Lattice points in a sphere

by

M. N. BLEICHER and M. I. KNOPF* (Madison, WIs.)

1. Introduction. In this paper we consider the classical lattice point problem for the three-dimensional sphere. The problem can be described as follows. Let \(x \) be a positive real number and let \(k \) be a positive integer. Consider a \(k \)-dimensional sphere of radius \(\sqrt{x} \) and center \((0, \ldots, 0) \). Following the notation of Walfisz (\cite{4}), we let \(A_k(x) \) be the number of integer lattice points in this sphere. A simple geometric argument shows that as \(x \to +\infty \), \(A_k(x) \sim V_k(x) \), where \(V_k(x) \) is the volume of the sphere in question. The problem then is to get an asymptotic estimate of the difference \(R_k(x) = A_k(x) - V_k(x) \).

Here we are considering only \(R_k(x) = A_k(x) - \frac{4}{3} \pi x^{\frac{3}{2}} \). We obtain the following results:

\[
1. \quad R_k(x) = O(x^{\frac{3}{2}} \log x), \quad x \to +\infty,
\]

\[
2. \quad R_k(x) = \Omega(x^{\frac{3}{2}} \log x), \quad x \to +\infty.
\]

Of course (1) is not new. Vinogradov (\cite{3}) has in fact shown that \(R_k(x) = O(x^{\frac{3}{2}}), \quad x \to +\infty, \) an upper estimate better than (1)'s. However this result depends upon his difficult theory of exponential sums. Our estimate (1), on the other hand, is better than the elementary result \(A_k(x) = O(x) \) and depends only upon a fairly standard application of the circle method.

As far as we can ascertain (2) is new. It is based upon the \(\Omega \)-estimate for \(R_k(x) \) (\cite{4}, p. 95)

\[
3. \quad R_k(x) = \Omega(x \log x), \quad x \to +\infty.
\]

*The authors would like to thank the National Science Foundation for financial assistance.

\(^{(0)}\)Added in proof. Chen Ting-run (Chinese Mathematics 4 (1963), pp. 322-329) claims the result \(R_k(x) = O(x^{1/2}) \).
Walfisz ([4], p. 94) gives only $R_q(x) = \Omega(x^{1/2})$, $x \to +\infty$. In [1] it is shown that $\lim_{x \to \infty} R_q(x) = -1 - R_q(x) = +\infty$, but this of course yields a weaker O-result than (3).

2. Preliminaries. Landau’s formula for $A_k(x)$ (k ≥ 4) is ([4], p. 29)

$$A_k(x) = \frac{\pi^{k/2}}{\Gamma(k/2)} \sum_{\lambda \subseteq \mathbb{Z}/x} \sum_{\lambda \subseteq \mathbb{Z}/x} \left(\frac{S(\lambda, q)}{q} \right) \sum_{\alpha \subseteq \mathbb{Z}/q} \alpha^{\lambda \cdot \alpha q} \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$

Here $S(\lambda, q) = \sum_{\alpha \subseteq \mathbb{Z}/q} e^{2\pi i \lambda \cdot \alpha q}$ is the famous Gaussian sum about which we need only the fact that

$$|S(\lambda, q)| \leq K q^{1/2},$$

where K is independent of λ and q ([4], p. 10). The notation \mathcal{S} indicates that we are to sum over only those λ such that $(\lambda, q) = 1$.

If (4) held for $k = 3$ we could apply it to derive (1) without much difficulty. However, since the proof of (4) in [4] fails for $k < 4$, we replace it for $k = 3$ with the following formula obtainable by the same general method

$$A_3(x) = 2\pi \sum_{\alpha \subseteq \mathbb{Z}/q} \alpha^{\lambda \cdot \alpha q} + O(x^{3/10} \log x), \quad x \to +\infty. $$

Once we have (6), (1) is easily obtainable.

We will also need the following standard result ([4], p. 25).

Lemma 1. (Euler Summation Formula). Let $\Psi(t) = t - \lfloor t \rfloor - 1/2$. If $f(t)$ has a continuous derivative in the interval $a < t < b$ ($a < b$), then

$$\sum_{a < n < b} f(n) = \int_a^b f(t) dt + \Psi(t) f(a) f(b) + \frac{1}{2} \Psi'(t) f'(t) dt. $$

This is proved by integrating $\frac{1}{2} \Psi'(t) f'(t) dt$ by parts.

