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where J () is an index set depending on 4. If we define a function f by
specifying that on R,

Flyiy =6
and by allowing f to be arbitrary elsewhere, then f will satisfy (9.12).

(GeJ (), i=1,...,7)
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On the abstract theory of primes I
by
E. FoceLs (Riga)

Introduction. 1. For a semi-group ® (with respect to multiplication)
of real numbers a > 1 satisfying some given asymptotical laws of distri-
bution Beurling [2] investigated the asymptotical distribution of the
generators b of ®. He proved a general theorem which, applied to the
semi-group of natural integers, gives the prime number theorem of Hada-
mard and Vallée-Poussin (*). Forman and Shapiro [11] divided the num-
bers a into classes H; (1 <4 < h) forming a group K (for any ae<H; and
o' <H; we have aa’«H; where & depends only on 4 and j) and satisfying

D' 1= a0 )

r=aeH;

1)

with some positive constants a;, 4 (¢ <1). They proved that under those
circumstances the numbers =(z, H;) of the generators b <@, beH; are
asymptotically the same for all the classes H; forming a sub-group K,
of K, whereas the number of the remaining generators < (if K, # K)
has a smaller order of magnitude as # — oo (*). As special cases of this
abstract theorem we may deduce the asymptotical laws for primes in
arithmetical progressions or prime ideals in ideal classes.

The aim of all the awork in the abstract theory of primes up to now
has been the proof of the asymptotical law for =x(x, H). In a short note
[9] I have mentioned that in the abstract scheme used by Forman and
Shapiro one can treat the smallest prime problem for different progres-
sions simultaneously. For this purpose it is necessary to change the

(1) Other writers after Beurling (as Nyman [16], Erdds {3]) either start from
different conditions or use, instead of the analytical method of the zeta function,
the elementary method of A. Selberg.

(%) This is an intentionally simplified description. Actually Forman and Sha-
piro start from a free Abelian group G on a countable number of generators and use
a homomorphism into positive rationals such that the images of the generators are
all integral. The distribution of the generators in the classes H of a semi-group is also
the subject of a recent work of Amitsur [1], who replaces the remaining term in (1)
by Of(x/logtux).
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scheme as follows. Firstly we introduce a parameter D>- Dy > 2 which
corresponds to the difference in the case of arithmetical progressions
and which may increase indefinitely. We suppose that

(2) 1<h< DY,

where ¢, is any positive constant. Secondly we take for granted that the
coefficients o; in (1) do not depend on 4. Otherwise in some of the clas-
ses there might be no generators (%) and thus we could not prove the
existence of a generator b= D°Y, beH, for every H;, which is our aim.
A proof of the existence of a gemerator beH; is usually based on the
preponderance of the residue at ¢ = 1 in the sum of all residues of a cer-
tain expression containing the logarithmic derivatives of all L-funetions
(s, 1) with characters y of the group K (ef. [17], p. 134). If there are in
(1) at least two different coefficients o;, then, as will be proved in the
Appendix (§ 28), s =1 is a pole for at least two functions ¢'/¢ and in
some cages the dominating term in the residue sum- disappears, giving
no evidence of the existence of a generator in the corresponding class
H;. In all the applications of any importance (they will be given in a con-
tinuation of thigz paper) the equality condition o = ... == ¢, for the
coefficients «; in (1) will be satisfied.
According to these changes we replace (1) by

3) 3 1= w00, a=1,

Tzl
where the constants 1, ¢;, & do not depend on i (0311, 0 <e, <1,
0 <9 <1). Next we introduce another parameter g such that (*)

(4) 1<g¢<gD

and.we suppose that if ¢ > 1, then the numbers ae® and z in (3) are ex-
clusively terms of the progression

(3) L, ¢ ¢y -

It is understood that all further constants (including those of the
symbols O‘and <) may depend on ¢y, ¢, 9, 1.

Denoting by R(x) the remainder term in (3) we have for ¢ > 1 and
for any number & of the progression (5):

(6) g;l = ao+R@)—RB(z/g), o =al—qg"), R < D",

(:‘) Seg the example of § 28.
(') The parameter ¢ was infroduced following professor Turdn’s suggestion of

extending the theorem of [9] in such
g amanner ag b i i i gt
polynomials over a finite field of constants. ? ke It spplicable to freducible
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whence

' R(¢)—R(¢")

k
db>z 1
E(x) ke (1 1 R(x) 1 R(¢")
- E Sy - -
g ,Z(Q)q’” I g ( q; ¢
424 >
a1
<D+ (1—g D8 M < D" (m"“+(qw)“’ 1_;.9) < D,
qk>:c
1 R(¢")—R(¢")
7 == 1+ 3
() | ;;[ o kZ + kZ p
) dk<x gz
logny , [\ )R(q’w—R(q"-l)
—a (122 _ S
al( +10gq)+(g kZ’ ¢
Q>
_ —1
170 ogmtegt0 (D).
loggq

The last estimate for the left-hand side of (7) holds as wellif ¢ =1
(now for any # > 1), but then the factor (1—g ")/logg becomes unity.
In this case (7) could be proved more conveniently by the use of Abel’s
identity ([17], p. 371).

For even h let K; denote any sub-group of the group K with the
index 2. Then we have, by (7),

(8) m (Y2 3 ) -6 =m0
T Y SHeK e a2aK; a

With the use of this notation the principal resnlt of the present paper
may be formulated as the following

THEOREM. (i) If 9 > }, then there is a positive constant ¢ such that for
any © =1 and any H; in the interval (x, xD°) there is at least one genera-
tor beH;. For an odd class-number h the conclusion holds as well in the case
of 0<%

(ii) Let h be even and & < 1. If there is a constant ¢y > 0 such that
in (8) for any j

(9) C;> D™,

then the conclusion of (i) holds (with the constant ¢ depending also on C,).
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CoROLLARY. For appropriate constants ¢;, ¢, >0 and any x> D%
we have .

(10) w(@, H;) > x/Dogu.

If @ > exp (D) (with a suitable ¢; > 0), then by known methods
one can prove the asymptotical formula for « (2, H;), which is a stronger
result. Nevertheless from that formula one cannot deduce the estimate
for the least generator beH;,

(11) minby, < D

the proof of which ig our present tasgk. Since the proof of the existence
of a generator beH,; i the interval (z, D) is only a little more cow-
plicated, instead of (11) we shall prove the agsertion of the theorem. It
follows from part (i) of the theorem that Linnik’s estimate (11) for the
least prime of arithmetical progression Du-+-d (v = 0,1, ...; (D, d) =1)
(see [15]) can be proved without using the functional equation of Dirich-
let L-functions and their existence in the whole plane.

If ¢ €1, # + cc and other restrictions are imposed, then the the-
orem holds for intervals (@, #D‘), where ¢ denotes an arbitrary small
positive constant. For a sketch of the proof see §§ 20-27.

In the present theorem we are concerned with a linear distribution
problem in a semi-group. An analogous theorem on two-dimensional
distribution will be proved in the continuation of this paper. From that
theorem we will deduce an estimate for the smallest prime representable
by a primitive binary quadratic form y(u, ») if the point (», v) is bound
to a given angle in the plane of the variables. From the one-dimensional
theorem of the present paper we can deduce among other things an upper
bound for the height of a polynomial §s¢(m)(modf('m)) irreducible in
a fixed algebraic field. These results have been announced in [9], [10].

2. In this paper we shall use the analytical method of the zeta fun-
ction with a complex variable, since the elementary method at present
does not give a satisfactory estimate for the least prime == d(mod D).
The method is in outline the same as that used by Linnik [157], its chief
weapon being an estimate for the density of zeros of all L-functions in
the neighbourhood of s =1 (cf. the fundamental Lemmas 19 and 20
of the present paper). A variant of this method, due to Rodoskil (see [18]
or.[lﬂ, Ch. X), was used in my previous papers [5]-[8], where the least
prime problem was solved for classes of ideals in any algebraic field.
In these papers for the proof of the main auxiliary theoremsy a general
lemma (.[6}, D. 133) was used together with an upper bound for the num-
ber of ideals of any class having a special property ([7], lLemma 7,
proved by Selberg’s sieve method). In Linnik’s, Rodoskil’s and my own
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papers these theorems were proved by a method which essentially depends
on the distribution of the small primes (see, for example, [6], p. 133 and
[71, p. 238, where the sum over the primes Z‘p—llogp has to be small

»<Z
enough for a sufficiently large Z). The same method cannot be used for
the proof of the present theorem, since (3) does not give the necessary
information about the distribution of the small numbers ae &. But the
method would work if we added a new condition (a rather unnatural
one):
C:
é:logb <g for 1<o< D%,

To avoid the necessity of any new condition, for the proof of the majin
lemmas in this paper we shall follow Turén’s method, which was used by
Turdn [22] and Knapowski [13] in proving the corresponding theorers
for Dirichlet L-funetions.

Tt seems probable that the truth of (11) does not depend on the dis-
tribution of the large numbers a > D°®" of ®; that is to say, one might
hope to prove (11) using (3) merely for s < D* with some sufficiently
large A < 1. However, this restriction excludes the use of the method
of I-functions, the only known method by which (11) can be proved.

All the constants used in this paper (with at most one exception of
the constant 1) are positive. The values of ¢g, ¢, €, B, 1 remain as fixed
in §1, whereas other constants (generally denoted by €,¢ 405, Cyy )
retain the meaning only throughout the same paragraph. More important
constants and constants of some general lemmas are denoted by 4, B, C.

The complex variable is generally denoted by s = o+t (o0 =res,
t = ims), but in a few cases we use w as well.

By d|a (‘d divides o’) we mean that d,a are numbers of ® and
there is a number '« ® such that ¢ = da’; the maximal d which divides
a and o' will be denoted by (a,a’).

Some details in the proofs may differ according to whether ¢ =1
or ¢>1. In order to treat both cases gimultaneously we shall use the

following factors:

o 1—g Hlogg if g¢>1, 9_‘0 it ¢>14+D7,
1 it ¢g=1; 1 otherwise;
1 it ¢g>1,
9=l0 it ¢=1.

