ACTA ARITHMETICA X (1965)

Appendix added June 5, 1964.

Our formula (6) is actually equivalent to

$$egin{aligned} A_3(x) &= 2\pi \sum_{1 \leqslant q \leqslant x^{1/2}} \sum_{h (\mathrm{mod} \, q)}' \left(rac{S(h, \, q)}{q}
ight)^3 \sum_{1 \leqslant n \leqslant x} n^{1/2} e^{-2\pi i n h/q} + \ &\quad + O(x^{3/4} \mathrm{log} \, x), \quad x
ightarrow + \infty. \end{aligned}$$

This of course is (4) for k=3. In order to show this we need only prove that

(14)
$$\sum_{2 \leqslant q \leqslant x^{1/2}} \sum_{h \pmod{q}}' \left(\frac{S(h, q)}{q} \right)^3 \sum_{1 \leqslant n \leqslant x} n^{1/2} e^{-2\pi i n h/q}$$

$$= O(x^{3/4} \log x), \quad x \to +\infty.$$

By partial summation,

$$\Big|\sum_{1 \leqslant n \leqslant x} n^{1/2} e^{-2\pi i nh/q}\Big| \leqslant q\left(\frac{1}{h} + \frac{1}{q-h}\right) (1+ \lfloor x \rfloor)^{1/2} \,.$$

This together with (5) shows that the left hand side of (14) is

$$egin{aligned} O\left(x^{1/2} \sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \sum_{h (\mathrm{mod} \, q)}' \left(rac{1}{h} + rac{1}{q-h}
ight)
ight) \ &= O\left(x^{1/2} \sum_{2 \leqslant q \leqslant x^{1/2}} q^{-1/2} \mathrm{log} \, q
ight) \ &= O\left(x^{3/4} \mathrm{log} \, x
ight), \quad \mathrm{as} \quad x o + \infty. \end{aligned}$$

This proves (14) and hence (4) for the case k=3.

References

- [1] K. Chandrasekharan and R. Narashimhan Hecke's functional equation and the average order of arithmetical functions, Acta Arithm. 6 (1961), pp. 487-503.
- [2] I. M. Vinogrodov, On the number of integral points in the interior of a circle (in Russian), Bulletin Acad. Sci. Leningrad 7 (1932), pp. 313-336.
- [3] On the number of integral points in a given domain (in Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 24 (1960), pp. 777-786.
- [4] Arnold Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, Warsaw 1957.

THE UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN THE NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

Reçu par la Rédaction le 11, 2, 1964

On oscillations of certain means formed from the Möbius series II

by

S. Knapowski (Poznań)

1. As announced in paper [1], the present work contains some new results concerning the distribution of values of $\mu(n)$ in relatively short intervals $a \leq n \leq b$. Briefly and roughly speaking, it will be proved that on Riemann hypothesis there exist infinitely many intervals $[U_1, U_2]$, $U_2^{1-o(1)} \leq U_1 \leq U_2$, $U_2 \to \infty$, such that

$$\sum_{U_1\leqslant n\leqslant U_2}\mu(n)>\,U_2^{1/2-o(1)},$$

and also that there exists an infinity of similar intervals $[U_3, U_4]$ with

$$\sum_{U_3\leqslant n\leqslant U_4}\mu(n)<-U_4^{1/2-o(1)}.$$

This result is a particular case of the following Theorem 1. As a by-product of the proof of this theorem, we will obtain the inequality (again on Riemann hypothesis)

$$\int_{T^{1-o(1)}}^{T} \frac{|M(x)|}{x} dx > T^{1/2-o(1)},$$

 $(M(x) \text{ being, as usual}, \sum_{n \leqslant x} \mu(n))$, which improves on my previous result ([2]).

2. In the following we will use two lemmas. Their proofs can be found respectively in [4] (proof of Lemma II) and in [3] (proof of Theorem 4.1). We call them Lemma 1 and Lemma 2.