3. Proof of (6) and (1). Many of the calculations done in the proof of (4) ([4], pp. 29–35) are valid for $k = 3$. In particular we have ([4], p. 33, formula (21))

$$A_3(x) = \sum_{\alpha \subseteq \mathbb{Z}/x} \sum_{\alpha \subseteq \mathbb{Z}/x} \left(\frac{S(\lambda, q)}{q} \right) \int_{\alpha \subseteq \mathbb{Z}/x} \exp \left(\frac{\alpha}{x} - 2\pi i a \frac{\alpha + \lambda}{q} \right) \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$

In (8), $\omega = x^{1/2} - 2y_1$, and $\theta(h, q)$ is an interval described as follows. Let h'/q' and h''/q'' be the two Farey fractions of order $x^{1/2}$ closest to h/q with say $h'/q' < h/q < h''/q''$, and consider the interval $[h' + h'' - (h' + h'') - h'/q', h' + h'' - (h' + h'') - h'/q'']$.

Then $\theta(h, q)$ is obtained from this interval by translating h/q to the origin, that is,

$$\theta(h, q) = \left[\frac{h' + h'' - h'}{q' + q'' - q} \right].$$

For our purpose here the essential fact about $\theta(h, q)$ is ([4], p. 30)

$$|y| \leq q^{-1/2}, \quad \text{for} \quad y \notin \theta(h, q),$$

$$|y| \geq 2q^{-1/2}, \quad \text{for} \quad y \notin \theta(h, q),$$

for any Farey fraction h/q of order $x^{1/2}$.

By (8) we have

$$A_3(x) = \int_{\alpha \subseteq \mathbb{Z}/x} - \int_{\alpha \subseteq \mathbb{Z}/x} \exp \left(\frac{\alpha}{x} - 2\pi i a \frac{\alpha + \lambda}{q} \right) \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$

Again we observe that the calculations of [4] (pp. 33–34) are valid for $k = 3$. These yield

$$\int_{\alpha \subseteq \mathbb{Z}/x} - \int_{\alpha \subseteq \mathbb{Z}/x} \exp \left(\frac{\alpha}{x} - 2\pi i a \frac{\alpha + \lambda}{q} \right) \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$

Now

$$\int_{\alpha \subseteq \mathbb{Z}/x} - \int_{\alpha \subseteq \mathbb{Z}/x} \exp \left(\frac{\alpha}{x} - 2\pi i a \frac{\alpha + \lambda}{q} \right) \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$

and by [4], p. 35 (again valid for $k = 3$),

$$\int_{\alpha \subseteq \mathbb{Z}/x} - \int_{\alpha \subseteq \mathbb{Z}/x} \exp \left(\frac{\alpha}{x} - 2\pi i a \frac{\alpha + \lambda}{q} \right) \alpha + O(x^{3/10} \log x), \quad x \to +\infty. $$
Thus, we have
\[
\int_{-\infty}^{\infty} e^{-it\lambda} \sum_{n \in \mathbb{C}} \exp \left(\frac{t}{q} \left(y + \frac{1}{q} \right) \right) dy = 2\pi \sum_{n \in \mathbb{C}} n^{1/2},
\]
and (10) becomes
\[
(11) \quad A_1(x) = 2\pi \sum_{n \in \mathbb{C}} n^{1/2} + \sum_{2 \leq n \leq x} \sum_{k \in \mathbb{C}} \frac{2^{1/2}}{q} \int_{\mathbb{R}} e^{-it\lambda} \sum_{n \in \mathbb{C}} \exp \left(\frac{t}{q} \left(y + \frac{1}{q} \right) \right) dy + O(\lambda^{1/2} \log \lambda), \quad \lambda \to +\infty.
\]
Let \(\Xi \) denote the multiple sum on the right hand side of (11); to prove (6) it is sufficient to show that \(\Xi = O(\lambda^{1/2} \log \lambda) \), as \(x \to +\infty \).

