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Appendix added June 5, 1964.

Our formula (6) is actually equivalent to

L@ =2 >V (ﬂi.q)) D) g
3 L - q
1<q<m1/2 h{mod q) l<nge

+0(a™logs), @ - 4oo.
This of course is (4) for &k = 3. In order to show this we need only prove
that
(14) & ’ M 8 nl2g=tminiia
q

2 <g<zl/? Mmod g) 1<n=n

= () (2**loge), @ - “oco.
By partial summation,

n 172 o~ aninhjg

1 1 1
1 K%;m <q (ﬁ -+ —(Ij) (L [aed) .

This together with (5) shows that the left hand side of (14) is

o 3 Sl )

2cqcal/? h(mod q) q— h
- 0(561/2 2 q“”zlogq)
2<a<al/?

= 0(«"*logz), a8 @ > --oo.

This proves (14) and hence (4) for the ecase %k = 3.
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On oscillations of certain means formed from the
Méobius series II

by

8. KNAPOWSKI (Poznat)

1. As announced in paper [1], the present work contains some new
results concerning the distribution of values of x(n) in relatively short
intervals a <n <b. Briefly and roughly speaking, it will be proved
that on Riemann hypothesis there exist infinitely many intervals [U,, U,],
U0 < U, < U,, U, - oo, such that

p(n) > U0,
UynsUy

and also that there exists an infinity of similar intervals [U;, U,] with

um) < =0,
Ugsn<U,

This result is a particular case of the following Theorem 1. As a by-protli-
uct of the proof of this theorem, we will obtain the inequality (again
on Riemann hypothesis)

| (@)] -
S > TR0,
1-o0(1)

(M (@) being, as usual, 3 u(n)), which improves on my previous result ([2]).
nGT

2. In the following we will use two lemmas. Their proofs can be
found respectively in [4] (proof of Lemma II) and in [3] (proof of Theorem
4.1). We call thom Lemma 1 and Lemma 2.

Lemma 1. Let By, Bay ... be a real sequence and ay, dyy ... @ stmilar
one with the property that

(2.1) lw| =T (>0)


GUEST


icm

378 3. Knapowski
and
(2.2) 21+| P <V (< o0), where y>1.

Then every real interval of length 4 > 1/U contains & &-value such that for
all v’s

1
i 1’5 r p
B0 o E+ 0 — Q2 g T

The second lemma perfains ecomplex numbers 2, 2,, ..., 2, such that
firstly

(2.3) T=la 2z =... >l
and secondly, with a 0 < » < =/2,
(2.4) . < largyl <w, jF=1,2,...,n

Further, we suppose that there are indices h and hy, b < h,, such that

dn
o >
and
2n
(2.6) 2n,] < len — —‘:*'_‘,n“m“/“;

where m is an arbitrarily fixed non-negative integer. Finally, given a set
of complex numbers by, b,,..., b,, we pub

@.7) AY min |9te2b,
hf<ty S

and formulate
LeMmA 2. If A > 0, then there ewist integers v, and v, with

(2.8) m+1 <oy, vy <mA+n(34n/x)

such that

(2.9) Re ¥ b > A (Ji’i)m+n(3+n/ﬂ)( no )m
~ 1\ 2 24(m - n (3 )

and
£

(210) Re Yoy < — 2 (EAL) ) (.___.q.,lt WWWWWWW "
&~ - on+t1 24 (m+n(3+ /)

Now we come to the theorems.

On oscillations of certain means 379

TEEOREM 1. Suppose all the L-zeros in 0 < o <1, [t <o, to lie on
the line o = %. Then for (1

(2.11) 6 <T<e™

there exist values Uy, U,, U,, U,,

(2.12) 116—6(1031')5/6 gl < g« < Te 6(logT)5/6
3 \
such that
(2.13) D wln) > Tt
U <ngUy
and
(2.14) " u(n) < —TM2gmtorm¥

Us<n<U,y

COROLLARY. On Fiemann hypothesis (2.12), (2.13), (2.14) hold for
all T sufficiently large.

THEEOREM 2. Under the same conditions as in Theorem 1,
1)
@
(2.15) [ do > T2~
%5
where X, = Te~°0sD | x, — pestoeme,

3. In what follows, we shall denote by g, the “earliest” zero of ¢(s)
in the upper half-plane (which is simple)

(3.1) 0 = $+iy, = $+14-14.13...,
and by ¢, — the next ome (again simple)
(3.2) 0= }+iy = }+i-21.02...,

Further, wo introduce

p Arg?'(g,)
Yo

(3.3)

and note that

=¢,>0.