LEMMA 1. Let β_1, β_2, \ldots be a real sequence and $\alpha_1, \alpha_2, \ldots$ a similar one with the property that

$$|a_{\nu}| \geqslant U \ (>0)$$

and

(2.2)
$$\sum_{r} \frac{1}{1 + |\alpha_r|^{\gamma}} \leqslant V \ (< \infty), \quad \text{where} \quad \gamma > 1.$$

Then every real interval of length $\varDelta > 1/U$ contains a ξ -value such that for all ν 's

$$\min_{\Omega \, \text{integer}} \left| \alpha_{r} \, \xi + \beta_{r} - \Omega \right| \geqslant \frac{1}{24 \, V} \cdot \frac{1}{1 + \left| \alpha_{r} \right|^{\gamma}}.$$

The second lemma pertains complex numbers z_1, z_2, \ldots, z_n such that firstly

$$(2.3) 1 = |z_1| \geqslant |z_2| \geqslant \ldots \geqslant |z_n|$$

and secondly, with a $0 < \kappa \leqslant \pi/2$,

$$(2.4) \varkappa \leqslant |\arg z_j| \leqslant \pi, \quad j = 1, 2, ..., n.$$

Further, we suppose that there are indices h and h_1 , $h < h_1$, such that

$$|z_h| > \frac{4n}{m + n(3 + \pi/\kappa)}$$

and

(2.6)
$$|z_{h_1}| < |z_h| - \frac{2n}{m + n(3 + \pi/\varkappa)},$$

where m is an arbitrarily fixed non-negative integer. Finally, given a set of complex numbers b_1, b_2, \ldots, b_n , we put

(2.7)
$$A \stackrel{\text{def}}{=} \min_{h \leqslant j < h_1} \left| \Re \sum_{\nu \leqslant j} b_{\nu} \right|$$

and formulate

LEMMA 2. If A > 0, then there exist integers v_1 and v_2 with

$$(2.8) m+1 \leq \nu_1, \nu_2 \leq m+n(3+\pi/\kappa)$$

such that

$$(2.9) \qquad \Re e \sum_{j=1}^{n} b_{j} z_{j}^{*_{1}} \geqslant \frac{A}{2n+1} \left(\frac{|z_{h}|}{2} \right)^{m+n(3+\pi/s)} \left(\frac{n}{24(m+n(3+\pi/\kappa))} \right)^{2n}$$

and

$$(2.10) \quad \Re \sum_{j=1}^{n} b_{j} z_{j}^{\prime 2} \leqslant -\frac{A}{2n+1} \left(\frac{|z_{h}|}{2}\right)^{m+n(3+\pi/\varkappa)} \left(\frac{n}{24(m+n(3+\pi/\varkappa))}\right)^{2n}.$$

Now we come to the theorems.

THEOREM 1. Suppose all the ζ -zeros in $0 < \sigma < 1$, $|t| \leq \omega$, to lie on the line $\sigma = \frac{1}{2}$. Then for (1)

$$(2.11) c_1 \leqslant T \leqslant e^{\omega^6}$$

there exist values $U_1, U_2, U_3, U_4,$

$$(2.12) Te^{-6(\log T)^{5/6}} \leqslant \frac{U_1}{U_2} \leqslant U_2 \leqslant Te^{6(\log T)^{5/6}}$$

such that

(2.13)
$$\sum_{U_1 \le n \le U_2} \mu(n) > T^{1/2} e^{-(\log T)^{3/4}}$$

and

$$\sum_{U_3 \le n \leqslant U_4} \mu(n) < -T^{1/2} e^{-(\log T)^{3/4}}.$$

COROLLARY. On Riemann hypothesis (2.12), (2.13), (2.14) hold for all T sufficiently large.

THEOREM 2. Under the same conditions as in Theorem 1,

(2.15)
$$\int_{X_1}^{X_2} \frac{|M(x)|}{x} dx > T^{1/2} e^{-(\log T)^{3/4}},$$

where $X_1 = Te^{-6(\log T)^{5/6}}$, $X_2 = Te^{6(\log T)^{5/6}}$

3. In what follows, we shall denote by ϱ_0 the "earliest" zero of $\zeta(s)$ in the upper half-plane (which is simple)

(3.1)
$$\varrho_0 = \frac{1}{2} + i\gamma_0 = \frac{1}{2} + i \cdot 14.13...,$$

and by ϱ_1 — the next one (again simple)

(3.2)
$$\rho_1 = \frac{1}{2} + i\gamma_1 = \frac{1}{2} + i \cdot 21.02...,$$

Further, we introduce

$$D \stackrel{\text{def}}{=} \frac{\operatorname{Arg} \xi'(\varrho_0)}{\gamma_0}$$

and note that

(3.4)
$$\Re e^{\frac{e^{D_{c_0}}}{\xi'(\rho_0)}} = \frac{e^{D/2}}{|\xi'(\rho_0)|} = c_2 > 0.$$

⁽¹⁾ Throughout this paper c_1, c_2, \ldots denote positive numerical constants.