By (5) and (9),
\[
(12) \quad \left| \sum_{n \in \mathbb{C}} n^{1/2} \right| \leq K \sum_{q \leq x^{1/2}} \sum_{y \leq x} \left| \sum_{n \mod q} \frac{1}{n - y} \right| = K \sum_{q \leq x^{1/2}} \sum_{y \leq x^{1/2}} \left| \sum_{n \mod q} \frac{1}{n - y} \right|.
\]
We apply the familiar method of partial summation to estimate the inner sum. Let
\[
T(n) = \sum_{n \in \mathbb{C}} n^{1/2}(q + 1/2) q^{1/2}.
\]
Then since \(T(n) \) is a geometric series
\[
|T(n)| \leq 2|e^{i(q + 1/2) \lambda} - e^{-i(q + 1/2) \lambda}| = |\sin \pi (y + \frac{h}{q})|^{1/2}.
\]
Since \(y \leq q^{1/2} \), \(q^{-1}(h - q + 1/2) \leq y + h/q \leq q^{-1}(h + q - 1/2) \), while \(q \geq 2 \) implies that \(1 \leq h \leq q - 1 \); thus if \(x \geq 1 \) (say), \(0 \leq y + h/q \leq 1 \). Therefore
\[
|\sin \pi (y + \frac{h}{q})|^{1/2} \leq \max \left\{ 1, \frac{1}{2(y + h/q)} \right\} \left(\frac{2}{1 - y + h/q} \right).
\]
Also, \(y + h/q \geq h - q^{1/2} \geq h - 1 \), and \(y - h/q \geq q - h - q^{1/2} \geq q - h - 1 \), if \(x \geq 2 \). We conclude that
\[
|T(n)| \leq \frac{1}{4} \left(\frac{1}{2h - 1} + \frac{1}{2y - 2h + 1} \right) \left(\frac{1}{h + \frac{1}{q - h}} \right).
\]
Now,
\[
\sum_{1 \leq n \leq x} \exp \left(\frac{tn}{x} - 2\pi \sin \left(y + \frac{1}{q} \right) \right) = \sum_{1 \leq n \leq x} e^{i\pi/n} (T(n) - T(n - 1))
\]
and we have
\[
\left| \sum_{1 \leq n \leq x} \exp \left(\frac{tn}{x} - 2\pi \sin \left(y + \frac{1}{q} \right) \right) \right| \leq \left(\frac{1}{h + \frac{1}{q - h}} \right) \sum_{1 \leq n \leq x} \left(e^{\pi x - h} - e^{-\pi x} \right) + \left(\frac{1}{h + \frac{1}{q - h}} \right) \sum_{1 \leq n \leq x} e^{\pi x - h} \left(e^{\pi x - h} - e^{-\pi x} \right) \left(h^{1/2} \log h \right), \quad h \to +\infty.
\]
where \(K' \) is independent of \(h, q, \) and \(x \). This, with (12), leads to
\[
\sum_{1 \leq n \leq x} \left(\sum_{1 \leq y \leq x} \left(\sum_{1 \leq n \leq x} \frac{1}{n - y} \right) \right) \left(h^{1/2} \log h \right), \quad x \to +\infty.
\]
But
\[
\left| n \right|^{1/2} \leq \left(1 + 4x^2 \right)^{-1/2} \leq \min \left((a^{1/2}), (d^{1/2}) \right),
\]
so that
\[
\sum_{1 \leq n \leq x} \left(\sum_{1 \leq y \leq x} \left(\sum_{1 \leq n \leq x} \frac{1}{n - y} \right) \right) \left(h^{1/2} \log h \right) = \sum_{1 \leq n \leq x} \left(\sum_{1 \leq y \leq x} \left(\sum_{1 \leq n \leq x} \frac{1}{n - y} \right) \right) \left(h^{1/2} \log h \right) = \sum_{1 \leq n \leq x} \left(\sum_{1 \leq y \leq x} \left(\sum_{1 \leq n \leq x} \frac{1}{n - y} \right) \right) \left(h^{1/2} \log h \right) = \sum_{1 \leq n \leq x} \left(\sum_{1 \leq n \leq x} \frac{1}{n - y} \right) \left(\log h \right) = O(h^{1/2} \log h), \quad x \to +\infty.
\]
and (9) is proved.

To obtain (1) we simply apply (7) to \(\sum_{1 \leq n \leq x} n^{1/2} \). This gives
\[
\sum_{1 \leq n \leq x} n^{1/2} = \int_{0}^{x} t^{1/2} dt - W(x) x^{1/2} + \frac{3}{2} x^{1/2} \log x = \frac{3}{4} x^{1/2} + O(x^{1/2}), \quad x \to +\infty.
\]
Together with (6), this implies

\[A_4(x) = \frac{4}{3} \pi x^3 + O(x^{3+\varepsilon}), \quad x \to +\infty, \]

and the proof of (1) is complete.

4. Proof of (2). We begin with two lemmas (cf. [4], pp. 49-50).

Lemma 2.

\[A_k(x) = \sum_{-\sqrt{x}} \sum_{m \in \mathbb{Z}^k, m \neq 0} \frac{x - m^k}{x - m^k}, \quad k \geq 2. \]

Proof. Clear.

