If rank \((g_1, g_2) = 2\), since \(g \geq 7\), we may solve \(g_1 = g_2 = 0\) with some of \(x_3, \ldots, x_n\) not zero. We then set \(x_1 = x_2 = 0\) and choose \(x_3, x_4\) so that \(f^* = 0\). The resulting point is a fifth point on \(V^*\), contrary to the hypothesis. This completes the proof of the Lemma and hence the proof of the Theorem.

References


THE UNIVERSITY, MANCHESTER, ENGLAND
THE UNIVERSITY OF MICHIGAN

Errata to the paper “On the distribution of the \(k\)-free integers in residue classes”

(Acta Arithmetica 8 (1963), pp. 283-283)

by

E. COHEN and RICHARD L. ROBINSON (TENNESSEE)

In the line following (2.2) on p. 285, replace \(Q_k\) by \(Q_k\); in the last line on p. 288 replace \(\Phi_5(h)\) by \(\Phi_5(h)\); in the first and third sentences of Theorem 3, replace the comma preceding “that is” by a semicolon.