It is well known (see e.g. [5], p. 185, Theorem 9.7) that for every $T \geqslant 2$ there exists a $t = t(T), T \leqslant t \leqslant T+1$ such that

$$\frac{1}{|\mathcal{E}(\sigma + it)|} \leqslant t^{c_3}, \quad -1 \leqslant \sigma \leqslant 2.$$

Putting

$$Q \stackrel{\text{def}}{=} t(\log^{1/6} T - 1),$$

we start from the integral

(3.7)
$$I_{k} \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{sQ}^{2+iQ} e^{Ds + k(s+b)^{2}} \frac{ds}{\zeta(s)},$$

where b and integer k are at the moment restricted only by

$$(3.8) c_4 \leqslant b \leqslant \frac{1}{5} \log^{1/3} T$$

and

$$(3.9) 1 \leqslant k \leqslant \frac{1}{12} \log T.$$

Then, as is easy to see,

$$(3.10) I_k = \frac{1}{2\pi i} \int_{C_2} e^{Ds + k(s+b)^2} \frac{ds}{\zeta(s)} + O(e^{kb^2} \cdot T^{1/3}).$$

Substituting the Dirichlet series $\sum_{n} \mu(n) n^{-s}$ for $1/\zeta(s)$ in (3.10) and integrating term by term, we obtain

$$\begin{split} \frac{1}{2\pi i} \int\limits_{(2)}^{} e^{Ds + k(s+b)^2} \frac{ds}{\zeta(s)} &= \sum_{n=1}^{\infty} \frac{\mu(n)}{2\pi i} \int\limits_{(2)}^{} e^{k(s+b)^2 - s\log(ne^{-D})} ds \\ &= \frac{e^{kb^2}}{2\pi i} \int\limits_{(0)}^{} e^{ks^2} ds \sum_{n=1}^{\infty} \mu(n) e^{-\frac{1}{4k} (\log(ne^{-D}) - 2kb)^2} \\ &= \frac{e^{kb^2}}{2\sqrt{\pi k}} \sum_{n=1}^{\infty} \mu(n) e^{-\frac{1}{4k} (\log(ne^{-D}) - 2kb)^2}. \end{split}$$

Hence, by (3.10)

$$(3.11) I_k = \frac{e^{bb^2}}{2\sqrt{\pi k}} \sum_{n=1}^{\infty} \mu(n) e^{-\frac{1}{4k}(\log(ne^{-D}) - 2kb)^2} + O(e^{kb^2} \cdot T^{1/3})$$

$$= \frac{e^{kb^2}}{2\sqrt{\pi k}} \int_{1-0}^{\infty} e^{-\frac{1}{4k}(\log(xe^{-D}) - 2kb)^2} dM(x) + O(e^{kb^2} \cdot T^{1/3}).$$

Partial integration gives

$$\int_{1-0}^{\infty} e^{-\frac{1}{4k}(\log(xe^{-D}) - 2kb)^2} dM(x)$$

$$= M(x)e^{-\frac{1}{4k}(\log(xe^{-D}) - 2kb)^2} \Big|_{1-0}^{\infty} - \int_{1}^{\infty} M(x) d_x (e^{-\frac{1}{4k}\log^2\frac{x}{\xi_k}}),$$

where

$$\xi_k = e^{2kb+D}.$$

Thus, putting $a_k = e^{3\sqrt{k\log \xi_k}}$ and using (3.8), (3.9), (3.12), we have

$$\begin{split} (3.13) \quad & \Re e \, I_k \, = \, I_k \, = \, - \frac{e^{kb^2}}{2 \sqrt{\pi k}} \int\limits_1^\infty \, M(x) \, \frac{d}{dx} \, \left(e^{-\frac{1}{4k} \log^2 \frac{x}{\xi_k}} \right) dx + O(e^{kb^2} \cdot T^{1/3}) \\ & = \frac{e^{kb^2}}{2 \sqrt{\pi k}} \int\limits_{\xi_k a_k^{-1}}^{\xi_k a_k} \, M(x) \, \frac{d}{dx} \, \left(-e^{-\frac{1}{4k} \log^2 \frac{x}{\xi_k}} \right) dx + O(e^{kb^2} \cdot T^{1/3}). \end{split}$$