The functions £(s, ) and their zeros mear the line ¢ =1.
3, Lemma 1. The function

L, H) = D)o

aeH

(0 >1)
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is reqular in o > 1—10 excepl for a simple pole at ¢ = 1 with residue u if
¢ =1, or simple poles at § == 1+ 2kmiflogg (B=0, 41,...) with residues
fa if g=>1. In the latter case {{s, H) is a periodic function, ils period being

2niflogg.
We have uniformly n the sirip G(l—=9-+n <o <2) (0 << )
a(s—1)"" 40 (D" (s]) i og=1,
12 [(s, Hy=1 1—¢7* .
(12) (e ““1“:5{3 +O(Dy (Lols]))  if  ¢>1.

Proof. First let ¢ =1 and let £(s) be the zeta-function of Riemann.
By (3) in o> 1

o0
ox+R(w
i(s, H) = Za“" = 9f ~-‘l-—,-,7rf() dw
aell 1
e
R, (»
= aC(SH-Sf mﬂ,il) do  (Ry(x) < a+D%' ).
1
In G the last integral may be represented by the sum
N " Ri(o)
Zgn(s) with  ga(s) =J Ti-ﬁ“dw < 97D (0" (m 1)),
n=1 n

whence the regularity and (12) follows.
If ¢ >1, then, by (6), in ¢ >1

«© 1 _ 0 _R(q")
o H) = o D)y 00

k=0 R0

Since the general term of the lagt series in G satisfies < Dg~"", the func-
tion represented by that series is regular and <€ D°/(1—q¢~"). This
proves (12) for s < 1/logg. The periodicity of (s, H) in ¢ > 1 follows
from the representation

L(s, H) =dy+- g~ +dyg™+...,

where  dy 1,

R aetl
@
and further it holds by analytic continuation.

' 4 Further let y denote the characters of the group K, y, being the
principal character, and let y(a) = y(H) for all aeH. Write

(13) t(s, 1) =;x(H)C(s,H) = dr(@a™  (0>1).
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Since
By =,
14 H) =
(14) ; x(H) 0  otherwise

(see [12], § 10), by Lemma 1 the function {(s, ) is regular in o > 1—4,
except for a simple pole of Z(s, x) at s =1 with residue ka (if ¢ = 1)
or simple poles at s =1-+2kniflogqg (k =0, +1,...) with residues
fah (if ¢ >1). In the latter case all the functions (s, x) are periodic,
the period being 2niflogg. By (13), (12) and (2) we have uniformly in
1—-9+9p <02

eoha(s—1)"'4-0 (D% "ls]) i g=1,

()  is0=

1—¢7! .
eoha*lquerO(D”ﬂ"(lﬂLOISI)) iog>1,

where
1 i = %
€ =

0 otherwise.

® being a semi-group with the generators b, in the half-plane E
(¢ >1) we have

t@s, ) = [[1—x®b),
b

whence there are no zeros of {(s, y) in E.
Let p(a) = (—1) if ¢ is a product of v different generators, and

=0 if b*|a. Further let
logh i a=0b"

0 otherwise.

(n >=1),
A(a) =

of {(s, z) we deduce

= D x(a)pla)a™,

From the product-form

1/E(s, 2)
(16)

Ciets, 1) = — 3 x(@A@a™  (o>1).

5. LemMA 2. Let R be the rectangle whose vertices are —14riflogg,
2+=wiflogg and let
loggq 1

=Tog -1
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Then in R
g(s) < logeq.

Proof. On the horizontal sides of B [g(3)| = (1-+¢" ") logg-+
+0(logg) <logq, on the left vertical side |g(s)| < (¢"—1)""logq+
+0(1)=0(1) < logeq and on the right vertical side |g(s)| << (1—g~)-logg
+0(1) < logeq. Hence the lemma follows by the maximum wmodulus
principle.

COROLLARY. In R

(17) = sii +0(logeq).

Since, for any ¢ >1, 1—¢~! < logeq, we have, by (16),
all ne(0,1] and ¢ =1

(18)

(15), for

L@ +n+it, ) < L1417, %) < 97D .

Let f(s) be a regular function and let [f(s)/f(s,)]| < ™
Then by Landaw’s lemma (see [23], IIT, §9)

in (88| = 7.

FliE) =D s—a™ < Mir  (ls—s5| < $1),
where o rung through the zeros of f(s) in |s—sg,| < 47. Taking
r=4, & =1'|"77+7:t0’ N = 1/D(14-0[ty|)

and using (15), (18) we deduce that in |s—s,| < }o

(19) '1E(sy 1)+ eap(s) — (=)™ < logD(1+40]t|),
le~3gr<cor2
where
(s—1)"* i g=1,
p(8) =1 1o
- gqlqua it g>1.
Let 0 <o —1<1. Then, by (17),
logg 1 :
T = 5= T00ogeq).

From this estimate and (19) by arguments used in [B], § 11 we can de-
duce the 'inequality

(20)

a

/8 (on; o)l <3(00—1)'  where gy = 1--¢y/log D

and ¢ is small enough.
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Taking s = ¢ > 1 we have in (19) re ) > 0. Hence for all positive
r<1
(21) I /E(4-7, )l <1jr+cslogD.

From (19), (21) we can deduce
(22) » <rlogD(1+olhl)  (esflogD(1+olt)) <7 < 1B—1/D(L+2 )

wherey = v(7, ¥, %,) denotes the number of zeros of {(s, y)in |s—1—dfj<r
(cf. [5]. § 10).

6. LEMMA 3. The number of =zeros of C(s,y) n the reclangle
R (1—39 <0<, [t—1) <3 does not enceed < logD (1 2lt]).

Proof. Let C, 0, 0, denote circles having & common centre at
8 = 14+ 04+t (n = 1/D{140[|)), the radii being 24,18, z, respec-
tively. Further let »(x) denote the number of zeros of {(s, x) in C,. If
X # %, then by (15) in C

16(s, 2l
By Jensen’s theorem ([24], § 3.61) and (18)

< exp{clog D (142 t,|)}.

28
v(x)

f—————dw:
z
0

< eslog D(14-0t)),

21
1 .
5= [ loglt(so-+-206*, 1)ldp—log (50, 1)
& 0

whence
26 ) 28 ( ) 29 d
X tar
0310gD(1—i—9[t01)>f1(—~dw> f O aw > v (19/4) j “
¢ 784 764
= »(79/4)log8/7

and thus
v(79/4) < log D(1+2]t).

Observing that R can be covered by < 1/9 circles ¢ with the radii
79/4 (having their centres on the line ¢ = 1+ 9+ 75), we get the lemma
for y +# x.

If ¥ = x,, then we use the function (s—1){(s, z,) or (1—g¢'-
(according as ¢ =1 or ¢ > 1) and similar arguments.

*)Z(85 %)

7. LeMMA 4. If ¢ =1,
has a zero in the region o >1—ecflog D(1-[t]),

then for appropriate ¢ no function (s, x)
|t = 3.

Acta Arithmetica X.2 10
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The proof is based on the inequality
(23) —3C'|E(0gy 10)—4rel’ [E(og+ iy, 1) —rel L (oo + 2y, 1) =0 (9> 1)
(cf. [5], §12). In 0 > 1—48+9 (n = 1/D(1+|t])) we have by (19)
U= D (s—a ' 40(logDA+H) (8 =147+l
lo—8gl <?/2

Let ¢ = iy ([y| = 3) be a zero of {(s, ). Since re >'(8—p)"1 = 0 in
oc>1, we have

rel' (L (0p+ iy, %) = (09— )" —cylog Dyl
rel’ [ (og+2iy, 1) > —0slog D1yl
Take for o, any number satisfying (20). Then, by (23),

B 1 1
L o—17 T e—1+1—8

—¢4log Dly|.

Putting
0p—1 =1[AlogDly|, 1—f§ =1/4"logDly]|
and dividing through by 4logD|y|, we get the inequality
15 4. ¢4
U > U .
4 T1+1/4A 4
in which 4 cannot increase indefinitely. Since B = 1-—1/4*logD|y|,
the lemma follows.
LeMmA 5. For appropriate ¢ mo function (s, x) with a compley x
has a zero in the region
o>1—¢flogD, lt|<8 or o>1—c[logD(l-+olt])

(according as ¢ =1 or ¢ > 1).
4* not being the principal character, the proof proceeds along the
same lines ag that of the previous lemma.

8. LEMMA 6. For appropriate ¢ no function (s, x) with a real y + %
has a zero im the region

¢>1—cflogD, 0<|t| KB
or
o >1—eflogD(1+4ot)), 0 < [t < =/logg
(according as ¢ =1 or g >1).
Proof. First leb ¢ =1 and let {(s, ) have a zero g = f--iy with

0<y<1/BlogD, 0<1—B<1/BlogD (B <1).
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Then it has another zero o' = f—iy. Writing

8 =oo+iy, o=1+1/AlogD (4 <1)
we have, by (19),
1 op—

I Ey ﬂ
rel' [l 1) > g g oy

—c¢glogD.

By (18), (20)
el [£(s0, 1) < IE'JE (00, 20)] < §(00—1)7"

and thus
5
1 o—f 3
24 + < ezlog D+
@4 Py R ) ik S
‘whence
1
og—f i 1-8
s < Clog D +
(=B +47 =~ T T T (1) (00— )
1 A? 1 A?
- il —_ —} logD.
< ¢glog D+ 1 Alog D+ B logD < (2 A+ B) og

Since

1/A 1/A+1/B

! So—f < .L+—/7

log D log D
we have

2 A2
1/4 < 1/A+1/B 4 2 iA—i——)logD,
log D log D (BlogD)* |\ 2 B

whence

1 1 142 4 1 A
T<{lz+7) + G F)

This is impossible for any fixed 4 (with ;4 > ¢;) and all large B, since
the right-hand side tends to 1/24 as B — oco. This proves the lemma
in the case we have been dealing with.

Now let us suppose that £(s, x) has a zero f+ iy with y > 1/BlogD.
Since y* = y,, by (23)

(25) _3‘:’/4‘(00; Zo)_“irez’/C("o—l"iY: Z)_reC,/C(Uo‘l‘ziVy %) =0
(o9 > 1).


