1 form a com-

. k
plete residue system wmodg, and thus among the numbers {»%l’},
In

v <k <v+g—1, each value j/gn, 0 <j < gn, OCCWS exactly once.

kpn,

Consequently of the numbers {T}’ 1<k <eq, exactly ¢(j,—ih-+1)

belong to [@, b]. The situation is slightly different for the numbers {k&}.
Namely, if

kp A .
{q_n"} ='€'l:"7 0 <}¥k§%¢""17
then

g+ Kb,

¥

{ke} =

gince (for even n)

0 < 8y < 0gudn < Gni1Gn

(2.17) L 2
g1 Gnt Gnn

. Pn . .
Therefore {kq—}e[a, b]if and only if [k&]e[a, b] as long as A, # f;—1(")
) .

and A % ja (vesp. Ju—gn if jy = @n). I A = ji—1(") then {k&}e[a,b] if
and only if k4, >1—s. Bince A =ji—1 for some &k =k, 1< 701 < T

() Replace j1—1 by gn—1 it j; = 0.

icm

The discrepancy of random sequences {kx} 187

and then for all k¥ of the form %, wg, we have

{(Fy+wgy) E}¢[a,b] for w< [1!1-;] —9

but
{(k1+wan) Eela, b] for I:lq—;] +1 <w < agy—1.

It will not be necessary to investigate precisely what happens for

o]

< 1. Similarly 4, = ja (Jo—gn if jo 3> @) fOT & = K2+ wgn and

i
v [qnﬁn] %

{(k2+WQn) E}¢[a” bl for w=> [q ta ] i

{(ky+wgn) £} e[a, b]  for

IS

These arguments show that exactly ( §y+j1—1) of the values {(k-2wgy) &},
1<%k < gy belong to [a,b] if

= qnOn QnOn > nUn n .n
- ([Qnan] q'nén ) < < ( Qnan] q'n,an )

there will be j,—j;—+2 values {(k+wg.)é&lela, b1, 1 <k < gn, in case
1—s < tbut only j,—j, in case & <<1—s. For all other values of
w < @yyy—1 the number will be between j,—j, and j—ji+2. This
already proves (2.8) because

If

(2.18) Jo—i1 < qn(b—a) =js—f1t+8+1 < jo—ht2
and therefore
(w+1l)ay
|3 fkes 0, b)—@b—0)| <2
way,+1

uniformly in (a, b). For the other parts of Lemmas 1 and 2 we need to
refine this argument. It is necessary to distinguish between the cases
1—s <tand t <1—s and in addition one hag to take into account

1-— 11
whether or not ¢ exceeds one or both the numbers [q 68] and [q 3 ]
nvn nvn.

As a generic example we consider the case where

(2.19) [ ! ]<c <[1'S]
’ q"é’n = = qﬂan '
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In this case the number of {k&}e[a;b], 1 <k < cgn, 18

t L. t
[qn an]w“%*l”(“*[‘q:s;;]

Here and in the sequel 6; will denote a constant of absolute value at
most one. The term 66, comes in for the ambiguity in the number of

o{i]
@ On

< 1. Using (2.18) we obtain for this case

(Ja—Jr) - 60,.

{(ks +10q,) £} e[@, b], When ¢ = 1 and

|q,n(§n|
lacqn(é; a’rb) |

By the definition (2.15) of &,

< 1 respectively i = 2

and

]
Py 5n] —e(s+4-1)~-60,.

' Qn_1 t
2.20 Ut —1 < [( n —-——-—)t] =[ ] < Oyt 2
( ) +1 . @ +1+ . Qn,én & Oy e

and therefore, in case of (2.19),

(2.21) Reg, (€5 @, 0) = anyyt—e(i+3)+80,

TN RS
= 1 - =S - )
" O i1 O, 41 +86a

From (2.21) we see immediately that (2.7), (2.10u) and (2.12) (still in
the case (2.19)) imply (2.13) when u is sufficiently large. Similar compu-
tations show that also for the cases

t 1—s t 1—s8
¢ <[-~a] <[——] and [————] < [—-—] <e
“lgndnd " Lgnds wond Slgean] S°

(2.7_), (2.10u) and (2.12) imply (2.13) as soon as w is suificiently large.
This proves Lemma 2.

. In order to complete the proof of Lemma 1 we maximize in (2.21)
With respect to s and ¢ with the restrictions (2.19) while ¢ is kept fixed.

gnfg;:rivially obtains from (2.21) and (2.15), that under the conditions

Rﬂln(f; a,b) g-a’ﬂ«+1%5m(c'|‘1) (14"‘0,0 ) -+8
N1
¢41 ¢ [
K Oy ( — )+8<a ———~(1-— ¢ )_,,
On 11 Oy S i1 Gny1 e

for all g,y >—.
€
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Again similar computations for the other cases show that for all

j—8 o1
o =18 22T G 0 <s,t<1, 0<a<b<atl
In Qn
¢ e
chn(§§ a,b) <appa|—(1— +e
By 11 Gty

4: -
28 S00N a8 Gy = —1—— Since this holds uniformly in a, b, also
€

(2.22) sup  Reg, (£; a,b)gan_l_l( ¢ (1_ ¢ )+£).

ogagb<a+l Gy 11 Gnyy

This completes the proof of Lemma 1 since the left-hand side of (2.22)
actually is ¢gnDeg, (). After all, R, (&; 0,1) = 0 so that for (a', d') =
[0,1]—[a,b],

Req, (&5 6,0) = —Eeg,, (&5 a',b').