(*) Throughout this paper ¢,, ¢,, ... denote positive numerical constants.
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It is well known (see e.g. [5], p. 185, Theorem 9.7) that for every
T =2 there exists a ¢t =1¢(T), I'<t<T+1 such that
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Partial integration gives

X - %k(log(wc’D%zkb}zd

1
. — =<5, —1<o0<2. ¢ (@)
(3.5) Fow ST l<o<? S
1 2 1 @x
i Lo — = {log(: e-D)-zkb} o — - log2 2
Putting = M@)o = Ro— [ Ml@dn(e = ),
dot 1/6p 1
(3.6) @ = t(log'" 1 —1), where
we start from the integral (3.12) £, = oM+
1 M ds g
(3.7) L f DS+ (a2 “_i.,d Thus, pubiting . = ¢P%% and using (3.8), (3.9), (3.12), we have
I, e £ w2 a4 -2l
vy 5. 1.h2
where b and integer % are at the moment restricted only by (8.13) Mely = I = —*-";/“7— ’ M (m)'d*a; (e ™ W)dz4-0 (T
. e 3
- 1
(3.8) 0, <b <z logT wr Sk d ~ L2
and M(@)——(—e & ®)ap+0(*-17).
L 21/7':75 o dw
(3.9) 1<k < glogT. o8
Hence
Then, a8 i3 easy to see, : e Spp gt
1, ds Rel, <——:{ max f (— " E’C)
(3.10) I =-— J PR _Z 0 (oM oVrnk ‘gpece- ’Ewc
27 & £(s) \o
: "?17:1"3 By kb2 /3
Substituting the Dirichlet series E,u n)n~* for 1/¢(s) in (3.10) and inte- '"5 ~11111n . M (z) f l(e ") d“"} o0 T
%% <<y &ay
grating term by term, we obtam b2 *
‘ ¢ .
1 oo — (1—£°"){ max M(z)~ min M (@)} + 056" T,
_2““.* 6D3+k(5+b)2 ds =Z Ibz(/”") j‘ 6yc(s+b)2_slog(ne~D)ds 21/117(3 ey 5ka;1<w<5k
™ 2) f(S) =1 2mi tz) 80 that
Tcb2 i 1 D 2 2 ; 1 94 1/3
_° sty (7 - gz log(ne™ )~ 2iby (8.14) P Re ), < —=(1— %) w(n)y+eT
T )¢ dsZ plme = " oV U;glgvz ’
) M1 .
o S - = 2 toge= D) -2k with certain U,, U, satisfying
= nye . S S
Vi (3.15) £0™ VR < T, < T, < &0 P0%%,
Hence, by (3.10) Similarly, we come to
kb 1
“‘7 —{log(ne—P)— 2ib)2
(8.11) I, ) % O (67 % b2 1 —g)4 e
Vo £t : (3.16 R T, > e (1— &) u(n)— o T,
' 2 =1 ) ke 2V k Uag»gv,,
kb2 1 .
4 — s oz (e =Dy~ 2kby2 with some U, U, satisfyin
= 21/7;7{;_ P (w)—FO(B'CbZ‘TI/a). 3y Ug ying
1-0

(3.17) Eke—alflclpzéja < U, S U, < Ekem’klogfﬁ.
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4. By Cauchy’s theorem of residues and by (3.5),

-14-1Q

2 1 1 D3 k(s+-b)2 ds 1cb2
I, = RegePstre+b_— 4 — f Praandt — +O0(e
gy oo £(s)  2mi Y Z(s) )y
o

whence, noting that

—~141Q
Ds-l(s+b)2 ds _ kb2
¢ - ( )7
-1%4Q £(s)
and putting
(4.1) Rk d=uf ROSGDH‘I‘ID(E‘Fb)g 1 ,
19<Q =2 £(s)
we obtain :
(42) Ilc — Rk+0(6’“’z).