GUEST


148 L. Fogels

The estimates for the first two terms of (25) may be acquired as in the
proof of Lemma 5. By (19)

el /2 (g4 2% ,%0)

1 5 1
— Cve—t 4 L 0QogD) > 0,
T g1 T vy —g TOU08D) > ~ologD

|14-24y—e| <02

(since re >0 and [re(og~- 26y —1)~"| < |og—12ép|~" < § Blog D) and
we may proceed as in Lemma b.

Now let us consider the cage of ¢ > 1. If n/logg > 2, then the neces-
gary inequalities for the zeros in 1 <[f <=/logg-—1 arve obtainable
as in the proof of Lemma 4. In the remaining parts 0 < |f] <I1 and
=flogg—1 < |f| < nflogg we use the function Z(s) == {(s-—mi/logq,y)
and the same arguments as for ¢ =1 of the present lemma but chang-
ing at most D to D(L-+=/logg). Consider that the zeros of Z(s) are con-
jugate, since the coefficients of the Dirichlet series of Z(s) are rcal. The
same proof holds if n/logg < 2.

LeMMA 7. Let y be a real character # y,. For appropriate ¢ there is
at most one real zero B’ >1—c'[logD and (if ¢ > 1) at most one zero o'’
= p"+in/logq with 8" > 1—¢'[logD(1+=/logg).

Proof. Let § and B’ be two real zeros of {(s, ) such that f’ = g,
By the arguments used in the proof of (24)

N
o —f oo—p'

whence for a sufficiently large 4 <1

b
< ¢log D+ 1 (0,— 1),

2/(ay—f) < eslog D45 AlogD < AlogD,

op—p >4/3AlogD, B < oy—4/3A4logD =1—¢'[logD.

This proves the statement concerning the real zeros. The same method
of proof may be used for the zeros on the line ¢ = =/loggq.

9. Lemvia 8. For appropriate ¢ the function (s, x,) has wo vero in
the region

e>1—cfllogD, 0<|tj<5B

or
o >1—cflogD(14slt)), 0 < |f| < r/logq

(according as ¢ =1 or ¢ >1).
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Proof. Writing

b = |CTVE =1,
(A=) # ¢>1,
6o = 1+1/AlogD, 8, = o4ty

and using (19) and (22), by the arguments of [5], § 18 we can prove that
for a sufficiently large A <1 and a small y < 1/logD
(26) reG [G(so) < 3(oy—1)71.

Let us suppose that (s, x,) has a zero g =f-}-4y with 0 <y <<1/BlogD;
then it has another zero p' = f—iy. By (19) and Lemma 3

G¢'l6(s) = D (so—0)"'+0(logD)
18p—e| <2
‘whence
1 o —p
reG’ |G (sy) = -+ s —¢clogD,
66 > S+ g ray 8

and using (26) we may go on as in Lemma 6. This proves the requived
result concerning zeros near the line ¢ = 0. If D is replaced by D(1-+
+=/logq), the same method may be used for zeros near theline ¢ = = [logqg.

Now suppose that ¢ =1, y > 1/BlogD and ¢, is any number for
which (20) holds. Then by (19)

rel’ (L (oy+ iy, 2%0) = (00— )" —eslog D,
rel’ [{ {0y 28y, 1o) > —eslogD.

Using (20) and (25) (with y = x,) and the arguments of Lemma 5 we
prove the remaining part of the present lemma for ¢ = 1. The method
of proof works as well for the zeros off the lines ¢t =0, ¢ = =/logg in
the case of ¢ > 1.

LeEMMA 9. For appropriate ¢’ the funetion (s, x,) has at most one real
zero B’ >1—c'flogD and (if ¢>1) at most one zero p''+inflogg with
B >1—¢'[logD (14 =/logq).

This may be proved by the arguments of Lemma 7.

10. Lemma 10. For appropriate ¢' at most one of the < h funciions
£(s, ) with a real character has a real zero >1—c¢'[logD and, if ¢ > 1,
at most one of them has a zero f-+inflogg with p > L—¢'flog D(1+=[logg).

Proof. First let ¢ = 1 and let the two functions Z(s, x;) and (s, x2)
with two real and different characters g,,y, have the Teal zeros
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p1>1—9[6 and f, > 1—8[6, respectively. Further let yy # g, y, % 4.
Taking o, = 1-+1/AlogD with a sufficiently large A -1 we have, by
(19) and (20),

' 1t(o0, 12) > (00— p1) ' —e3log D,

L1800y 12) > (00— Pa) " —eslog D,
' [L(ay, xxa) > —eslogD,

E[E o0y 20) > —ilog—1)7"

Since the sum of the left-hand sides in this set of inequalitios iv < 0,
by (16), we deduce

(00— B1) " (00— F2) ™" < e,log D5 (1)

and may go on as in the proof of Lemma 7.
Now let g, = g, the other premiges remaining unchanged. Then
instead of {(s, y,) we use the function G(s) of § 9. By (19)

&[G (00) > (09— )" —¢5log D
and

[ (o, 1) > (0o— 1)  —eylog D.
Since, by (16),
88 (ogy 1)+ L [E (00 10) <O,

we deduce
(60— B+ (0y— o)™ < (0p—1)" +¢5log D

and may go on as before.
The same arguments may be used in case of ¢ > 1 if, dealing with
the zeros on t=mflogg, we replace D by D(l4=/logg).

The results embodied in Lemmas 4-10 may be summarized by the
following

FuNDAMENTAL LuMMA 11. For appropriate ¢ in the region

27) o2 1—oflogD(1+ot)) { > 1—9/8)

there is no zero of {(s, x) in case of a complews y. For at most one real o there
may be in (27) a simple real zero ' < 1 and, if ¢ > 1, the zeros B+ 2kmilog g
(b =0, 31,...). Besides, if ¢ > 1, for at most one real x there may be in
(27) the set of simple zeros o'+ 2hriflogg (b = 0, +1,...) withreo" <1
img" = n/logg. ‘ ‘ o

The zeros B, f'+2krniflogg and o+ 2kniflo if existi i
be called the enceptional zeros of £ (s, x) foet [t existing) il
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An upper bound for the number of generators.
11. Lemma 12. Let

(28)
be a set of numbers «® such that for any de ®
(29) D1 = N[f(d)+Rs
|,
where f(@) is a multiplicative function # 0; that is to say, f(a;a;) = f(a:)f(a;)

whenever (a;, a;) = 1. Further let N, denote the number of those numbers
of (28) which are not divisible in ® by any generator b < z. Write

Uy (M =1,2,...,N)

*(d *d
oy Fw=Year(s), s-YEE sw- 3G,
dla d<sz (giss/:l
p@IT(L—1f®)S(a)8;  if a<e,

bl
0  otherwise.

a =

Then

(31) NSNS+ D o AaRagyiayam) -

) <<B, BB

This may be proved by the sieve method of A. Selberg [19]. See
7], § 3.

12. LEMMA 13. In the previous lemma let (28) be all the numbers o <
of any class H; (as defined in § 1). If z 2 ', o > D% and c; is large
enough, then the main term in (31) satisfies .

N8, < x/6hlogx
(with the 0 defined in § 2).

Proof. By (3)
(32)

Congidering that the classes H; form a group, we deduee that for any
de ® the number of numbers ¢ < # such that a<H; and d|a, by (3) is

1 01y 1— 2 1
a%_{_()(_pﬁ (%) ) = iVj—_Q_(D_lm__l +0 (Dcl (%) )

N = an+0 (D' ?).

Hence we have (29) with

1—-4
(33) f@ =, RmD”I(%) :
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Now by (30)
R B O B o CANTE NI o
S”vZaI[‘Z(l——l/b) “u;" (“)lbz(b o ) . 2'5’

a<e tte(e)

where (2) stands for the set of numbers a'e¢ & guch that the product of
all different generators (*) of any o' is < 2. Hence

A%>E'i- > 2 i

sk VEcn<e

If ¢y i8 large enough, then by (7) the last sum is > 3hoalogV o> ¢y Ohulogm.
Since N < 2am, by (32), we get the required result.

13. Levma 14. Let W denote the remaining term in (31) and let in
Lemma 13

(34)
then

28 By 273
¢ =’ [’W'Dloga  where ¢, = 03+ ¢o+ max (e, 1);

W < x/hloga.
Proof. Forany a we have |1, <1 (see [7], (38)), whence by (31), (33)

W < Dogi—? 2 ((“uaz))l‘mﬂ’

013,098 a1 Gy

and the desired estimate would follow from

(35) (E‘E%’_“ﬁ)w < =
maagas \ W% hD*loga”

Using (3), we prove first the estimates

(36) D= < has?, Zaml“” < DA,
a<e s
whence
1-8 2
SN T ) ot

(5) There may be different'generators of © having the same numerical b.

suppose that they are distinguished by different indices. e
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‘Write
Y [(ay, e)\"?
Sa(z) = Z (( 13 2)) )
<2, 0y <2 013y
(ay,09)=d
By (37)

8i(z) = d~'*%8, (%) < (ha)2??d——?

whence by (36), (34)
1
((al, az)) < st(z) < (ha)22202 d? < D1 (ha)%®

) (g d<s i<s
= & [hD"logz,

a1 <8, <<

which proves (35).
14. LevMma 15. If @ > D% with a sufficiently large ¢y, then

(38) %(w, H) < x/0hlogz.

Proof. Since z < #*°, by (34), it follows from Lemma 13 that all
the generators be[z, 2] of the class H are in the set of the N, numbers
defined in Lemma 12. Hence, by Lemmas 13, 14 and by (3)

a(w, H) < N,+=n(z, H) < N,+hoz-+0(hD2""?%) < z/0hloga.
COROLLARY. If x > D%, then

(39)

(40) D' A(a) < a/6h,

xzacH

Ata)

(41) <17 (67" +loga),

deH
r<a<ad

p)

aeH
De3ga<z

Proof. The left-hand side of (39) being < =(wx, H)logz, the esti-
mate iz evident by (38). ‘

Let b, be the least generator of ®. If logh, < D4 for any 4 <1,
then there are at least DAlogD numbers ¢ << D of @ (the powers of b,)
and for 4 large enough this contradicts (3). Hence for appropriate ¢,
we have logh, > D~ %.