THEOREM 1. Let

(2.23) h(z) =2(1—2), 0<z<1,
and let N be an integer with expansion

m(N,E)

N =D &, Hnlé

n=0

as in (2.3)-(2.6). Then there emists for each >0 a v=v(e) such thal
m(N,E) m(N,5)
(N, £)

. (8 — s Ly § g na
(2.24) ‘\NDN(E) 2_; “”“(E)h(aw(s) eg i (8)
whenever

m(N,E)
(2.25) Dt (§) = v(m(, £)+1).
n=0

Proof. Without risk of confusion we shall drop the arguments N
and & in most functions. Introducing

o=V, 8= D Gt (em =0)

i=n+1

we have
m endn
(226)  NDx(8) < Y sw| Y fllentT) & @, b)—taguld— )|
n=0 %2 k=1
m enay m
Ssup| 3 f(kE; a oaf, b= eal) = 0aduld—0)| = ) entaDeyg, (£).
n=0

=0 &b k=1
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By Lemma 1, however,

m

Sewvairs o 3 aufifi) )

n=0 oSREM 0LNLM
. 1<U(de) £y 41> U(ks)

& < Cp, & -
< 2(m+1)u ) ‘I”Z“M-lh — +Tzan+1
Gy 2
Now=: 0 Nz
m

< ij an+1h (acn ) "|’EZ¢'%+1

n=0 ntl n=0

du(}e)
&
for Dy. For the lower bound we use the following analogue of (2.26)

a$ 800N as Z Oypy = (m-1). This proves the required upper bound

M Cpdy

(2.27) NDy(8) > 8;11}).2 Z F(k&; a—oné, b"@n&)“’nﬂn(b_a)‘

s N=0 k=1

Cnln

>s‘5}){ Z 2]‘(706;a—ené,b——@ni‘)*—cn.%(b—“a)l

o<nsm k=1
41> 64u(te)

}
— D onuDey,(8):
O

a4 1<60u(ke)
By (2.8) and (2.7)

(2.28) D ntaDeyg, () <128(mtDyuthe).
om E
41564 (Fe)
‘We now show that there exist @ and b such that
(229) Ry, (& a— 0,8, D—0,8)

Cnlin

= Zf(kfz 06— @n€y b—gné) —tngn(b—a) 2 ay,, (h( On )_i)7

k=1 g1

simultaneously for all 0 < n < m with
(2.30) @pypy > 64u(}e).

For the sake of argument we again assume that » is
! even and that (2.
holds. Then by Lemma 2 (2.29) will hold if hat (2.50)
(231) G 0nf — L+"q—8 y  b—gnf =4 2Tt
- n n
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for some integers I, j,,j, and numbers s and ¢ satisfying (2.10u) and
(2.12). But for each ¢

Girz = (G420i1+F1) G+ G0 > 2¢;
and thus
(2.32) gy =2 for j=2.
Consequently, if (2.30) holds

m m m
i+ 0
n€} = g'ii}z S'iiLt = i 05
et l‘ it { it ( q; )} {f—’y czél}
t=n+l =n+1 T=n+1
T Biyy < = 1 o3 1 1 1

< < i
! i 2 —1 Ini1 \Su(lz‘a) qn

— <
By Qi+ Qi 52

i=n-+1

Hence (2.31) is satisfied whenever

(2'33) a = Jl,n“‘gn , b — Jﬂ,n‘}“tn

dn qn
With jyn, jo. sabisfying (2.12) and, abbreviating u(}e) by w

1 <t<g1 1 s<1 3
Su - 4u - "~8—'1;’
(2.34)
1 <s < 7 ‘t o | T
8u = \8’14’ a'n+1 = 8“‘

Similarly, if # is odd and (2.30) holds, (2.29) will follow as soon as (2.33)
bolds for s,,t, satisfying

1 1 3

Bu SESTg, s imgn
(2.35) e 71 7

| SEC B S Sw

This reduces the problem to showing that there exist & and » which si-
multaneously satisfy (2.33) and (2.34) for all even n < m for which (2.30)
holds and (2.33) and (2.35) for all odd » < m for which (2.30) holds. This
really is not hard. In fact each of the conditions (2.34) and (2.35) allow
s, and t, to vary independently over intervals of length at least 1/4u.
In view of (2.33) and (2.30) this means that @ and b can vary independently
over intervals of length

1 16 16
=

= = .
4ugy, = Opa1qn Ini1
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This allows us to choose s, and t, induectively. Assume that we have found
intervals I, and I, each of length at least 16 /@41 such that for any aeI;,
bel, (2.33) and (2.34) (resp. (2.35)) are satistied for all 7 < I with (2.30).
Tf then .y, «--; Gpei < 642 bUb ar ¢y1 > 64w no restrictions are required
O frir1s Juss2r Swarr Bers ToT 1 <¥<i—1 whereas we can find ji,,
and jxiio such that

R . a1

.I; = []———————‘k—'-l’l 17 ]—k-H’l:I = II and Ié = [jk-f—'i,z ) Jretiz +‘”“] = Ig.
Qrvi Qre 41 Qi [/

For these values of jii i1, jirip Skeir teps €N e any numbers between

[0,1] and still (cf. (2.33) for n = k1)

ael;, bel,.

Therefore, we can find intervals I;' < I; and I,’ < I, each of length
at least 16/gi.s41 such that for all aeli’, bely. (2.33) and (2.34) (resp.
(2.35)) are satistied for all n < k-4 with a,,, > 64u. Continuing in this
manner we find two intervals I, J, of length at least 16 @1 such that
for any ael,, bel, and any n <m with a,,, > 64u (2.29) is satistied.
This, together with (2.27) and (2.28) shows

NDy(€) = 2 an+1(h( ¢ )~—§)—128(m+1)u

o<n<m Gty
O 1> 04u
m
2 ¢
= A1 (h( ) - 6)
Py Apy1
as soon as
m
512u (}e)
Nz 2200 ),
N=0 €
This proves Theorem 1.
NDy(2)

3. The asymptotic behavior of Tog N-loglog ¥ In this section we
prove our main result, namely

THEOREM 2.

_ NDxl@) — 2 in measure on [0, 1]

log N-loglogN =~ «° P
We use probabilistic terminology and consider # as a random variable
uniformly distributed in [0, 1], i.e. if A is any event, P{A} will denote
the Lebesgue measure of the set of we[0,1] for which A occurs. In par-
ticular P{g(s)eB} = Lebesgue measure of {z: g(z)eB}. (Only in the
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proof of Lemma 3 will we wuse another probability measure.)