Hence

$$\begin{split} \Re e I_k \leqslant & \frac{e^{kb^2}}{2\sqrt{\pi k}} \Big\{ \max_{\xi_k \leqslant x < \xi_k a_k} M(x) \int\limits_{\xi_k}^{\xi_k a_k} (-e^{-\frac{1}{4k}\log^2\frac{x}{\xi_k}})' dx - \\ & - \min_{\xi_k a_k^{-1} < x \leqslant \xi_k} M(x) \int\limits_{\xi_k a_k^{-1}}^{\xi_k} (e^{-\frac{1}{4k}\log^2\frac{x}{\xi_k}})' dx \Big\} + c_5 e^{kb^2} \cdot T^{1/3} \\ & = \frac{e^{kb^2}}{2\sqrt{\pi k}} (1 - \xi_k^{-9/4}) \{ \max_{\xi_k \leqslant x \leqslant \xi_k a_k} M(x) - \min_{\xi_k a_k^{-1} \leqslant x \leqslant \xi_k} M(x) \} + c_5 e^{kb^2} \cdot T^{1/3}, \end{split}$$

so that

$$(3.14) \qquad e^{-kb^2} \, \mathfrak{Re} \, I_k \leqslant \frac{1}{2\sqrt{\pi k}} (1 - \xi_k^{-9/4}) \sum_{U_1 \leqslant n \leqslant U_2} \mu \left(n\right) + c_5 T^{1/3} \,,$$

with certain U_1 , U_2 satisfying

$$\xi_k e^{-3\sqrt{k\log\xi_k}} \leqslant U_1 \leqslant U_2 \leqslant \xi_k e^{3\sqrt{k\log\xi_k}}.$$

Similarly, we come to

$$(3.16) \qquad e^{-kb^2} \Re e I_k \geqslant \frac{1}{2\sqrt{\pi k}} \left(1 - \xi_k^{-9/4}\right) \sum_{U_3 \leqslant n \leqslant U_4} \mu\left(n\right) - e_5 T^{1/3},$$

with some U_3 , U_4 satisfying

$$\xi_k e^{-3\sqrt{k\log \xi_k}} \leqslant U_3 \leqslant U_4 \leqslant \xi_k e^{3\sqrt{k\log \xi_k}}.$$

4. By Cauchy's theorem of residues and by (3.5),

$$I_k = \sum_{|S_o| < Q} \mathop{\mathrm{Res}}_{s=\varrho} e^{Ds + k(s+b)^2} rac{1}{\zeta(s)} + rac{1}{2\pi i} \int_{-1-iQ}^{-1+iQ} e^{Ds + k(s+b)^2} rac{ds}{\zeta(s)} + O(e^{kb^2}),$$

whence, noting that

$$\int_{1}^{-1+iQ} e^{Ds+k(s+b)^2} \frac{ds}{\zeta(s)} = O(e^{kb^2}),$$

and putting

$$(4.1) R_k \stackrel{\text{def}}{=} \sum_{|S_k| < Q} \operatorname{Res} e^{Ds + k(s+b)^2} \frac{1}{\zeta(s)},$$

we obtain

$$(4.2) I_k = R_k + O(e^{kb^2}).$$

Similarly to [1], we shall introduce "shifted" ϱ -zeros and a "shifted" ζ -function. We denote by $\varrho_j = \frac{1}{2} + i \gamma_j$, $0 < \gamma_0 < \gamma_1 < \ldots < \gamma_r$ all the ζ -zeros in 0 < t < Q, the possible multiple zeros being counted only once. Next, we take an $\varepsilon > 0$ subjected to