A(a)

(42) — < (BRy 3" (0 < o < 1—B/8).
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By (39) and by the definition of A(a), (40) would clearly follow from
2 logh -+ Z logh-t-... < ®/0h.

wb2eH w3t

(43)

Since the number of terms on the left is <« loga/logh, << Dlogw, none

of them exceeding {a¥/z-+0 (D" ~"®)}logw, the truth of (43) is evident
(if ¢, is large enough).

(41) and (42) may be deduced from (40) by partial summation (cf,
(7).

A general lemma. 15. In this section the main woapon of proof will
be the following inequality of Turin:

Let z (j=1,2,...,m5 n < N) be a set of complew numbers wiih
mjax k] 21 and let m > 0. Then there is a constant ¢ (0 < ¢ < 24) such

that for appropriate integer

(44) ve[m41, m-N]

we have

4," ki ¥ v N N
(45) | [+ e = (?‘%m“)-)

By [21], Satz X, this is true for ¢ = 96¢*. An improvement of ¢ and
a simplification of the proof are given in [20].

Lmvwa 16. Let %, A, D, A, v, denote unbounded parameters, % being
an integer > 2,

A>2[9, D>2 Ak>logD, 0<o <A< (99 /4B)log D
where B > 1 is & sufficiently large constant, 0 < 9, < 1, —D <K, <D,
Further let F(s) be meromorphic in o > 1— 8, with simple poles o = By

which Ve in o < 1. Denoting by m, the residue of F(s) af 8 = o we take for
granted that for any real i, '

m,
(46) |Pls)— — < elogD(L+lhl) (s —1—ity] < B[2)
lo—1=Tig| <y
and
(47) (L4 |m|) < rlog DA+ 1t]) (o' flog D(L+ [t)) < r < 8,),
le—1—14fy|<r

supposing that the constant in < (as other constants

during the proof) may
depend on ¢, o'y y: For any real v let ! proef may

e 24400 .

- 1 e’ﬂA«?__ A3\ 1
48 Jlr, k = el ,
(48) (z, k) 4) po Jm (-————«2A8 )If‘(l-l—s-!-n)ds
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and let Qg (for any bounded B >1) denote the square (1—EiflogD <
< o<1, [t—1| < HA/2logD).

() If for all 0eQg the residues m, are positive integers and if there is
at least one geQ;, then for appropriate ) > 1 and for any C = C there is
a k>max(2,04), k< (C+C)A such thai for any v of the imterval
I(lz—1,| < 4/21l0gD)

(49) (7, &, 1"log D)] > exp(—Cy2),
where the constant C, may depend on C, C,.

(ii) Por all 0eQg let the residues m, be positive sntegers except for at
most < E poles o; = 1-it; with my = —1 such that for any one of them
there is a corresponding pole g; = o;— 0 (where 0 < & < ¢ %1 log D, B, arbi-
trary large << 1) with my; = 1. Further let there be a pole ¢, =1—Aflog D+
+it, and let the number of the poinis tiel(|t— 1o < A[2logD) be < 4.
Then there 48 a number t = tyel for which (49) holds.

Proof. In this paragraph we shall deal with case (i).

By (47) there is an infinite broken line L in the strip — /3 —
—1/ClogD 1+ 1t]) < o < —8/3+1/C3logD(14[¢)) (with a suitable
constant C; > 2) such that for any selected = < D the distance between
every point § = o+iteL and the nearest pole of F(1+4 s+ ir) exceeds
1/C%og® D(1-[#]) (c¢f. [8], § 8) whence by (46), (47) on the line F(1+o-+
+it+it) < log® D(1+|t]). Besides the length of the piece of I between
any two of its points o4, ¢'+4(t+1) does not exceed 2.

Writing

(50) g(s) =

and moving in (48) the path of integration to the line L we deduce
. 1 .
(51) T(r, by 4) = — O meglo—1—inf~—— [ g P(1+s+in)ds,
= 2y

where @ denotes the region on the right of L.
Since & > 2, Ak >1logD, A > 2/, on L we have, by (50), ¢(s)*
< D™ %314 |5|)"* whence the integral in (31) is < D~ %®log*D.
Now let us suppose that there is a pole g,e@, of F(s) and let 7; be
any selected reI. Suppose that for a fixed ¢ > (% and for all integers

ke[max (2, C1), CA+C;A] we have
(52) |J (71, &, A~ log D)| < exp(—B2).

From this (49) will be proved by arriving at a contradiction.
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First let us estimate that part §; (say) of the sum in (51) which corre-
sponds to the region G4 C @& with > 7,4+ Hi/2logD. The sum 2|»m01
over all o of the rectangle

Ry(1—3 o <1, ntty <t<ttty+Bij2logD) (i 3= BA[2logD)

by (47) does not exceed
A
< ((5+‘1;-g~1-)‘) 10g'.D(l~{~ t).

Let @' be the region in the strip =iy <t < vyt --HA/2log D
between o = 1 and the displacement L' of the line .L by 1 in the direction
of the positive real axis. The part of the sum in (81) (with 7 =17, 4
= 2""log D) corresponding to G' satisties

e~ kA-5)
< —_—
69/2 Eﬂ,
< (Ato)‘k{ j kAeF4 (a+ TogD )10gD(1-|— to) 48 - e~ F4% 100 D (1 4 to)}
0
EilogD d0/2
log D(1+1,) ( B2
& ; A(t—)’,ﬁ—ﬁ {10 5 kde™ ™ g4 f kAée“"*”‘"dé-l—e“’“‘“‘)”}
0 g 0 EXlogD

log D(1-+1,) B
(Aty)® logD"

Summing over all ¢, = nBAf2logD (n=1,2,...) we get

(83) 5, < -+ \log D1+ B3 2log D)
logD & (10gD, in )M
A 2logD

< B o1 1 —k
(B2)° Z;?c‘flﬁ < (5 E)

N=1

‘The same estimate holds for the part S, of the sum in (51) which corres-
ponds to the region &, < & with ¢ < 7,—F1/2logD.
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Let @; denote the remaining part of & without @z. The correspond-
ing part of the sum in (51) (With v = v;, A = 17'logD) satisfies

g~ A=5) el
< X aar <7 S kAo 3log Das-+e™***"log D|
e g EAfiogD
N 1 C’logD
= E MogD{-—— f we™du+ e‘k‘w‘)’z}
kA
Kz
< E*"long - = B~ Bie "
= kA :

This being smaller than the right-hand side of (53), we have by (51)
and (52)

N mpg(e—1—im) < e P+ EAL (BB

eQp
whence, counting every geQg in the sequel m, times, we obtain

(54)  glog—1—izy)* Z(Q(L}lﬁ))k < B DI E) .

Prris glgy—1—1ty)

Let R’ denote the rectangle (—i/logD < ¢ <0, jt| <iflogD) and
let A = 2"'logD. Writing s = gp—1—i7, (s;¢R’) we have

1— 6‘.’.:{3

—3
_ [
24s e

lg(s,)] = ¢ *min
8eR’

since on the boundary of R’ the function (L—e**) /245 is in modulus
~ ¢~ and has no zeros <R’. Hence |g(go—1—i7:)|" > ¢** and denoting

. » — glg—1—im)
(65 ¢ gleg—1—1in)
we have, by (54),
(56) D <y S BA(LE)E
eQp
By (47) there is a constant C, such that if
(37) N = C,E1,

the mumber of the poles ge@y does not exceed N. Take
(58) m = [CA].

Let us apply Turén’s inequality (45) to the numbers 2, m, N. By (44)
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there is an integer » > 01, » < OA+N for which (45) holds and further
we use k¥ = ». Then by (87) and (58) the restrictions imposed on % in
the present lemma are satisfied with ¢, = C,I. Observing that
Ny o1
m--N = 1+0/c,’

we have, by (56), (45) '

1 g, Bia 1 ¥/
59 — ev«(E--BO_{lC’,LE)AW_El (_‘ . 14|) .
(59) (c(1+0/01)) < B g P
The logarithms of the reciprocal values of these numbers are, respec-
tively,

U = C,HAloge(1+4-C/[0)),

U, = (B—-30—3C,1)4,

U, = OAlog B/2¢* ~log Bi > % 0ilog B [2¢°

(supposing F large enough). Now we take B = 4(¢. Then the orders of
magnitude for U, and U, are higher than that of U as F -» co. Hence
for a sufficiently large B < 1 the right-hand side of (59) is smaller than
the left-hand side, which provides the desired contradiction.

16. Let us now consider case (ii) of the present lemma. By the same
arguments as those used before we get instead of (56)

(60) D = Dl =) < Bty Ay By
9#?1??5&'1 !

The number of the points #jel being < A, there is at least one 7, eJ such

that the distance between 7, and the nearest #; exceeds 1/C;log D (for appro-

priate 05 < 1). Further let v; be any fixed point having this property.
By (55) and (50)

. = gli (t— 7)) o I8t —))
7 g(=2fogD+i(m—mn) T g(<2flogDFi(ry— )’
6343__6..43
g(s) = i~ A= AYogD).

From the estimate of g(s;) in the previous paragraph we can deduce
1

lg(—2/log D+ i(z,—1y))

For any selected # and arbitrary 8,€[0, 8] let

s = —&+ilti—7), &= 244,

<.

= 2A(’1“"1)-
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Then

6o 1—et V(1 —g)dsin’t/2+ 4¢¢  2sint/2 % _

9. et | S [e+ 1] ST | jera S

1 SeaAs___eAs ea.ﬂs_e.ds 1 2

'(8)] =|—- — [ 3 < bCslog D
lr®l =3 P Shs 5| Sh—n T < M0lee D,
whence

2y, — 2y < k3" Mog D < ke P,

D (e —2h,) < Bake™ P < 20 B P30S0,
i

Now taking B, = 7C+5(C, and using (60), we deduce

2 2f < B LG (3 B 20BR %

QR |
e07,#0'f

and may proceed as before: Taking the logarithms of the reciprocal num-
bers we obtain next to U, U, one more term U = 20i—1log2CEA* >Ch
with a higher order of magnitude than that of U, whence a contradiction.