Similarly one defines the conditional probability of A given B,

P4 B} = P{A~B}
P{B}
The following facts can be found in the indicated references:
(i) 1im%logq,,(m) =% ae., where 7= 121_‘;g2 ([7] and p. 320
of [8]).
(ii) Forall e>0
k+4n
) l igﬂ @i () 1 o
hnﬂPi nlogn " log2 >8} =0

uniformly in %. In [6] Khintchine proves this for ¥ = 0 only but all his
estimates are uniform in %.
(iii) For all ¢e>0
k4n ¢
lim P{Za§+1(m) > englogn} =0
L =

uniformly in %. A more precise result is indicated in p. 322 of [8] but an

easy proof follows from Markov’s inequality ([9], p. 168) and arguments
similar to those in [6]. In fact

k+n 1

. nlogl —0f—

P41 (w) > nloglogn} (10 = gn)

i=k
(analogous to formula (28) on p. 378 in [6]) and

ktn
ai 1 (£)dE = O(n*loglogn)
i=k ajii(f)<nloglogn

(analogous to formula (21) of [6]).
(iv) If ¢
(3.1) Yn (@) = [Gns1(B); Onya(@), .. ]
then, for any measurable set B < [0, 1],
}P{reB} = } Lebesgue measure of B
< P{yp(@)eB | a;(2) = a;, i =1, ..., n} <2 (Lebesgue measure of'B),

(the conditional probability density of ¥, (x) is estimated by differentia-
tion of formula 8, p. 292 of [8]).

Acta Arithmetica X.2 13
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Writing, for integral N,
MmN, %)

_N= Z cn(—Nyw)qn.(m)

n=0

as in (2.3)~ (2.6), we have
gn (@) <V < gna(®)
and hence, by (i),

lim M =7 a.e.
(8.2) Ho e N
elog2 . . o f -
If we take 0 <5 < in the next few lines, we obtain from (ii)(*)
m(NV,x)
U1 (2
63 2 @,
lim P — >e
Nesoo log Nloglog N log2

<lim P{|m (¥, »)—7logN| > nlog N}+
N->oo

R ’ log Nlog1 N}+
i ¢ _— oglo,
+;11;P{ Y aa <(10g2 s) og Nloglog
(v-+n)logN .
+ limP Uy yr () = (——— —l—s) logNloglogN} =0.
Now | #Z log2

(3.2) and (3.3) together with Theorem 1 show that for every ¢ >0

m(N,x)
c,,(N,m))
i — E n h “]| > elog NloglogN; = 0.
(3.4) gg{‘NDN(m) 2 @11 () ( @ g

‘We shall now prove in a sequence of lemmas that for every function
g(&) with bounded derivative on [0,1] and for every ¢ >0

MmN ,x) e ( N .'L‘) 1 m(N,x)
. LAS) _ = 0.
(3.8) Z]V.'l_IiP{ ,; au+1(m)(g(%+l(m) ) Ofg(f)df)> eg an+1(W)|

This will prove Theorem 2 since
1 1 1
[neyde =[ea—nae ==
0 ] 6
. (*) We freely use expressions such as (r—7)log¥ as bounds in summations.
‘In reality these bounds should be integers. Both [(x—7)logN] and [(r— n)log N]+- 1
are admissible in most of our formulae.
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and (3.4), (3.5), (3.3) and the value of v imply

2
]imP{’NDN(m)~ —Qog.NloglogNl > 4alogl\710glogN} =0
Nosoo ™

for every £ >0.

In the following lemmas ¢(&) is a differentiable function on
[0, 1],

§(&) =g(H— [g(&)a&
and we assume
(3.6) 19(8 <Gy, 1§°(8)] < 0o

In the Lemmas 3, 4 and the Corollary we expand any 2z > 0 as

2= D on(2)gntra(?)

0

@nzy 80d 7,(2) = 2— 3 6:(2)¢i < gu. The ¢’s and a’s

i=n

<
are integers (a, > 1) but we do not insist that the ¢, are integers. We
only require ¢n,; = @ni1@n+n1, 2 2%, 0 <gu 1, 1 < gy <gyyro-- In
particular one still has (cf. (2.32)) guus > ¢, 27 for j =2.

Lemma 3(%). Let 2> 0. Then the number of integers ke[0, g,.,) for
which

where 0 < ¢,(2)

Utv—1

~ [en(k
Z - g( n ))
i—u a’n+1
©w+v—1 n w2 u+u_;1
2 Gny1
>0, Y i) +00(n2an+1+4n% e +8v)
n=u =1 =U+3
is at most
12([gqurv]+1)
A ’

(%) We only apply the Lemmas 3 and 4 when ¢ equals k. The greater generality
N

may be useful when studyingkz ({kz}—%). For this reason we also want to point out
20

that Lemmas 3 and 4 and their proofs remain valid when the sums over « are restric-
ted to odd n’s or to even =’s.
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If p=0,0<s<v and Quivs =1 then the number of integers
ke[0, q1l+7}) fm' which

(3.7) 0< Tu.w—s(k) Luooor Quiv—s— H < "”-1¢+v—-s(k) L Quyv—s

4 1
quil:_—f‘—‘)l : (Qu—w + 1) .

Proof. Consider the probability space {0,1,..., [guysl} in which
each point has probability 1/([¢us»]+1). Just for this proof P{-} will
refer to this probability measure. (If [gu+]¢[0; guso) We replace this by
P{k} = 1/gyivy 0 < < guyo) The first part of the lemma can then be
restated as

is at most

U+v-1 c (7{})
3.8 P{ G 57( = )
(3.8) Z ]
wt+v—-1 " ut2 U+v—1 4 19
> 2 n 4 2 Zntl g )} < =

which we prove by an application of Tchebychev’s inequality. We intro-
duce the imtervals Jp 5 (1 <s<w9,0< by < @yyo_ip1) a8 the set of
2€[0, guyo) With ¢ypp_s(2) = b, ¢ =1, ...,5. By |J| we denote the length
of J. The number of integers in J is |J|+ 6 for some |6 < 1. In general
6; will stand for a number of absolute value at most one.