(4.3)
$$\varepsilon < \min_{0 \leqslant j \leqslant r-1} (\gamma_{j+1} - \gamma_j), \quad \varepsilon < Q - \gamma_r,$$

and for every ϱ_i (whose order of multiplicity is, say, ν) define ν "shifted zeros":

(4.4)

$$arrho_j^{(1)} = arrho_j = rac{1}{2} + i \gamma_j, \quad arrho_j^{(2)} = rac{1}{2} + i \left(\gamma_j + rac{arepsilon}{arrho}
ight), \quad \dots, \quad arrho_j^{(r)} = rac{1}{2} + i \left(\gamma_j + rac{arrho-1}{arrho} arepsilon
ight).$$

In the rectangle $0<\sigma<1, \ -Q< t<0$, we proceed similarly. Thus, we obtain a set of shifted zeros $s_\epsilon(\varrho)$ such that there is a one-to-one correspondence between the ϱ 's in |t|< Q and the $s_\epsilon(\varrho)$ -numbers. We note also that

$$(4.5) |\varrho - s_{\varepsilon}(\varrho)| < \varepsilon,$$

and

$$(4.6) s_{\varepsilon}(\varrho_0) = \varrho_0, s_{\varepsilon}(\bar{\varrho}_0) = \bar{\varrho}_0.$$

Finally, we define the "shifted" ζ -function by

(4.7)
$$\zeta_{\varepsilon}(s) \stackrel{\text{def}}{=} \zeta(s) \prod_{|S_{\varrho}| < Q} \frac{s - s_{\varepsilon}(\varrho)}{s - \varrho}.$$

Since $\zeta_s(s)$ has only simple zeros in |t| < Q, we get

$$(4.8) \ R_k(\varepsilon) \stackrel{\text{def}}{=} \sum_{|\Im_0| < Q} \operatorname{Res}_{s=s_e(\varrho)} e^{Ds_+k(s+b)^2} \frac{1}{\zeta(s)} = \sum_{|\Im_0| < Q} \frac{\exp\left(Ds_e(\varrho) + k\left(s_e(\varrho) + b\right)^2\right)}{\zeta_e'\left(s_e(\varrho)\right)}.$$

Noting that

$$\begin{array}{c} R_k(\varepsilon) = \frac{1}{2\pi i}\int\limits_{\Gamma} \frac{e^{Ds+k(s+b)^2}}{\zeta_\varepsilon(s)}\,ds\,,\\ \\ R_k = \frac{1}{2\pi i}\int\limits_{\Gamma} \frac{e^{Ds+k(s+b)^2}}{\zeta(s)}\,ds\,, \end{array}$$

where C is the boundary of the rectangle with vertices at $\pm iQ$, $2 \pm iQ$, and also that (compare [1], section 3) for $\varepsilon \to 0$

$$\frac{1}{\zeta_s(s)} \Rightarrow \frac{1}{\zeta(s)}, \quad s \in C,$$

we conclude

$$\lim_{\epsilon \to 0} R_k(\epsilon) = R_k.$$

5. We shall choose our b-value by means of Lemma 1. The role of the a_i 's is played by $\frac{1}{\pi}\Im(\varrho)$ -numbers, that of β_r 's by $\frac{1}{2\pi}\Im(\varrho^2)$ -numbers. Setting then $U=2, \ \gamma=\frac{11}{10}, \ \Delta=1$, we see by Lemma 1 that there exists a b with

(5.1)
$$\frac{1}{6} (\log T)^{1/3} \leqslant b \leqslant \frac{1}{6} (\log T)^{1/3} + 1,$$

such that for all ϱ in |t| < Q

(5.2)
$$\min_{\Omega \text{ integer}} \left| \frac{1}{2\pi} \Im \left(\varrho^2 + 2b\varrho \right) - \Omega \right| > \frac{c_6}{Q^{11/10}} > \frac{1}{\sqrt[5]{\log T}}.$$

We can also put (5.2) in the form

$$|\operatorname{Arg} e^{\varrho^2 + 2b\varrho}| > \frac{2\pi}{\sqrt[5]{\log T}}.$$

Making $\varepsilon > 0$ small enough, we deduce from (5.3)

(5.4)
$$\left| \operatorname{Arg} \exp \left(s_{s}^{2}(\varrho) + 2bs_{s}(\varrho) \right) \right| > (\log T)^{-1/5}$$