A density lemma. 17, The constants of this paragraph do not depend
on any constants used previously.

LevMa 17. Let k and A > 0 denote unbounded parameters, k being an
integer =2, and let

e___,_) G_SIOgadS (a > 1) .

1
Ra) = —

27
2

24100 eaAs_ —ds 1
24s

o

Then for appropriate constant ¢ >1

<A if f < a <M,
R
(e ! (a)[l =0 otherwise.
Proof (°). By the binomial expangion we get from the integrand
(ks et N ¢~ Slogs
24s

a finite number of terms e*s~* (say). If o > ¢4, then all the expo-
nents » are <0, whence R(a) =0, since
24100
f e*sFds = 0

2—doo

(x < 0).

() Using more intricate arguments Turdn ([22], Lemma I) gives a sharper
estimate of R (a).
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If a < ™, then all the exponents‘x are >> 0 and we obtain the desireq

result by moving the path of integration to ¢ = —1 and using the iden-
tity —14ioo
s s =0 (%2 0)
O B 1)

Now let ¢4 < a < ™. Then there are < (1--1)" < " terms ¢*s~*
with x > 0; for these we move the contour of integration to o= -1,
Since

& v 1 (3kA)t 3\k k1 oLk
Res B - W g - % [N D < — Y
30 (2As) (70—1)! (24) (k—1)1(24) (k—1)! A A

(61) follows by the theorem on residues (the contribution of the terms
with » < 0 being zero).
18. By (19) and (22) any of the functions F(s) == £'/¢(s, x), with
1 # %, satisfies the conditions of Lemma 16(i). For any real v let
1

2+ 3ds As kC,
"o, ) ("‘}is ) (84147, y)ds,

62)  J,(z,k, A) = g 5 ;

where 4 > 1 and k is an integer > 2.
Levma 18. If o5 s the comstant of Lemma 15 and e"* > D%, then
(63) PRCACH WP

%

Proof. By the definition of R(s) with the aid of (62), (16), (41),
(61) and

‘ b if H is the principal class H,
(64) N = '0 prine ”
x

otherwise
(ef. [12], § 10), we deduce
A(a)E(a)
Sy (v, by A) = T 1(a) = eax(a) (say),

b tgeshd

Z[J (e, &, A)" —ZZeale%x(a i(a,)
Zz_hz 2<h;( 2 »{L—éﬁ)qu,(a);)z

ckd <a<obkd

2

21,00 % aell
Gk.»l.<a<ﬁakzl A g
zckA zh 0/) 2ck: 3 Py
R, ~ - -1 aele
E a < eTA™h B0 kA < BReter.
aeH H
okl g g3kA
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COROLLARY. For any selected numbers v,, 1 satisfying the conditions
of Lemma 16 (where ¢’ is now equal to the constant ¢ of Lemma 11) Tt » =
¥(79, A) be the number of the functions (s, ) (%% %) having at least one
zero in the square @ (1—AiflogD <o <1, [t—1| <A/2logD). Then for
at least vjesd of them (49) holds with the same k =k, < csA. Therefore,
by (49) and (63)

(lesh)e=* < V[T, (7, ky, A log D)[* < k1,
x

whence
(63) v < 6%,
From (65) we get the following lemma, analogous to the Linnik-

Rodosskii density lemma:

FUNDAMENTAL LieMMA 19. Let N, denote the number of the zeros of
the function Z(s) = []l(s,x) in the rectanlge B, 1—2flogD <o <1,

[t < e*flog D).

(66) Ny<e? (e<2

x
Then for appropriate c;, cy
< ¢;¥log D).

Proof. Considering that R, may be covered by < ¢* squares @ (cor-
responding to 7, = niflogD, » = 0, £1,...), we deduce that the num-
ber of the functions Z(s, %) (x # x) having at least one zero in R, is
< %% Tt increases at most by unity if we remove the restriction
% # %0- Hence we get (66) observing that the number of zeros <R, for
any function {(s,y) is <€ by (22).

The lemma and the proof hold as well for rectangles (1—A/logD
<o <1, [t—| < flogD) with |t,| <D

On the real execeptional zero. 19. In this section we suppose that
some of the functions (s, x) have the real exceptional zero

(67) B=1-—-6, 0<d<egflogD

with arbitrary small ¢; < 1. By Lemma 10 there is at most one such
character. It is real, and in what follows it will be denoted by y’'.

Lemma 20. If x' = xo, then for appropriate ¢, we have &> D™%.
Proof. Writing

s—1if ¢g=1,
Q- —-g"

Acta Arithmetica X.2 11

G(s) = ¢(s)l(s, nn) where @(s) = Vit g>1,
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we have, by (15), G(s) € D% in [s—1| <7 (0 <7< $9). Hence in
s—1] <%

1 @ S
68) 6(0) = 5= f(w(j):yz—dw<r“l)5.

|W— 8] =12

By § 4
bha = ResC(s, %o) —11m (s—1)G(s)/p(s) = OG (1),

whence, by (3), G(1) =ha>D"% and thus D% < G(1)-G(f) =
66" (0y) (B’ <oy <1). Now using (68) (with » = }49) we obtain the
required result.
COROLLARY. If h (the class number of ®) s odd, then § > D™%,
Proof. In the case of an odd % the single real character being g,
we have ' = .
LevMA 21. If & > %, then for appropriate ¢, we have 8 > D™,
Proof. We may suppose that ' # %, (otherwise we have the de-
sired result by Lemma 20). The function

gla) = D' y'(d)
dla

has the multiplicative property g(aa’) = g(a)g(a’) whenever (a, a’) =1,
and for any generator b

0 always
g0 > e

(ef. [5], p. 104), whence

1 if & even

g(a’) > 1.
Further we have

£(8, 21808, 1) = D gla)a™  (o>1)

and thus for any y >0

(69) Zyw) o =

(cf. [17], p. 380). If ¥ = D% (with a sufficiently large B < 1), by (3)
the left-hand side of (69) is

(70) Zet 3 1= 3 1> je haD?,

a?<pB a<DB/2

24100

s | e, e, s
2-too
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Moving the path of integration in (69) to the line L(¢ = ¢; = 1—
—3&-+1/logD) we pass over a pole or poles of the integrand with the sum
of residues )

71) D, { (
(1) DC(L, 1) Rest(s, 1) {140 ;1’ L e

< (1, y)DPoha|1+s Z %‘)
Pt logg

k-m’ ) DB “kﬂ/logq}

F(H ) < (1, ) D%,

gince, by the asymptotic estimate of |I'(s)] (ef. [17], p. 395) and by (4)
9767:7, 2kw \M* ( L 2kw )
! D.
2‘ ( logq <<g(logq\) P 2 log < logeg <log

(For logg <1 the estimate of the exponential sum is evident. Tf
logg > 1, then writing 2=/logqg = ¢ we prove the estimate < &' sepa-
rately for each of the two parts of the sum corresponding to ek < é
and ek > ¢*, respectively.)

By (15)

1 ’

2md fDBSF(s)g(37 2)C(8s xo)ds < DBe—Aes,
i #

For a sufficiently large B < 1 this has a smaller order of magnitude than

(70). Hence (71) is not less than a half of (70), whence

(72) &1, x') > D0,

By the arguments of (68) we can prove that L'(s, z) <€ DM (y + %0)
in |s—1| < }¥. This combined with (72) gives the desired estimate of 5.

LemMMA 22. If (9) holds, then 8> D™%2,

Proof. We may suppose (as in the previous proof) that 1 # Xo-
Writing f(o) = 2% (a)a~° we have

(73) flo) =&(o,y) for all o> 1.

Using (3), we can prove by partial summation that the series f(o) con-
verges uniformly in 1—9+& <o <2 (0 <e<¥), whence f(o) is a con-
tinuous function (7) in that interval. Let in (8) K; be the set of all the clas-
ses H with y'(H)=1; then

w g NS 35 ¥ )0
a T>0eK; TSk

(") By the arguments of [14], p. 157, one can prove that for any x 7% xo the
series Ty (a)a—° converges uniformly in 1—d+¢ < 0 < 2, its sum being the function
(13). However, in the present case we can do as well with a weaker relation.
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Considering that the regular function {(s, x') is continuous at s =1
and taking limits in (73) as ¢ - 140 we deduce

L1, x) =f(1).

Henece by (74) and (9)(%), ¢(1, ') >D~* and we may go on as in the pre-
vious lemma.

The results proved in the present paragraph may be summarized by
the following

Lemma 23. Under such circumstances as stated in the theovem of §1
for appropriate ¢ we have § > D°,

20. Iemma 24, There are constamls ¢,c’ such thet, if & < efloghd
and gy = Botiy, 18 @ zero in (1—9/2 <o <1, [¢| € D) of any function
{(s, x), different from the emceptional zeros of Lemma 11, then

’

¢ ec
- log .
(78) Po < 1= 1058 Siog D
Proof. Let
fo = 1—AflogD.

It will be sufficient to prove the lemma merely for 1 < ¢;9log D with some
small constant ¢; < 1/16. If, in fact, A >¢,9log.D, then, since by Lemma
23, 8> D", we have log(ec/dlog D) < ¢;log D, whence (75) holds for
any ¢ << eyd/c;.

In this paragraph we shall deal with the case g, 5 %' . Let us consi-
der that the function (*)

_ SR+ [t =8, ) it g =g,

(76) F(s) . , N
ClE(s, )+ (s 46, xx") iy y

(%) In order to show the necessity of (9) (or some equivalent condition) let us
consider that (s, x) has no zeros in o> 1 and ¢(o,3) -1 ag o — oo. Henco for
any real y we have [(1, x) > 0 and thus, by (74), Oj 3= 0. If ¢ or {1, %) vanishes,
then in some of the classes H there may be no generators, which does not suit our pur-
pose.