Since Ini1 = Ons18nt Gn_1s

Iy, = [b19u+v—1: 0+ 1)Qu+u_1) for  0<b < @uyo,
and ‘

Ja“+,, = [“u+vﬁu+v—ly Quiv) = [GurvQuiv—1r Puroluio—1T Qu+'u—2)-

At the next step, each interval J, with by < ay,, is the union of
adjacent intervals Jp 0, Joo1y vy Jb0,0,., WheTe

lJbl.”z‘ = Quip—2 if b2 < Gyyp-1 and ‘Jblx“u—i~1:—1| = Quiv-3

whereas

Jau+u-° and lJ"u+ux°‘ = Quiv—2-

J“u+'u =
In general, one shows that Jy  p, i8 non empty only if b; < ayiy_i42 OF
by = Gypp_iz1ybigr = 0(6 = 1,...,8). Iithisis the case and b, < dyyp_ss1s

then
(3.93:) 1Jb1 ,,,,, be‘ = Quiv—sy

’
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(3.9b) Ty by = U Ioybairs
L e
(3.9¢) |Jb1 ,,,,, bs+11 = Qutv—5-1 for 0< bs+1 < Oyyo—s)

(3.94) inl,._.,bs,au.,.,,_sl = Quiv—s-2-
Moreover, if b = Guiysy1 and Jp p is mot empty, then
(3.10a) Iy bs ity sp—s1

(3.10b) o,

= Jby,.. b r0utv-si10?

sty ip—sitl = Dugoos—1”

The conditional distribution of cyiy_s 1(k), given ey y_1(k) = by, ...y
Cusvsi1(k) = bs_1, OF equivalently given keJp 5., is now easily deter-
mined. First assume bs_; < Gy p_sio a0d 0 < bgyy < Byyp_s. Then, by
(8.9), (3.10) for kedy, 5, ,, Csi1(k) will equal by, if and only if

(3.11) ke U I

seenDs— 10,05
och<trg gy VTSP

which contains @,,,_s.; intervals of length gy, v.s.1. We cannot allow

b = Gy p_s:1 i (3.11) because then b, must be zero (cf. (3.10a)). Thus

if bs——l < au+v_s+2 (3)

(3.12a) Pleyrys_1(k) = bep1 | Cyrp_i(k) = b;, 1 <4 <s—1}

_ au-g—v-s.q—l(Qu—;—r—s—l + 60,) - a’u+u—s+l(Qu+v—s—1+ 61)
[Tb,....bg—y| T+ O Quio—ss1+ 02

0 < bs+l < a’u»{-i‘—s-
If by, =0 we also can take b = ay,p_sq1 in (3.11) so that

b

(3.12D) P{Cu+v—s—1(k) =0leyvilk) = bi, 1<i< 3_1}
— (@ v—si1 1) (Qusv_s_171 05)
Quiv—ss1+ Oz ’
Finally,
(812e)  Ptuy.v-s_1(k) = Oysvs | Cuyoi(k) =D, 1 <4 <s5—1}

_ Oyiposi (Qusv—s—2-+04)
q'u+v~s~1+ 02
since €y p_s_1(k) = @y ,_s only occurs if

ke U Jy

0<b<lly 1p—s41

Loeeels— 1,00y 4y —g

(%) Strictly speaking this conditional probability is defined only if P {¢yyv—i (k)= bi,
1.i< ©< 8—1}> 0 but as usual we may take any value for the conditional proba-
bility if Pleyyv—i(k) = bi, 1 < i< s—1} = 0 without affecting the argument.
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which consists of ¢y y_s42 intervals of length gy,v-s_2 (c¢f. (3.9d)). The
formulae (3.12) show that, as long a8 Quip_s_1 =2 (and thus for all
utv—s—1=ut+3) () '

Oy s

o Cyto—s_1(k R
E{“uw—s.‘] ('—_Hii(_z) ! Cotv—i (k) =bs, 1 <0 <8— 1}

Oyt v—8—1
_ Oyyiv—g41 Qutv—g-1 ~
= Gy py_s -+
D=0 qu+v—8+1+ 92 a’u+1:_a
Quiv—s—1  ~ Bypvs418utv—g-.2 ~ ‘ @
+ 9(0)+ 1)) 4 46,0, —F2=f
Quiv—sr1t 0y Qupv—sr1 [ 9(1)) + 405G, 4 vt
Ay pp—1—1
— au+u—s+1 a’u—l—v——sQu—}-u—s——] ~ ( b +
(a'"+”“s+1a"+”*3+ 1)Q%+v~s—1+£lu+v—s—z+ 6, pyrd g oy pos,
46,0, [Lutr=s
40,0, [t 1),
Qu-tv—s8-1

1
cf. (3.6). Since |g'(&)| <0 and [§(&)dE =0, bs_; < Gy py_gyy implies
0

615)  Blod (m____@)

au+1:—s

Curooil®) = by, 1 < i <s——1}

Oy o841 Orugvms Qutv—s—1

1
~ e, of G acs

+4:07OD( Dy pu—s +2) = 4:6700 (_ﬂﬂi _{_2)‘

Gutv—s—1 Qu+v—s—1

getually (3.13) remains valid even if Ds_1 = Gyiy_gyp. This easily follows
om

Jb J;
» =
1re00sD8— 9,0 +py—s. . ST
+8—2:u+v—s+2 o< 1oevesD8 9, By gy — 5 4.9,0,0

(*) For our simple, finite probability space the definition of the expectation
E{Y} of a random variable ¥ (-) defined on the probability space {0, 1, ..., [qusv]}
becomes E{¥} = %‘ Y (k)P {k} where P {k} = ([quiv]+ 1)1, the probability assigned
to the point k. The conditional expectation, given the event B becomes E{Y|B}
e TPk . '
=& FE where P{B} = k;'BP{k}. This of course is only well defined
if P{B} = 0. For our particular simple case all properties of conditional expectations

Tednce to trivial properties of finite sums, and as far as we i
b > use it, G
E{Y|B} any firite number if P{B} = 0. t we may take
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by an argument similar to the above. Putting
Zy(k)

= Gyyo-of (f’ﬁf:i:lg‘l) -5 {,,,uw_s j (f"_“:“_—}(_kl)