Then we introduce

(5.5)
$$z_{j} = z_{j}(\varepsilon) \stackrel{\text{def}}{=} \exp\left(s_{\varepsilon}^{2}(\varrho) + 2bs_{\varepsilon}(\varrho) + \gamma_{0}^{2} - b - \frac{1}{4}\right),$$

$$b_{j} = b_{j}(\varepsilon) \stackrel{\text{def}}{=} \frac{1}{\zeta_{\varepsilon}'(s_{\varepsilon}(\varrho))} e^{Ds_{\varepsilon}(\varrho)}, \quad j = 1, 2, ..., n,$$

where $z_1, z_2, ..., z_n$ are arranged so as to have

$$(5.6) (1 =) |z_1| \geqslant |z_2| \geqslant \ldots \geqslant |z_n|.$$

Using this notation, we rewrite (4.8) as

(5.7)
$$R_k(\varepsilon) = \exp\left\{k(b + \frac{1}{4} - \gamma_0^2) + kb^2\right\} \sum_{i=1}^n b_i(\varepsilon) z_i^k(\varepsilon).$$

We shall use Lemma 2 with

$$(5.8) m = \left\lceil \frac{1}{2b} \log(Te^{-D}) \right\rceil$$

and (see (5.4))

(5.9)
$$\kappa = (\log T)^{-1/5}.$$

We note also that for the number n of terms in (5.7) we have the bound

$$(5.10) n \leq c_7 (\log T)^{1/6} (\log \log T).$$

Putting h = 2, $h_1 = 3$, we find

$$(5.11) z_1(\varepsilon) = e^{i\gamma_0(1+2b)} = \overline{z}_2(\varepsilon)$$

and

(5.12)
$$z_3(\varepsilon) = e^{\nu_0^2 - \nu_1^2} e^{i\nu_1(1+2b)}$$

Hence, and by (3.1), (3.2), (5.1), (5.8), (5.9), (5.10), the conditions (2.5) and (2.6) are readily verified. As to the number A of (2.7), we have

$$A = A(\varepsilon) = \Re e \big(b_1(\varepsilon) + b_2(\varepsilon) \big) = 2 \Re e \frac{e^{D_{00}}}{\zeta_s'(\varrho_0)},$$

so that, owing to

$$\lim_{\epsilon \to 0} \zeta_{\epsilon}'(\varrho_0) = \zeta'(\varrho_0)$$

and (3.4), conclude

$$(5.13) A(\varepsilon) > c_2 (> 0).$$

By Lemma 2, there exists an integer $k = k_s$ satisfying

$$(5.14) m+1 \leqslant k_{\varepsilon} \leqslant m+n(3+\pi/\varkappa)$$

and such that

 $\Re R_{k_s}(arepsilon)$

$$> \frac{A\left(\varepsilon\right)}{2n+1} \, 2^{-m-n(3+\pi/\varkappa)} \left(\frac{n}{24\left(m+n(3+\pi/\varkappa)\right)}\right)^{2n} \exp\left\{k_\varepsilon(b+\frac{1}{4}-\gamma_0^2)+k_\varepsilon b^2\right\}.$$

Using (5.13), (5.10), (5.8), (5.9), (5.1), (5.14) and (3.1), we obtain

$$(5.15) \qquad \qquad e^{-k_{\rm c}b^2} {\rm Re}\, R_{k_{\rm c}} \; (\varepsilon) > T^{1/2} e^{-610\log^{2/3}T} .$$

Clearly, there exists an integer k.

$$(5.16) m+1 \leqslant k \leqslant m+n(3+\pi/\varkappa),$$

and a sequence $\varepsilon \to 0$ for which $k_{\varepsilon} = k$. Letting these s's tend to zero in (5.15) and making use of (4.10), we get

(5.17)
$$e^{-kb^2} \Re R_k \geqslant T^{1/2} e^{-610\log^{2/3} T}.$$

(5.17) obviously implies (3.9), whence by (4.2) and (3.12), (3.14), (3.15)

(5.18)
$$\sum_{U_1 \leqslant n \leqslant U_2} \mu(n) > T^{1/2} e^{-(\log T)^{3/4}}$$

with certain U_1 , U_2 satisfying

(5.19)
$$e^{2kb+D-3\sqrt{2k^2b+Dk}} \le U_1 \le U_2 \le e^{2kb+D+3\sqrt{2k^2b+Dk}}.$$

The above inequalities combined with (5.1), (5.8) and (5.16) lead straight to (2.12), so that the part (2.12) and (2.13) of Theorem 1 is settled. The part (2.12)-(2.14) follows similarly on applying (2.8)-(2.10) of Lemma 2 together with the relation (3.16) and (3.17).