The situation will be shown more clearly at the end of this paper. Wor the pre-
sent let it suffice to quote the following example from [11], p. 617: I ® donotes the
semi-group of natural integers m = H;p;‘i (pi different primes) divided into the clas-
ses Hy, Hy according as o; is even or odd, then £ (s, 2) = £(28)/¢(s) and thus &(1, 2
= 0; there are no generators in H;.

(°) Using some additional arguments we can base the proof exclusively on the
gecond form of F(s) in (76). In that case gy denotes any pole of ' (8) subject to the same
restrictions (cf. [13], § 2 or [18], pp. 342-343).
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is regular at s =1 and s = g', but it has a pole g,eQ (L—A/logD
<o <1, [t—y| <4/2logD). Therefore by Lemma 16(i)

(o)l > %,
where
A(@)R
nm= Y A0 6

DB<a<p3B

(with B arbitrarily large <1, ¢ = ¢¢(B)), 4;(a) denoting the coefficients
in the Dirichlet expansion F(s) = > 4,(e)a™® (¢ >1); by (76), (16)
o

Al = ‘A(a) 1+x(@a) it x =y,
' AW L+ (@a™) i g% .
Hence
¥} ’
A(a) (0«_+_gc (@) [R(a)] > ¢,
DB<a<p3B @
resp., I
Y ADEEL@T) p gy > e,
DB<a<D3B @
which implies, by (61),
logh , -
(71 D 2B +2 o) > e vlogD,
DB<b<p3B
Tesp.,
?(14"%' (6)b~°%) > e~"log D.
DB<b<D3B

We may suppose that »°—1 and 1—5~° do not exceed ¢ ***logD
for any b < D (otherwise A > ¢;log(co/dlogD), whence (75) follows;
¢f. [6], p. 137). Then by (77) in both cases

1/b> ™0
DpB<p<D3B
2 (h)=1
and thus
(18) D lu> e
DB<yu<p8B

where % runs through all the numbers of & generated exclusively by the
b’s > DF with 4 (3) =1. ]
The arithmetical function g(a) defined by the expansion

(79) ts, 1) 80, 20) = D gl@)ya™  (o>1)
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being multiplicative and > 0, we have

a 1 a
(30) Z g(a) 2 =< 2 9@ Z 9 Z 9(@)

a<DB DB<y<p$B a<DB 4 DB<u<pdB DB<cg< B @
Writing
[/
U, = 2 g%{exp(—D‘wa)——exp(mD“Ba)},
a>DB
g(a : , ,
U= 3" foxp (— D7) — exp(—D-a)
as.DB
we have
_ g(a) _,p-aB =B 4B
U‘—ZTe a (1— e~ a0™ =04,
a>DB
(81) > Z 1@ e l—e" M) > % LJ-(-@,
@
B g @
7, >D03-<a<D“ DBeg<piB

Further'we use the identity

24i00

9(0) 40 _ 1 s '
;_ﬂ v 25@4{0 YT (s—1)L(s, ) E(s, 108

(cf. ‘[17], p. 389) with y = D™, y = D~® and move the path of inte-
gration to the line o = 1 —9+1 /log D. The integrand has a double pole
at § =1 with the residue

B+ (e—logy)p
where

u= C(l,x')RefC(sym), ¢=1Um {I'()—2""} <1,
8= 20
B =§i_gl{i(8, 208, ) —u(s—1)"1,

and, if ¢ > 1, there are simple poles at § = 1 - 2%ni k==
with residues A T amifloge (k= whd )

y~Zhmilloga ( 2hred ) .

logg
We have
2%kni 1 | 2k |2
Sl 2 o) el 25)
) 0gq “~ \logq 2 loggq
2
< (logg)™* 2 k4 exp(— ld )

——] < logeq.
r<logeq k>1zogzsq logg ged
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From these esimates we deduce by subtraction
(82) U,+ U, = u{3BlogD+0 (logeg)}+0 (DB +m),

By § 19, u > D2 Hence, if B is large enough, then the remaining
term in (82) is in modulus less than a third of the principal term. And,
since U, >0, we get the inequality

u(4Blog D+-cy3logeq) > Uy,
whence, by (81), (80) and (78),

e a
R
g DB<a<DAB
s S 3 S BN
log D a<DB . .DB<u<D3Bu g a<DF @
By (79)

(8 ) g(a)aexp(—aD™"")

24100
1 & ’ ’
—— [ DPEIr—p)is, 2)els, mds
2mi o, o

(ef. [171, p- 380). Moving the path of integration to the line ¢ =1 —&4
+1/log D we infer that the right-hand side of (84) is

2kni

loggq

D;Bd‘u{r(é)_‘_a 2 DBkni/lozqF(5+ )} +R, R< _D"‘IB‘H'CIE‘

E=x1,..

Observing that, by (4), (67), 6 is of a lower order of magnitude than 1 /logg,
we have ) < logeg, whence the expression in brackets is equivalent to

I'(6). For a sufficiently large B < 1 the remaining term R is in modulus
<1 and thus the principal texm exceeds § (since the left-hand side of
(84) is >1). Obviously

N g@)a " exp(—aD"")—R < en D g(a)a”’
a

a<DB
and thus
uld < ey Y glaya.
a<DB
Hence, by (83),
gla) _u_ e g(a)
C1g ——> > 2 )
& o 8~ é8logD o a
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whence 0, > ¢~ [slog D. This proves the lemma in the ecase of
o F Z

21. Now let ug suppose that y, = y'. Then instead of (76) we use
the function F(s) = &'/t (s, y). Arguing as before (butiin the case of y =y,
using Lemma 16 (ii)) we get the inequality

1/b>¢€ e
DB<b<D3B
Hence

)

(85) 1ju > e,

DB cu<p3B

where % denotes those numbers of & the generators of which are all
> D, We have

(86) Z~ > i< ¥ L

a<DB ,DB<u<D3B DBeacDtB o
‘Write
U, = Z o~ exp(— aD*®)—exp(—aD P)},
o>DB
U, = 2 aHexp(— aD~*F)—exp(~—aD™5)}.
asDB
Then
(87) U>; > at, Uy»0

DB a=piB
(ef. (81)) and

Ui+ Uy = po{3Blog D+0 (logeq)}+0(D~"+4),
where

po = Res (s, 5) > D%,
8=
For a large B <1 the remaining term being unimportant, we deduce
#o(4Blog D+ celogeq) > Uy,
whence, by (87), (86), (85)

b 1 11 e o 1l
log D DB<a<D43a 1ogD ZDI 2 10gD o

DB<u<D4.B o DB

(88)  mo>
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By the arguments of (84)

2-+ic0

®9) Y aexp(—ab ) = f DFEIL (s — ) (s, 10) s

— DY {I(8)+-0(ogeq)} +R, B < D,

Za“*"exp(~aD‘B’z)-R <6y 2 a’t.
o agDB
Hence, by (89), (88)
1w % Y1
(%% Z — > -
a é élog D o a

a<DB

and we may go on as in § 20.

A simple consequence of Lemma 24 (cf. [6], pp. 146, 147) is the fol-
lowing

FUNDAMENTAL LEMMA 25. Let & be defined by (67). For appropriate
constant A and
8 if &< AflogD,
AfllogD  otherwise (%),

eA
Ay = Alog——— 5log D 4, #logD]
(1

8y =

there are in (L—2JlogD < o <1, || < D) no other zeros of the Sfunetion
[t(s, ) than at most the exceptional ones of Lemma 11.
x

Proof of the theorem. 22. Let L, denote a broken line in the strip
1——0 1/ClogD(L4-21t) <o < ———19 (0 <1) such that (i) for any
s = o+iteL, we have {'[i(s, x) < log*D(1+2]t]) and (11) that the length
of the piece of L, between any two of its points o+ it, ¢ "Li(1)is < 2
(et. § 15). erte

g=5<5H a=1—¢.
From the identity

— 24i00 _,

(s, p)& —o1g(8-01)? o

vr a)A(a) (#L 5 )='
e exp 4yloga/m i :

Ly
a

ERE

2—100

(z>1,y>0)

(1) That is to say, when the exceptional zero B does not exist.
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(cf. [4], D. 299) and (64) we deduce

(90)
h ZA (.,a)exp( —Liogta /m) =2Vny (w”e”2” +8 29;"”""*” 108 agli+ 2’“’”“"8”’2) -
& ot 4y kzT,...
T —
8oy

%0y

where g, runs through the zeros of (s, z) to the right of the line L,. It
1<y < log’D, then the last term does not exceed

< 1/ylog’D [ e *log* (2-+1)dt < hlog" D < Dolog’D.
[
Let ' and 8'' 4= [logg = o'’ be the exceptional zeros of the functions

(s, 2, 'C(s, ¢'") with real characters y', " (see Lemma 11) and let o
be a typical zero of []Z(s, y). Further on we use the following notation:
x

¥ =1-p, 8" =1-p", o=1-06+iy,
[ ‘1 it g’ ezlcists, o 1 if o' exists,
0  otherwise, 0  otherwise;

skn )2 | Aghmi

) S=1+0 ¥ o hond s
E=XT,...
o _(@RDyi)? 208" (2 iy
— By (H)g? tilog g4 g=3"w e ‘ logg )"‘ Togq - -
Tm0iE1,...
: _(2km\? 40 emi
_Erxl(H)m_a'e—d'(za-d’)v{1+9 P loga} TTloga }’
keot1,,,,
(92) § = SFE) 3 gttt sba=oss
% Q

In the last sum g, runs over the regular (or non-excepti ros
! . S O ptional) zeros o:
in the region &, (say) to the right of the line L,. ) tee
Let ¢ = ®(w,y, H) denote the left-hand side of (90
) ( . For 1
using & = ¢" (n integer > 0) we have by (91), (92) ©0 =
(93) ® = 2Vnya®e”™ (8 —8')+0 (D'log' D).
Write @ = Df, £ 0; y = nlogD (>, >2).