Gy iv_s Gy iy—g

Cuyni(k), L ST <8 '_'1}

one has trivially
B{Z;(k)} < 4050040
We can now write (by 3.13)

uto—1 (%) v—4 w42 wiv—1 a
~ [ C n.
61 > i (22 - S 7,400 Y anats Y 1 4 go)
n=u 1 =0 n=1u n=u+43 1

where, by elementary properties of condifional expectations (ef. [9],
. 386)

—_ — — —5
B (vjzsf = EEZﬁ—}— 2 N BZ,%, = }j‘ BZ4+2 VZ‘ BZTs
o) 5=0 51%;5 = i=o

U1

-4
< 3ZEZ§ <1203 2 Gny1-
5=0 Nn=u

By Tchebychev’s inequality ([9], p. 158), therefore

wtv—1

‘”6 | 2 \1/2 <12
Pl Yz|za0( Y o)) <5

which together with (3.14) implies (3.8) and hence the first part of the
lemma. The second part is easy now since, for any non-empty Ju, v,

‘Jbl,_..,bs_ll = Quiv—s+1 OT Quip—s-
In the first case there are at Most (@y v _sy1-+1)2 (1) integerskeds, o, ,
which satisfy (3.7) and in the second case at most 2(u+1). In each case
4(u+1)
Qu—}-'ufs—!— 09
which immediately implies the last statement of the lemma.

LEMMA 4. Let Guip>2>%>...>2 >0 be real numbers such
that 2;—2; > 1]/d > 0. Then for every s with u+2 <utv—s—1<
L ut+v—1, the number of indices 1 <j <t with
U+v—-1 .

2 a’n+1§ (_Gﬂ)

Ap

P{(37) hOldS!k EJblw-ybs—-l} <

n=1u

u+v—1 uto—1 u+v—8—1

?200(2 ai-@-l)llg +Go(4 Z izi—’l—&v—*-?y 2 afn+1)

N=1u N=1u+43 n N=2U
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i8 at most
24d(gyiv+1) | 16d(gy4n+1)
3 + :
A Qu+v-«s
If Quios =1, then the number of indices 1 <j <t with

a+

0 <7yps(®) <p 08 Quiws— p < Turos(2)) < Guavos
s at most
4d(u+3)

a+
Gugv—s—L

(Qu-{—v "|~ 1) .

Proof. Let % be the unique integer with %; < 2 << k;-+1. There
are at most d points z; with %1 > ¢,.,. We disregard those in the ar-
gument below. It is easy to see that if

(3.15) Cn(k;) = ep(k;+1) for wutv—s<n<<utv—1
then

Cnlk;) = 6n(2;) for wu4rv—s<n<<ut+o—1
Consequently, whenever (3.15) holds, as well as

u+v—1

- [ ca(R)
16 | ) o (22)
= " e
(uzv;l 1 U+2 Uv—1
<20, G +00( iy +4 —“ﬂ—*l+8v)
n=Uu ) g n;ﬁ n
for ¥ =% and % = ¥;,, then
Ut+v—-1 ( )
~ [ Cu 2
(3.17) . a g("’)
Urv—1 12 UA Y~ 8§ 1
<i6( > at)" +0ufs 2 S 4 o g 2 am)
N=un U+3
But (3.15) holds unless 7y ,_s(k;+1) <1, which occurs for at most

8(guso+1)/(qu_v_s—1) values of k; (by Lemma 3). Algo by Lemma 3
(8.16) holds with the exception of at most 12(gyy+1)/A* values of %,
8o that both (3.15) and (3.16) for k =%; and % = k;,, hold for all but
16 (gui»+1) + 24(gurv+1)
Quv-s 2
correspond to at most d different 2's sinee z;—=2;,; >1/d. The first part
of the lemma follows and the second part is proved in a similar manner.

values of j. Bub a fixed value %; can
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COROLLARY. Let gyip >2 > 2 > ... > 2 =0 be real numbers such

1
that 2;—2;,, = Fl >0. If

UAD-1 5
. v logv
(3.18) 2 1 < 59
Co
n=u
utlogv—1
(3.19) D <o,
n=u
U+p—1 u+o—1
vloge 40, 15vC,
(3.20) 2 tnin > gm0+ —% Z i1t =
n=u n=u

then for v = vy(d, &) the number of indices 1 <j <1t with

u+v-1 ut+v—1

2 - fen(Z)\ | 2
an+1.q ( _— )'2 € an+1
L7

! n=u n=4u

(3.21)

is at most gy,./(logv)?.
Proof. Under the conditions (3.18)-(3.20)

u+4+v—1

€ y Onyy 2

n=u

U401 u4v—1 u-+logy—1
Cy(logn)'* 2 |12 —1/6 7 -~
5 —( E a;+1) + 40~ 15¢, E @py1+ 890, +7C, E @ g1
“10g2 n=u n=2u+log n=u
= <uslogy =
e(logn)'” Y2

Sinee gy 1og = (2% > v (cf. (2.32)) we can take A = and

2log9
u-+tv—s = u-+logy in Lemma 4.

In the proof of the next two lemmas we need the following simple
formulae for continued fractions

N §
(3.22) =3l o, 8), a8, .. (2]
i (8)
and consequently the “reversed” fraction [@,(&), ..., a;(£)] has the same

nth denominator as [a,(&), as(&), ..., a,(£)], namely gq,(&) (ef. [11],
p. 27).

It

then
(3.23) (&) = dnp(8)gn () + D p(€) guor (6)-(k = n).

P (8) is the (k—mn)-th convergent of ¥, (&) = [@n 1 (), @nra(E), ...

In ke
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This is obvious for k =mn, n+1 §inee Pnn =0, Popt1 =1, Gun =1,
Gans1 = Onyl in aceordance with (2.2). For general %, it follows by indue-
tion, since again by (2.2)

Qn,an’{‘pn,anml = (aan,k—1+Qn,k—2)q'n+ (akpn,k—1+pn,k—2)Qn—-l
= ak(Qn,k—l!ln+Pn,k—197L—l)‘+‘ (Qn,k—ZQn+pn,k—29n—1) = a’ka~1+Q7c—2 = (.
LeMMA 5. For all ¢, >0

(3r—2n)logN—~1 en( N, @) (‘ir—ﬂﬂ)lﬁozN—-l
3.24) lmP Oy (@) § {——2 > =
(3.24) e { p ni1(%) g (a'n+1(m)) 2 & "Zo an+1} 0.