Similarly to [1], we shall introduce “shifted” g-zeros and a “shifted”
{-function. We denote by g; = 3414y, 0 < y, < 1< ... <9y, all the
{-zeros. in 01<,.t,A<,,‘Qﬂ,whha possible. multiple zeros being counted only
once. Next, we take an &> 0 subjected to

(4.3) e<< min (y,—y), &<@Q—y,
0<I<r—1

and for every o; (whose order of multiplicity is, say, ») define » “shifted
zeros”:

(4.4)

1 . 1 & PO T y—1
P =eo=;+in, =3 +%(w+;)y =3 -H(VH— . 8).
In the rectangle 0 < 0 <1, —@Q < ¢ < 0, we proceed similarly. Thus, we
obtain a set of shifted zeros 8,(g) such that there is a one-to-one corre-

spondence between the s in |f| < @ and the 8;(0)-numbers. We note
also that

(4-5) |9~'sa(9)] <&,

and

(4.6) 8:(00) = 00,  8,(g) = 0y.
Finally, we define the “shifted” {-funetion by
«) L2 [

Gl<e €
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Since {,(s) has only simple zeros in |¢| < @, we get

2
1.8) Ri(e) = 2 Res ePrrkesn? L _ exp(Dse(g)+k(s~e(g)+b))
W8 BT i ORI )
Notir;g that
1 6Ds+k(a+b)2
. _ L e
e 2m‘! AT
(4-9) R 1 j. 0Ds+k(g+b)2 ds
T omiy (s '

where ¢ is the boundary of the rectangle with vertices at +4Q, 2+iQ,
and also that (eompare [1], section 3) for e -» 0

1 -z 1 seC
t(s) T L(s)’ ’
we conclude
(4.10) lim Ry (e) = Ry.
>0

5. We shall choose our b-value by means of Lemma 1. The role of
1 1
the ¢’s is played by —;S(g)'numbers, that of B,’s by ES(QZ)-]lumbeI‘S.

Setting then U =2, y = %, A4 =1, we see by Lemma 1 that there exists
a b with

(5.1) F(logD)* < b < 7 (logT)P+1,

such that for all ¢ in |#| < @

i | 3 (0% 2bg)— 2 NI N
(5-2) nﬁtig-nar 27_: Q Qllllo i/lOgT
We can also put (5.2) in the form
27
2.4 2bg
3 |Arge? +2%| > .
©:2) ;/logT

Making & > 0 small cnough, we deduce from (5.3)

~s_

(5.4) | Argexp (s3(o)+ 2bs.(e)| > (logT)
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Then we introduce

(5:5) 4 = 2(e) & exp(s?(0)+2bs.(0)+ v — 1),

1
b= byle) BP0 j =1 9, ...

A
where 2z, 2,,...,2, are arranged so as to have
(5.6) A=) la| 20l =... = |2

Using this notation, we rewrite (4.8) as

(5.7) Bife) = exp (b0 +3— i)+ 1%} X by (e)2 (c).

Fen 1

We ghall use Lemma 2 with

(5.8) m = [—21;105;(%’1’)]

and (see (5.4))

(5.9) % = (logT)™*5.

We note also that for the number n of terms in (5.7) we have the bound
(5.10) n < ¢;(log T)"* (loglog T').

Putting h = 2, b, = 3, we find

(8.11) 21(e) = @M+ D) — 3 ()
and

2,2
(b.12) - 2(e) = 670"7lei71(1+2b).

Hence, and by (3.1), (3.2), (5.1), (5.8), (6.9), (5.10), the conditions (2.5)
and (2.6) are readily verified. As to the number 4 of (2.7), wo have

6])‘20
4 = A(e) = Re(by(e)+ by(e)) = 2Ne .,
Co(00)

8o that, owing to
linnlfi(eo) = ()
and (3.4), conclude

(6.13) A(s) >0, (>0).
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By Lemma 2, there exists an integer & = , satisfying
(5.14) m+1 <k, < m+n(34n/x)
and such that

‘ﬁch‘(e)
Ale) s ( n n
2 M N8 T /%) -
>2’i’b+1 24(’)%+7’b(3—|~7-:/x))) eXP{ks(b—l'%—Vg)-lrksbz}-

Using (5.13), (5.10), (5.8), (5.9), (5.1), (5.14) and (3.1), we obtain
(5.15) PR By, (o) > P2 10008
Clearly, there exists an integer k,
(5.16) m-+1 <k <m4n(3+ n)x),
and a sequence ¢ -> 0 for which k, = k. Letting these &'s tend to zero
in (5.15) and making use of (4.10), we get
(5.17) eV ReR, > T2 o1010s™r
(5.17) obviously implies {3.9), whence by (4.2) and (3.12), (3.14), (3.15)
(5.18) 2 w(n) > Tl/ze—(logl‘)ﬂl«t