©
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Let I denote the integration B times repeated with respect to 7,
the range of integration being {5, -+1). By (93), (92)

D s
(94) I —— I8 —|L S' — C: Dc"_au'mlo 3D
BZVr:yw"e“’ | Lp8|— Ip8 | —¢s gD,

B _s exp{— 7 (g+ ¥")log D}
a — m
) D e vy R A

95 Iz8') <
(95)  Ls9 (ng

where T,, T;, Ty stand for the parts of the previous sum obtained by
cutting the region & = }'@, as follows.
x
Let Gy be the part of ¢ with |i| >1. By (95) and Lemma 3
T, < Ze'"oyzmﬂ’ < hf e~ 12D 200 1) - Tog D (1+ 1) di
0eFy 1

< hlog"’Df e8P o0 (2 4- 1) At
1

< hlog’D f ¢ MoED gy < B D "log D.
1

Let G, be the set of points s = 1—Aiflog D+itfllogDeG with 4 > 4,
(defined by Lemma 25), [1| <= 7.(A) = min (¢*, logD). Now we write
the zeros p¢@; as follows:

¢ = 1—4flogD+iz/log D,
By (95) and Lemma 19 (with c;, ¢ defined in it)
T, < Z Mot~ B 2 Z‘ o (ET It

eeGly 206G

cgdlog D
< J‘ (E+!J”]o) o~ (E+ang—Ccp)h ar+ g—(£+grxovC7)caﬁlngD+
)

ﬂ,:},a,

T =T,

1 (hlog D)e~Crommra?losD  g=(E+imits,

provided that 7, <1 is large enough.

Let G, denote the remaining part of & to the left of the line o
=1—A/log D. Supposing that 4, < loglogD (otherwise there is no Gs)
and taking B > 1-+e¢; we have by (95)

T, < Ze—(h‘—ano)ilr[—B < g Erma Z‘ |vj~2

2663 0eGl3
loglog D

< e—(s»wno\lo{ f
Ay
< 6—(5+ﬂno+3—07)io < e~ G+igmito

¢~ B—c0i), - g (B-onloglos D}


GUEST


icm®

172 E. Fogels

23. First let us suppose that B’ =0 and I’ = 1. Then, by (91),
(96) 8 = 1—y (H)a~"e """ 4 '

o () ey (). M= ont
- [, T, 1) o 37 A ey i

+e } {6 log ¢ logq __XI(H)m 478 o820 d)ye loggq

k=+1,...

WI‘OB' 7 T/} '

Denoting by Vi, V, the parts of the last sum with |k| < %, = logg and
[k| > &,, respectively(!), we have for a sufficiently large #, <1

2lers. nlogD A~ imgnglosD/log g

—y
log g P
]Vzl < 4 /}J [ S 1*6”2"’70]051)/103{1
ke>kg

< 8emrmo log]).< 3;(1.._w~1/’0—ga'm,log ny
(since 6" > D~ by Lemma 23), whence
(97) ”BV2| < k(‘l——m_"'6~{l'nologl))‘

Performing the operation Iz in (96) for any selected & (0 << [k| < k)
we get 2% differences, the typical first term being

dgkni  (%r|?
¢ Tog ¢ - mlogq) }vﬂog‘l)

dgkeri ( Py )2 }1‘" ‘
logD—{— ]
{ Tozg og Togq log.D
Subtracting the corresponding second term we get a quantity of the
same order of magnitude multiplied by a factor

46'kn ,
< (—ﬁg—q_ +2g6 ) nlog D4 (1—27%) € L—g=" ¢~ "m0lw? = ¢
(say). We may suppose that B >>2. Then, if y'(H) =1,
B B
(98) 15V, < 254 (Z—lﬁlg—qﬁ) P d(—l—"iq-m) .
grlog = 2grlog D

The last quotient being << 1 (since ¢ < D°, 2¢r > 9), for a sufficiently
large B <1 we have |IpV,| < 1d. Hence, by (96) and (97)

(99) |Z58] > }(1—a~% g~ moloe D),

(Anoﬂler proof of (99) will be given at the end of §27.) If y'(H) = —1
then instead of (97) we use |IpV,| < } and we use (98) with ¢ = 1. Ié
follows that [IpS]> %, whence (99).

(1) If logg < 1, then V; = 0.
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Now let us denote the right-hand side of (96) by 1+U,. If B =1,
then by (91)
8 =1+ Uy +a 2T,
where U, stands for the appropriate term. Consider that
s 2
T 1 it z=¢",
_1 lf r = q‘2m+1

(m integer). By what has been proved
(100) reIg(1+ Uy)| > %(1_4,—6‘8—06'%1@1))7

it 5, and B are large enough. Now imposing the restriction that » runs
merely over the powers # = ¢" with a properly fixed parity of n we find
that the real parts of Iz(1-+U,) and Iga™/°8?T, agree in sign. Then, by
(100),
relpS| > H1—a~ Ve % mloED),

whence (99) again.

If f' does not exist, then a stronger inequality holds. Using the num-
ber 6, of Lemma 25 we have in any case
> g8,log D

|Z5S| > }(L—™P0wI% D) > J(1— g™ WOOANED) > =2

(supposing 7, > 2/4). If 7, is large enough, then T, taken together with
the remaining term of (94) is in modulus < % g(8,/4)logD (since &, > D
by Lemmas 25 and 23) and so is T,+Ty:

1 ed
Ty 4Ty < g™ EH0% L oge740h = grexp (‘5 !JmAlog‘a.,logD)
g 1
= (ﬁlﬂg_l)) e e ¥t < g(8,/4)1logD.
A 6
Hence, if U denotes the left-hand side of (94),
(101) U > 3g(8/A)logD.
24, Now we introduce the number
e4y — Dé+4r;

2 =0

and divide the sum @ on the left of (90) into four sums:

logh 1 2
(102) ® = Sy+h g = exp(——glog b/m) 48,418,

Z<b<?
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where
logh log*b i 2
(103)8, =k Z b%l GXP(“"%'"/'*), 8, =h Z ———(a?)exp(_w)
z2ball Y s aell a 4y
A 2
SH= ) Jf? ox (w_lgga a/w)'
Zza=b"eH Yt
>2
By (42)
o
log? ;
(104) 08, < f t”exp(-—— 0g t/m). l??ﬂi dt
3 4y 2t
i log"t/z logt/
- o g g
= | exp|———+glogt)|—— —— 4 —| di
zf p( 4y " g)(2yt ¢ t)m
3 log®t/m logtjn ¢
< [ exp [ ¢ o) (22 _0)
F 4y A t
log*z/x ,
= ZBXP ———-—zlr _]_glogz — 2,’?/08_ v o 2&706—4‘(1'“‘7)”,

From (103), (3) and (42) we deduce
(105) Sy <h X bogh=h Y +h S & haD%-+ 6~
a2befl D“'B>bel~l 51_1}

N Dicvsa
< Gyl

Observing that o, =1—g,0 < g <g, we have for any selected
g <1—2¢g

logb log?b™ |2 ,
3 U (T
2= bMeH aeH

M2

F at-+Do=? ,
< J‘ T dt+D% < D%,
1
whence, if 7, <1 is large enough,

(106) 18, < §71eVa?,
Now by (102), (104), (108), (106)
logd log’b[o
h g o QXP(—T) = & —(8y+81+18,)

bz

>Pp—0"! (c,,m"e“’z”—’,- ol =)
> O—2Vryae Yo,y te L gy em -0y g1
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Hence, by (101)
(xom)

1 logh log*b
Ty L (_M)
Wy & U 4y
r<b<s

logq 4 a2 1
> U—2cgi_q_113y tp—i0%Y >§U’

if 5, < 1 is large enough. Since 2 < zD*0tP)the theorem follows forg==1.
If ¢ >1, then from (107) we can deduce the existence of a generator
beH in the interval (w,aD") (¢ = 47,+-4B) merely for all x=¢" with
a probable restriction that n runs over the integers with a fixed parity
(cf. § 23). But then increasing ¢ ab most by logg/log.D we get the theorem
for all .

Oonsidering that for any z > D (with a sufficiently large ¢y0) the
left-hand side of (107) does not exceed

D% logx
n(z, H) ra : m—lg_i ’

we deduce (10).

Improvement of the theorem for ¢ <1, # - oco. 25. By the use of
some additional conditions the theorem of § 1 may be improved as fol-
lows.

For arbitrarily small &, & and all D> Dy(e), # =1, let

(108) ha > D%,
(109) 2 1 < e5ley) D+
age

and let (9) hold for any e, > 0, D > Dy(es). If ¢ < 1, then there are constants
¢, ¢’ (depending on ¢y, €1, 1, #, q) such that for any positive e < ¢ (if ¢ =1),
<ef2 (if ¢>1(?) and all v > % = DeosCld) here is @ generator beH in
the interval (@, 2D°). Then if. @ > D*, we have w(z, H) > a/hD*logax.

‘We begin by proving that with regard to the real exceptional zero
B’ =1—4' the additional conditions imply the estimate

(110) 8 >D2 (D> Dy(e))
where ¢, (and & in the sequel) stands for an arbitrarily small positive
constant.
Let first 3’ # y. Then by (9)
(111) : L@, y)>D""

(12) If ¢ > 1 and ¢ is large enough, then taking & < c/2 we get & > no, which
is necessary in (114).
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(cf. the proof of Lemma 22). By (109)

: _ L F oot ,
M2 e, ) <) D [ S da <ole) D,
J
which implies
(113) £ (14264t 7)] < ea(e)) D"

Since by (12)
C(L—B/24dt, ) < DS+ ]t)),
using (113) and [5], Lemma 3, we deduce
1€, 7)) <(e) D™ in (1—2¢ < 0 < 1426, 1 € 1),
whence in [s—1] < g
16/ (s, 2| < og(en) D

(¢f. (68)). Now using (111) and arguing as in Lemma 20 we get (110) for
2 # Yo
. It 4 = x, then we use the function G(s) of §19, which is regular
in ¢ >1—% and, by (12), (112), satisfies

|G(L+26,+it)] < exglea) D7 (L4 11]),  G(L—B240) < DV(L+Y))

By [5], Lemma 3,

1G(s)] <enle) DB in (1—28 < o < 142¢, 1] <1),
whence in |s—1|<¢g
16" (8)] < 04 (e)) DI
and observing that by (108) G(1) > D“', we may go on ag in Lemma 20.