Proof. For ghortness we abbreviate the event between braces in
(3.24) by B(N,e, n) and write M for (3v—29)log¥. Then

(3.25) P{B(N,e, n)} <P{gu(o) >N 3+

log M—1

4P {S‘luiﬂ > J—"—l(%g—l-‘{} [ D) > M)
n=0 n=0
ol

+ P {an(@) = by, 1< < M}PB(, &, 1) | an(@) = byy 1 <

40,

M—1
3
T LM O g1 <
0

M=

MlogM  15MC,
2log2 &

< M}

where 3 is a sum over all M-tuples by, ...

2 B m logM
41 \

y b (b >

logM—1

2 bn+1 gM}

1) for which

n=0 n=0
40, \ o Mlog¥  15MC, 1
] 0g -0
(1—:ﬂ)2”n+1>“5iog_z+ oA g <N
n=0

where qa is defined by (2.2) with a, replaced by b,. By (i)-(iii) the first
four terms in the right-hand side of (3.25) tend to zero as I — co. Since

EIP{an(m) =b,, 1<n< M} 1
it guffices to prove that
(3.26) lim P{E(N, & 7) | tn(®) =bs, 1
N—oo

Jbar i

sSn<M}y=0
uniformly over all b,,...

icm
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Once a,(%), ..., ay(®) and hence go(@), ..., qu(x) are fixed, the co-
efficients in the expansion
-1
k= 2 Cn(k,fv)%(w)
n=0

are determined for each k < gy () and therefore, so are all the integers

Byy -y kg < gue(w) for which
M-1 (k ) M1
ek,
3.27 n Rl et s " .
(3.27) D) tla (&2~ e X )
If ay(2) = bn, 1 <n < M, Where by, ..., b is included in > then, by

the Corollary to Lemma 4, for sufficiently large N

(3.28) o < qar/(log M) = o(qar)-
If the expansion of N is
m(N z)
N= ) onlN,0)eu(@)+72(N,2)
n=M

then clearly ¢, (N, = )—c”(ru(l\7 x),s) for n < M so that E(N,é&,17)
can occur only if 7, (N, x) is one of the k’s for which (3.27) oceurs, i.e. if
ry(N,z) equals some k;, 1<4<o.

One concludes that

(3.29)

ng{N—

p=1

-P{E(—N75}77)lan($)=bn7 1<n< M}

mz,N)
= 2 ¢;q;(w) for some 0 < ¢; < @;.1(®) |
i=M
au(@) = by, 1 <n < M.
‘We finally prove

mzN’)
(330) P{¥'= > cgsla) for some 0 <es <ain(®)|
i=M
@n(@) = by, 1 <n < M} = O(g5
1 7

uniformly for all N—gy <N’ < N and gu <N§_;. Since o in (3.29)
is 0(ga) this will prove (3.26) and hence the lemma. In order to prove
(3.30) we use (3.23).

2(‘191 =

m

ZI eo(gar i +Pariq0-1)

i=M
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and therefore

(3.31) P{ Zcmql for some 0 < ¢; < @ypy] O (®) = by, L <0 < M}
m m
id
< Y P Y ewuwi@=h, D atuilo) =4
o<’y = i=3

a1 Hidar =N

for some 0 < 6 < iy (1) | ay(2) = by, 1< < M),

Recalling that ps:(®) = Pi M(yM (m)) and similarly for ¢, one immediately

finds
’Z ;P i (@) — Yar () ZCMM,L'(W)’
i=M =M
< X e @haalo) oo — 22

i=M

m

<Z(lzm

=M

22 B (by (2.32)) <10,

F=0

and consequently the right hand side of (3.31) does not exceed

(3.32) P{A—ysu(@)ha] <10 | (0) = by, 1 <n < M}

0<ii=iy
Aapr—1+ a8y =1

< 2

0<SA <Ay
Ay —1+R2 =N
Clearly A;qy 1+ Ay = N allows at most one value of A, for a given 1,
nz!,mely Ay = (N'—Aqur)/qas_, if this last expression is an integer. Other-
wise no term oceurs in (3.32) corresponding to this 4,. Since (gy_q, qu) = 1
(cf. (2.16)) qur_1 | N'—Aqar only if 4, is of the form

40 .
7 ¥ @)

(3.33) do = hotigu_, J=0,+1,42,...

for some fixed 0 < Ay < qar_;. Moreover 0 <1, <4, means 0 < N'—doqar
<Ay Or far—1
(3.34) LA

— < h < —.

du+du_1 '

Together with (3.33) this implies that there occur at most
1 (N ’ N’ ) '

1+ =1+-—
O (Qu+ qu_y)

Qar  Qurtqu s

am-1
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summands in the right-hand side of (3.32), each one not exceeding
40 (qu+ qar—1 /N ', Tt follows that

P{ Zczq.h for some 0 < ¢; < Gipn | G (@) =byy 1 <0 < M}
i=3M
2 1 120
< qff —)
N qm qW

whenever N' > ¢i. This proves (3.30) and hence the lemma.

LEMMA 6. For all ¢, 7 >0

m{N,x)—1 m(N,2)—1

(N,

A (@)

(3.35) limP{ )i >= anH} =0

Noo n=K(N,x) n=K(N,z)
where K = K (N, =) stands for m(N,z)—(3v— 2n)log N.

Proof. This proof is quite similar to the one of the last lemma. The
main difficulty will turn out to be that the g.(x) for m— (37— n)logN
< n < m do not determine g, (x)/gx(#) uniquely (K <k < m). ‘We shall
use the abbreviation F (N, ¢, ) for the event between braces in (3.358),
M for (3v—2n)logN, M' for (37— n)logN and L for m— (37— n)logN.
Obviously,

a'n-u(m)g (

(3.36) P{F(N,e, n)}
wy—1 _
b N
< 3 PEE, 0, Sy < ) < | Pl < o)
w=1 (]
and
v Npwg oo
P{Qm(-’v) <—‘w—n} gz ZP{Qn(‘”) =k, qui1(®) > N}
k=0 n=0
Njpwy o v
< NP = BPfana@ > -1 o) —
k=0 Nn=0
N/go =] N
< 22 ZP{qn(m) = K)P {al(w) > 7—1} (by (iv))
k=0 n=0
Njwgy

<22 kZP{q,.(m =k} < 1.