Uysn<Uy

with certain U,, U, satisfying
7l -+ — 3V 2 , V. -
(5_19) ezlcbu) 3V 2ic2b+ Dk <U, < U, < §20+D+3 2%2b - Dk_

The above inequalities combined with (5.1), (5.8) and (5.16) lead
straight to (2.12), 8o that the part (2.12) and (2.13) of Theorem 1 is settled.
The part (2.12)-(2.14) follows similarly on applying (2.8)-(2.10) of Lem-
ma 2 together with the relation (3.16) and (3.17).

6. Theorem 2 is much simpler and its proof does not require the com-
plicated machinery of the previous sections. It would be enough to use
a two-sided lemma in place of the one-sided Lemma 2 and dispense with
Lemma 1 altogether. However, we prefer to give a guicker rather than
a simpler proof and this is in fact possible by appealing to some points
of the former proof. By (3.13)
w2 SVDF 2kb T" \ M ()]

4V 1
4%

L] < ¢ do-+0 (" T),

Acta Arfthmetica X, 4 *
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further, by (5.17) and (4.2),

—kb? 1/2,,— 2/8p
e Ll = T% o10og®r_

whence (2.15) follows at once.
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Oxnomepnoe pemeTo

B. B. Jlzpun (Tamxenr)

1. B Bompoce 06 ouenKe wacIa mowTH IpOCTHIX umCenN B AOBOILHO U1H-
POROM KIACCe NOCIEOBATENLHOCTEH BXKHYI0 POJIb UIPAeT MeTo] apaTocde-
HOBA pemera.

Rumace mOCIeOBATENbHOCTER K KOTOPHIM yCIemmo TpUMeHSeTCSA
METOJl pelreTa MOMHO OXapaKTepHsoBaTh clefyiomM ofpasom. Om co-
CTOMT U3 MOCIENOBATENBHOCTEH dy 5B CPENHEM DABHOMEPHO pacmpefe-
JEHHEIX B Iporpeccusax. Tounee, mma sToit mOCTeNOBATEIBPHOCTH TOMHHEL
CyMeCTBOBATE MYIbTUNIUKATUBEAR (yEKIUA y(D) w wucio » Takme, 9TO
OIA BCEX a <\ y—¢ M JMIOOBX A u & >0

N

o Ny(D) al

1 *(D)max v: 1-— =0

( ) 2{ “ ( )lmodD D l IOgA-N ’
DNt WUD) | itmodD)

rge u(D) — dyuruua MéGuyca, U(D) — MHOKeCTBO Tex | mia KOTOPEIX
CPaBHEHHIO &, = [(mod.D) ymoBiersopsier GECKOHEYHO MHOTO . Hpome
TOTO [OJKHO BEIIOIHATHCA PABEHCTBO

@) D w(®)logp = ro+0 (a5,

polsg

Tpe 7 — HATypalbHoe 4ucno, & = Congt > 0. (D)) MOMKET 3aBHCHTH OT
N, Ho oTa 3aBHCHMOCTh HOIMHA OHTH Tawo#l uTOGH paBeHCTBO (2) GHIIO
PaBHOMepHBIM MO N mpm @ < ¥® rpge B = Const. Cxema TIPUMEHEHU s
pemrera M XapaKTep OLEHOK IPU 3TOM HE 3AaBHCAT OT TOHKOH apumfme-
THIECKOH NPUPONE IOCIEOBATENHHOCTH ¢, M BIOIHE OIPENETIANTCH
umeiroM 7. B CBHSE ¢ BTMM YCHOBHMCH HABHBATH DEIUETO 7-MEDHHLM,
€CIM OHO NPUMEHAETCA K NOCTeTOBATENLHOCTH (I, MIA KOTOPOH BHIIONHE-
HH yenosusa (1) m (2).

Hpyrum BasmublM BONPOCOM B IPUMEHEHMAX PpelieIa ABIAETCA BOI-
poc 06 ompepereHHy NOYTH HPOCTOTHL. Y CIOBMMCS HASHBATL UYHCIO k-
noumu npocmuvim M oGo3HavaTh ero Py, ecim oHO comepRuUT He Gomee &
TPOCTLIX MHOKHTENEH B TOM YHCIIE M ONUHAKOBEIX:
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