6. Theorem 2 is much simpler and its proof does not require the complicated machinery of the previous sections. It would be enough to use a two-sided lemma in place of the one-sided Lemma 2 and dispense with Lemma 1 altogether. However, we prefer to give a quicker rather than a simpler proof and this is in fact possible by appealing to some points of the former proof. By (3.13)

$$|I_k| \leqslant e^{kb^2} \, rac{3 \sqrt{D + 2kb}}{4k \sqrt{\pi}} \, \int \limits_{\xi_k a_k^{-1}}^{\xi_k a_k} rac{|M(x)|}{x} \, dx + O(e^{kb^2 \cdot T^{1/3}}),$$

386

ACTA ARITHMETICA X (1965)

further, by (5.17) and (4.2),

$$e^{-kb^2}|I_k| \geqslant T^{1/2}e^{-610\log^{2/3}T} - c_8$$

whence (2.15) follows at once.

References

- [1] S. Knapowski, On oscillations of certain means formed from the Möbius series I, Acta Arithm. 8 (1963), pp. 311-320.
- [2] Mean-value estimations for the Möbius function II, Acta Arithm. 7 (1962), pp. 337-343.
- [3] and P. Turán, Comparative prime number theory III, Acta Math. Ac. Sc. Hung. 13 (1962), pp. 343-364.
- [4] and P. Turán, Further developments in the comparative prime number theory II. Acta Arithm. 10(1964),pp.293-313.
 - [5] E. C. Titchmarsh, The theory of the zeta-function of Riemann, Oxford 1951.

Reçu par la Rédaction le 4. 4. 1964

Одномерное решето

Б. В. Левин (Ташкент)

1. В вопросе об оценке числа почти простых чисел в довольно широком классе последовательностей важную роль играет метод эратосфенова решета.

Класс последовательностей к которым успешно применяется метод решета можно охарактеризовать следующим образом. Он состоит из последовательностей a_n "в среднем" равномерно распределенных в прогрессиях. Точнее, для этой последовательности должны существовать мультипликативная функция $\psi(D)$ и число γ такие, что для всех $\alpha\leqslant \gamma-\varepsilon$ и любых A и $\varepsilon>0$

$$(1) \qquad \sum_{D\leqslant N^d}\mu^2(D)\max_{\substack{l\bmod D\\leU(D)\\\\leu(D)}}\bigg|\sum_{\substack{n=1\\\\d_{m}\equiv l(\bmod D)\\\\\\d_{m}\equiv l(\bmod D)}}1-\frac{N\psi(D)}{D}\bigg| = O\bigg(\frac{N}{\log^d N}\bigg),$$

где $\mu(D)$ — функция Мёбиуса, U(D) — множество тех l для которых сравнению $a_n \equiv l (\bmod D)$ удовлетворяет бесконечно много n. Кроме того должно выполняться равенство

(2)
$$\sum_{p \le x} \psi(p) \log p = rx + O(xe^{-a^{\sqrt{\log x}}}),$$

где r — натуральное число, $a={\rm Const}>0$. $\psi(D)$ может зависить от N, но эта зависимость должна быть такой чтобы равенство (2) было равномерным по N при $x\leqslant N^B$, где $B={\rm Const.}$ Схема применения решета и характер оценок при этом не зависят от тонкой арифметической природы последовательности a_n и вполне определяются числом r. В связи с этим условимся называть решето r-мерным, если оно применяется к последовательности a_n для которой выполнены условия (1) и (2).

Другим важным вопросом в применениях решета является вопрос об определении почти простоты. Условимся называть число k-почти простым и обозначать его P_k , если оно содержит не более k простых множителей в том числе и одинаковых.