The last inequality results from

= P{some convergent of # has k as denominator}

- $rfei] 2}t

);P{qn(w) =k}
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The last term in (3.36) can be made small by choosing w, large
and it therefore suffices to prove, for each fixed w

N N
. lmP{F(N, e, —_— m = 0.
(3.37) lim. { (e m), g < @) < w} 0
Quite analogous to (3.25) we have ag N — oo

Y <l <
+ Qm \w

" N
_—_0(1)—1—2P{aL_X_n(m):bnforlé_'nQM’,F(N,e,n) +1<Qm(w Z}

where >’ runs over all M’ tuples by, ..., by (b; = 1) which satisty (3.39)
-(3.42) below.

(3.38) {F(N & M)y T

17

(3.39) T <N' T

where we define Py/qr = Dr(0)/Gx(d) as the kth convergent of
{blybh"-;bM'j-

M—1 2
Mlog M
(3.40) Y Ba< g
n=nlog N 0
nlog N-+log M~1
(3.41) > b <M.
n=nlog N
10, \ O MlogM  15MC,
3.42 o o8 0
(3.42) ( M”“) D b= Poes T
n=nlog N

. The proof of (8.38) is slightly more complicated than its analogue
in Lemma 4 because m and hence K, L are random variables. This diffi-
culty is easily overcome by means of (3.2). B.g. by (3.2) and (iii)

m—1

. Mlog M
lim P E % — =
N-soo {n:K * +1(-’1?) > 020 }
(r+n)log N
. m (N, z) . M*log M
< limP SaC . 2 0g
frabo { log¥ ke 77} +1}71.?3°P{ 2 Oni1(2) > 1] }':0
(Gr+n)1088

We. now imitate the proof of (3.26). To start let us estimate, for
some fixed b;,...,by in " and Nj(w+1) <N’ < N/jw,

(3.43) Ploazin(@) = by for 1 <n << My gu(o) = N}
By (3.23) arn(®) = b, for 1 <n < M', ¢ = N’ can occur only if
(8.44) N' = gm = Gar- 42 (%) + Pur Gz, ()
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and hence the probability in (3.43) is bounded by

(3.45) N Y Piga®) =k, al@) =5,
o<ty k=0
Apapr+he@ar=N"

Gpen(®) = by for 1 <n <M} < 2P{an(®) = by for 1 <n < M} x

x Y YPlga@) =, ae) =4} Oy ().
0 <Ay k=0
1117M'+12?1M’=N'

Just as in (3.32) the sum over 4;, A, contains at most 14+ ———
- T (Tar+Par)

1

terms, each with 1, > - Moreover, it was proved in [5]

Gy +Pur
(pp. 367, 368, near formula (3.18) and (3.19)) that

o 4
Y P{ga(@) =k @u@) = A} <
k=0 2

Combining these estimates with (3.39) we obtain

(3.46) P{aL_I,"(m) = b, for 1 <n < M, gn(w) =N}
Ll qM"}'?M')Z
(@) = b, for 1 <n <M — — 7
< 8P {m(2) or }( 312 (QM’“I"'FM’)) ( N

20

= N’

=b, for t<n< M}

1_2
as soon as 8(Ty +Par) 32N’ T <4N'.
For Njw+1) < gmn =N’ < N/w, cn(N,x) =w and thus

N
(3.47) W(N—wl\f’)— (N —0(V, @) gm (@)

N
m ()

—ch(Nm ( @)+ q(m) ———ru(¥, 3.

We assume ar,n(2) = bp, 1 <2 < M', fixed for the moment and define

N )
Yy = E(N—wj),
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and
77: B t:(b) = [bny bucrs oy 01y, (Suyta) =1, g = !
—-L M
’ N m 8 N 8 _
=" nt—z-— HT’ L <n <sm.
W icapip Wiy ¥

Finally the integral coefficients c,(¥,2), L <n <m, are defined by
the expansion

(3.48) 2, (@) = o (N — (N, @) g (@)
m—1
= Z C;W(Ny m)q;ﬁh’z(ﬂ, .Z‘)
N=U
where

0oy <bpyrz, O0<7m(N,0)<qu, L<u<m.

We claim that except for a set of small probability ¢, = ¢, for £ < n < m.
This is of eourse a consequence of the special definition of ¢,. In fact if

N
<qm<—; then (cf. (3.22))

aria(@) =byy, 1<n <M, and

+1
¢ (%)
—— = | L)y Op(Z)y 0.y (2
oy = @) @), o (@)
= [b‘n+1-—L, bu_gy-eeey b1y ar (), ...y a1(2)]
- Sng1-L 2910 — Sni1-L (1+ 011 ) 16:] <1).
tn+l—L tn+1—L tn+1—L tn+1—-L
But also
G _ Snpz
i1 thi1-L
80 that
N N - 6
(3.49) l gl =22 -] i(.H-h“"')
WGm WL b i=n41-L b b
3 2
<P glemiin®oyg)

Finally, by the remark immediately after (3.22) ; equals g;, the denomi-
nator of the continued fraction [bi,ds, ..., b;]. In particular (cf. (2.32))
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tis = 2P (5> 2)and
= g; > 2"¥NP  for  § > plogN = K—L.