26, Now let us choose an integer B > ¢,+2, ¢; being the constant
of Lemma 19, and let

z =D ¢&E=0;
y=mp ogD, 9 <n<p+B <1, 1<v=7(§) <min(e,logD)

where 7y, ¢ <1 are large enough. Then the remaining term in (94) is
< D% (cf. [4], p. 301). By the arguments used in § 22 (but now denot-
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ing by @, the part [t} >logD of &, and changing G, G5 accordingly)
we deduce that

I8 < ¢~ @i =%

(cf. [4], pp. 302, 303). Supposing ¢ < 1, in the next paragraph we shall
prove that for a sufficiently large 7, <1 and for all & =97

(114) I8 > 31 —e"),
whence (ef. [4], pp. 304, 305)

dolog D dplog D
olog U>°0g

S > .
I8 2 =g 124y

TUsing the number z = z¢'? we divide the sum (90) info four partial sums
ag in § 24. By the arguments used there

8o4+-81+18, < camgewzy:

whenee

2
LTS L
Wnya’e? ! b7 4y 2y ry
axcb<s
dylogD —0Png~log D
7 124y e

and going on as in [4], pp. 308, 309, we prove the required results.

27. In this paragraph we shall be eoncerned with the proof of (114)
when ¢>1, B” =0, ' =1 and y' (H) =1 (the other cases may be
treated as in §23). Then by (91)

(115) 8 =U,—"U,,

where
v - ( U )2 dgkni
— lozq logg
U, 14 2 ¢ )

k=1,

2%m )g | A{g—8")gkni

T, zw_a'g—a'(zg—ﬁ')y{1+ 2 . (E—gTJ Yt T g
k

=1

¥

are evidently real. Observing that the function

X n

logg q
7o) = o =logg Do (e>1)

n=0

Acta Arithmetica X.2 12
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is regular in the whole plane, exeept for simple poles at § == 1--2knifloggq

(k =0, +1,...) with residue 1, we have, by (115)
' n(l 8 1
(116) logg SW P exp(—zglog2 Q" |z )
0
— 24100
=i/ = f {p(8) — (s + 8")}a" =164~ s
2—100
e Gyl
= 2V mya®?" (U, — Uz)——zl/w— f {p(8)—p(s+ 8"} -~y
Ul—w?oo

Since by (17) on the line ¢ = ¢; we have @(8)—q(s--0') < §’, the last
term iy < §’. For @ = ¢™ (», being an integer > 0), the remainder after
o, terms of the series in (116) satisfies

(117 Z > a(1— o)1+ qﬂe—(lﬁlw)mgzq_ln qzae~(22/4w)1ng’a NI
'ﬂ:;ﬁo :

The general term q”"e"(ﬂzlw)lwza = f(n) (say) of the series in brackets
attaing its maxima at n =n, = [2gy logq] or [2gy/logq]--1 (or both).

Since
2gy ) o ( 29y | V2y ) .
= ¢ 02§
f(logg » logg * Tog logq ¢

iior ¢ <1 and a sufficiently large 7, = n,(¢) < 1 the sum of that series
is

1/2(1/ Y2 s

g ©

Hence, by (116), (115)

8 >]/% 1—"%) > }(L—a"

whence (since & > n, for ¢ > 1) we can deduce (114).

Nore. 0011 (117) may be based another proof of (99) in the case of
1<g¢g< D’ y(H)=1. By the arguments of (116)

{1+q”e'(1 /4y)1og’ a+q273—(22/4u)logza +...}loggq
— 24100 2krety 2 gy 100
= —i|/ = f p(s)e*="Vds = 2V e(H]"” ' @]/:y_ lf
7c
oy—100

2—1%00 k=0,i1,,.,

o agkmi _ ( 2km )2}
=9y Y o 2 ¢ \loge ~ \loga
k=01,

v
+0(logeq).
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Hence, by (116) and (117)

_ ( 2k )ZU + agkerei
8> (1—(3_"') logg ioga __O(IOgeg )}’
k=0,L,... Vye™
whence
o%km\2  4gkmi
— - () ¥+ Voma ¥ logeq
IgS>(1—u ﬁ){l—‘I e ‘0‘3‘1) Togg '] —,..—_...._._—-——~}
"’ Bk:%:" Yy 0log D 2P olor.D

and we may proceed as in § 23: For sufficiently large #,, B < 1 the expres-
sion in brackets is > § and, if & > 4g7,, (99) follows. Having proved the
theorem for all & > 497, we get it for all & > 0 after increasing ¢ by 4g7,.

Appendix. 28. In this paragraph we shall prove a statement of §1
concerning the case where the coefficients a; in (1) are unequal. It may
be formulated as the following

LEMMA 26. Let the classes H; (1 <4 < h) satisfying (1) form a group
K and let at least two of the coefficients a = o; > 0 be different. Then there
are two classes H, H' among the H; such that =(z, H) and =(z, H') have
different orders of magnitude as © — oo.

Exawpre. Let H,, H,, H; be the classes of all the natural num-

nVi. Evidently they

T gy =27 H =1.
The generators are b; = §/2 and all the odd primes p. There is no gene-
rator in H,.

Proof. Let g1, %2y ..., 2 be all the characters of the group K, the
principal character being 7. We begin by proving that the matrix

2(Hy) oo 1(Hp)

2 (H) oo qn (Hz)

3,—
bers n and, respectively, of the numbers Ve,
form a group and (1) holds with a; =1, ay =2

has the rank r(M) = h—1.

Suppose, that r(M) < h—1. Then, on the one hand, all the deter-
minants of the order A—1 belonging to M are zero, whence using the
expansion corresponding to the first row in

x(Hy) ... 1 (H)
D= 22(Hy) - X:('Hh)l
.......... |
an(Ha) oo gn(Ha)
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we deduce that D = 0. On the other hand, squaring D by the ‘column
* by column’ rule and observing that by (64)
h it H;, H; are inverse classes,

;x( i) (Hj) 0  otherwise

we get a determinant with the number 7 occurring once in each column
and once in each row, all the other places being filled by zeros. This de-
terminant being %%, we get a contradiction. Hence D) = 0 and thus
r(M) =h—1.

If all the positive numbers aj, ..., ¢; are equal, then in the system
of equations

oy gy (Hy)+ a1 (Ho) - - -F apga () = ey,
oy go (Hy) At o (Ho) o+ an o Hy) = e,
ay g (Hy)+ oo n (He)+ .+ apgn(Hy) = ¢
we have, by (14)

(119) C1>0, Cz=...:0h=0.

(118)

suppose, that there is a set of positive and unequal numbers a; such
that in (118) ¢, = ... = ¢; = 0. Dropping the first line we get & homo-
geneous system of linear equations with a set of unequal solutions, whence
?'(.M) < h—1 — a contradiction. Hence, if in (118) a;, ..., o ;Jre POs-
itive unequal numbers, then next to ¢, = 0 at least one ’of bthe num-
bers ¢, ..., 0, 18 # 0. Transposing (if necessary) the indices we may
suppose that

Cry Cay vy G (B = 2)

are all the coefficients ¢ in (118) which do not vanish. The correspond-
ing cyaracﬁers L1y --+5 % form a group I', by [11], Lemma A (2%). The zeta
functions

f ) A <j<k)

with characters y;el” (and these alone) have a simple pole at s =1
(c.f. § 3). Hence the functions t'[t(s, ;) have a simple pole at s =1
with. 1.ve81due —1; the other ¢'[f(s,x) arve regular at s = 1. The main
term in the asymptotical estimate of the sum >'logh over the genera-
tors b < « of any clagss H being &

_p-1 — xs X C' T -
] Zx(ﬂ)l;glsT T =7 > %
I<igk

(18)  Although the starting point in [11] is different fr
> om. that
paper (cf. (%)), it does not affect the proof concerning I *b ot the prasent

icm®
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(cf. [17], p. 134), for the principal class H; is equal to
xk/h.

Hence the lemma would follow by proving that there is a class HeK
such that

(120) D, w(H) = 0.

1<k

By the isomorphism of the group K’ of the characters on the group
K (cf. [12], p. 36) there is a sub-group K, = K corresponding to 'e K.
Hence the order of K, is k¥ >1 and thus there is a class H <K, such that
for #; running over all the characters of the group K, we have, by (64),

D w(H) =0
1<k

whence

(121) > %(HE) =0.

1<k
Let » run through all the characters of the factor-group K[K,. Then
5x  (J=1,..,F)
apparently represent all the characters y of K. Since
%(H) = % (H)% (H)
(with an obvious interpretation. of « (H)), (120) follows from (121).
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ACTA ARITHMETICA
X (1964)

The discrepancy of random sequences {kz}
by
H. KusteN (Ithaca)

1. Introduction. It was R. Bellman [2] who first suggested the
investigation of the limit distribution -of

N
D'f(y+ka; a,b)—N(0—a)

(1.1)
k=1
if the pair x,y is a random variable, uniformly distributed in the unib
square and if, for 0 < @ <bkl,
£ b 1 if e<ELD,
. a.b) =
FEaD =1, 4 o<t<aob<e<l,

F(E+15 a,b) =f(&; a,b).
N
If {& = &—[x] denotes the fractional part of £, then kZ’ fly+ks; a,d)
=1

is simply the number of k,1 <k <N, with {y-+kz}ela, b] and (1.1)
measures the deviation of this number from its average.

In [4] and [5] the author found the limiting distribution of (1.1).
In this note those results are extended by studying the discrepancy

N
1
(1.2) Dy () =¥ sup Ef(ka:; a,b)—N({b—a)|.
o<agh<l+a i

(If 1<b<14a we define f(&; a,b) in an obvious way, namely as
f(&; &, 1)+f(&; 0,b—1).) Our main result is Theorem 2 below for
which we consider  as a point from the measure space [0, 1] with Lebes-
gue measure.

THEOREM 2.
N Dy (2) 2 .
mﬁ»? in measure on [0,1] as N — oco.

The first part of the proof (section 2) gives an agymptotic expression
for Dy(x) in terms of the continued fraction denominators of #, which
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