Combining (3.49) with (3.23) we obtain for n > K
o

WV ) 1 9183
(3.50) ] In _ g, <sq, —<3F T3 g
Wem i=Al-L * —+ Gnp1-r
P 1 Gn-1
_ T Prrlr_1) <2222 ;.
T Gon (@n—r9r+Pn-rqr1) < T qr

Theréfore if ¢, (N, z) = ¢,(N,z) for n>u = K bub ¢,(N, z) # (N, x)
we must have (ef. (3.47), (3.48))

Nr, (¥, x) Ny, (z)

" R B Rt A N _— ; N
ru(N, ) g (@) (Cu( 5 &) — Cy( ’m)) = +
m—1
! Ngu(x) ’ ) Wl NQn( ) ’
+ec Nm(———um + (N, @ 4
u( 3 ) wqm(m) q ( ) n%,l f] ) wqm(m)
q 98 n-r
= (eu—Cl) —2 4+-2%,, ¥ b,
(ey Gu)w 12 Z +1— an*l LqL
= (o brs (m—u) gL
= (cu_(";) N +28614M.2—ﬂ10g1\7i3gu
Wm
or, for sufficiently large N,
N7, (N ,
Bay D e ey T g ey
W () Wy,

In view of 0 <7, <@gy, 0 <7y < gy (8.51) can occur only if

eh—ey =1 and 0 <r, <N ",
or

! ’ ’ 'N ’ r
Oy—Cy = —1 and Qu'_zN_’”sq“ = w:llu —N- "’un <7y < Gy

m

We can now apply Lemma 4 because

, sz , . CL
Iny1 = e an = ( by L"‘ )Qn = bpy1-2Gn+ o1

3n+1 L tn_

and for Nj(w+1) <j<Nu, Nzw>=1
Vo

x N 3 N
(3.52) =& = E(N_WJ)— w(j 1)

Acta Arithmetica X.2 14

. 1
W —w(j+1) > 5=— > 5
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Thus, by Lemma 4, if 71,72, ...s j, are all the values ¢, can take such
that 2, in (3.48) gives rise ‘o

0<r S Ng, or g—2Nq, <<

for some K < u < m—1 then

m—-1

8(2N””’5q£n+3)(‘q;n—l—1>)
< 2+ 7
e 12=ZKZ ( QM*l

<2M+64( —!—1)(MN"”/6+Z )

u=K

N N
< 1000 (MNI—W/6+ _/) < 1000 (MNIH'J/G'!— _q_) < N1~ﬂl12
['h:4 L

(ef. (3.44) and (3.39)). This proves our claim about the ¢y, since by (3.46)
N

N
(3.53) P{aLM(m) =b, for 1 <n< M, ? < fm < S and

cu(N, ») # ¢, (N, ) for some K < u<m}

e
< Y Plagn(e) =by for 1<n < M, gu = j,}

vaal

< 200(w+1)
N

<20(w+1)N-"2P{a,(®) = b, for 1 <n < M'}.

Pla,(w) = b, for L <n < M'}

The advantage of the ¢, over the ¢, is that they are uniquely determined
by the az qy L <n << M’'. The proof of the lemma is now completed by
an application of the Corollary to Lemma 4, because

(3.54)

2 N
> P{aL+,.(m) =b, for 1< n< M, F(N, ¢, 1) oo < () < lqz}

w41

< <N
w1 Qm\ju;‘,

< ZI'P{aL+n(m) =b, for 1 <n < M,
ey (N, 3) # ¢, (N, x) for some K < u < m}

u
+ ZP{@L+n(w) =by for 1< n < M, g, =k}
CA=1
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where ki, ks, ..., k&, are all the possible values, ¢, can take between
N N
and — such that
w+1 w

m-—1
e 2 buir-r-
n=K

The values of the k; as well as their number u will depend on by, ..., by
but for each choice of by,...,bare " one concludes from (3.40)-(3.42),
(3.52) and the Corollary of Lemma 4 (applied to the g,) that
On N
IS 72 = FVEN
(log M) w(log M)
Thus, by (3.46), the second sum in the right-hand side of (3.54) is at most
2" N . 20(w—+1)
w(log M) N
20(w+1)
= w(log M)
The first sum in the right-hand side of (3.54) tends to zero as N — oo
because of (3.53). This proves (3.37) and the lemma.

To complete the proof of Theorem 2 from Lemmas 5 and 6 is rather
trivial because

m—1
2 bn+1—Lg( )
n+1—L

n=K

Pla,(z) = b, for 1 <n << M’}

=0(1) (N — o0).

K—-1 (_N ) K-1
Cn z
Zam 1{ ( )ISCo § Upy1 (@)
= a”+1(m n=M
and
K-1 m—1
P{Cy D ana(@) > 82 i1 ()}
N=M
m (N, x)
K Pyl—" — nt
{ Tog ¥ T }TP{Za NOES <35 g2 logNloglogN} +

(%[2+3n)log N
+P {Co 2 Ay () >

n=(r/2=27)log N

ET *®
" log Nloglog M.
2logz U8 08108 }

These three terms in the right hand side tend to zero as N — oo if
7 < er[10C, by (3.2), (3.3) and (ii). In much the same way (%)

=) - Sayia) .

. !
hmP{lamH(m) (
N-roo | “mw‘-l(w
() By an argument similar to the one following (3.36) we can even show
1imP{am(N,,,)+1> w} = 0 uniformly in XN.
W—00
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Combining these estimates with Lemmas 5 and 6 one obtains (3.5) with ¢

replaced by 4e.

As pointed out before this proves Theorem 2.

Tor comparison we point out another theorem whose proof is almost
immediate from Theorem 1.

THEOREM 3.

3
Dy (@) — — in measwre on [0,1].

(8:58) 1]22\7 log NloglogN =

For all ¢ >0
(z+e)log N'

— 1 R
(3.56a)  lim supNDN(m)( a,H_l(m)) ! < Y a.e. in [0,1]

N—oo ﬁ‘:—"o .
and
(r—g)log N 1 1
(8:56h)  lim supNDN(m)( > aw(x)) > @ in [0,1).
N—soo =0

We ghall not say more about the proof than that h(¢) takes its
maximum value } at & =4 and if a,(2),..., a,(2) are fixed then one
will maximize NDy(z) over N < ¢,(z) roughly by taking cp(V,2) =
[$ns1(®)], & =0,...,n—1. This argument can also be used to prove
almost everywhere statements about

. Dy (@)
1 ).
lim sup -7 5

for suitable functions &@. B.g. by pp. 295, 296 of [8]

lim su NDx (@)
Nevoo v log Nloglog Nlogloglog N

= oo a.e. in [0, 1].
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