Lemma 3.

\[\sum_{-\sqrt{x}} (x - m^k)^{k/2} = \int_{-\sqrt{x}}^x (x - t^{k/2}) dt + O(x^{\varepsilon}), \quad x \to +\infty. \]

Proof. By Lemma 1,

\[\sum_{-\sqrt{x}} (x - m^k)^{k/2} = \sum_{-\sqrt{x}} (x - m^k)^{k/2} = \int_{-\sqrt{x}}^x (x - t^{k/2}) dt - k \int_{-\sqrt{x}}^x \Psi(t)(x - t^{k/2})^{-1} dt. \]

But by the second mean value theorem of the integral calculus,

\[\int_{-\sqrt{x}}^x \Psi(t)(x - t^{k/2})^{-1} dt = O(x^{\varepsilon}), \quad x \to +\infty, \]

since \(\int_{-\sqrt{x}}^x \Psi(t) dt \) is bounded, independently of \(x \).

To prove (2) we assume

\[R_k(x) = o(x^{3/2} \log \log x), \quad x \to +\infty, \]

and show that this leads to a contradiction. By Lemma 2, and the definition of \(R_k(x) \),

\[A_k(x) = \sum_{-\sqrt{x}} \sum_{m \in \mathbb{Z}^k, m \neq 0} \frac{x - m^k}{x - m^k} + \sum_{-\sqrt{x}} \sum_{m \in \mathbb{Z}^k, m \neq 0} R_k(x - m^k). \]

By (13), given any \(\varepsilon > 0 \) there exists \(N > 3 \) such that if \(x > N \), then \(|R_k(x)| < c x^{3/2} \log \log x \). Also (13) implies that for any \(x > 3 \), \(|R_k(x)| < K x^{3/2} \log \log x \), where \(K \) is independent of \(x \).

Therefore, assuming that \(x > N \), we have

\[\left| \sum_{-\sqrt{x}} R_k(x - m^k) \right| \leq \sum_{-\sqrt{x}} |R_k(x - m^k)| + \sum_{-\sqrt{x}} |R_k(x - m^k)| \]

\[< 2x \sum_{-\sqrt{x}} |m^k|^{3/2} \log \log x + \frac{K x^{3/2} \log \log x + 1}{\left(x - N \right)^{3/2} \log \log x} + R_k(0) + R_k(1) + R_k(2), \]

where we have used the fact that \(|m^k|^{3/2} \log \log x \) is monotone and observed that there are at most \(N \left(x - N \right)^{3/2} \) integers in the range \(\sqrt{x} - N < |m| < \sqrt{x} \). Now holding \(N \) fixed and letting \(x \to +\infty \), we have

\[\lim_{x \to +\infty} \frac{\sum_{-\sqrt{x}} R_k(x - m^k)}{\log x} \leq 2x. \]

Since \(\varepsilon > 0 \) is arbitrary, we conclude that

\[\sum_{-\sqrt{x}} R_k(x - m^k) = o(x^{3/2} \log \log x), \quad x \to +\infty, \]

so that

\[A_k(x) = \frac{4}{3} \pi x^3 + o(x^{3/2} \log \log x), \quad x \to +\infty. \]

Lemma 3, with \(k = 3 \), implies that

\[\sum_{-\sqrt{x}} (x - m^3)^{3/2} = \pi \frac{1}{4} x^2 + o(x), \quad x \to +\infty, \]

and we get

\[A_3(x) = \pi \frac{1}{4} x^2 + o(x), \quad x \to +\infty, \]

in contradiction to (3). Thus (13) is impossible, and the proof of (2) is complete.

Remarks. 1. The method used here is the derivation of a \(o \)-estimate for \(E_k(x) \) from an assumed \(o \)-estimate for \(R_k(x) \). Thus an improved \(O \)-estimate for \(E_k(x) \) would immediately give an improvement on (2), by the same method.

2. This process can be applied to give an \(O \)-estimate for \(E_k(x) \), given an \(O \)-estimate for \(R_k(x) \). If we start with Vinogradov’s result (22)

\[E_k(x) = O(x^{3/2} \log \log x), \quad x \to +\infty, \]

we get

\[B_k(x) = O(x^{3/2 + \varepsilon}), \quad x \to +\infty, \]

an estimate which is, however, weaker than (1).
Our formula (6) is actually equivalent to
\[
A_{x}(\varrho) = 2\pi \sum_{1 \leq g \leq x} \sum_{1 \leq q \leq \varrho \left(\varrho, g \right)} \left(\frac{S(b, q)}{q} \right)^{3} \sum_{1 \leq r \leq \varrho} n^{1/2} e^{-2\pi i n b r} + O(x^{3/2} \log x), \quad x \to +\infty.
\]
This of course is (4) for \(k = 3 \). In order to show this we need only prove that
\[
\sum_{1 \leq g \leq x} \sum_{1 \leq q \leq \varrho \left(\varrho, g \right)} \left(\frac{S(b, q)}{q} \right)^{3} \sum_{1 \leq r \leq \varrho} n^{1/2} e^{-2\pi i n b r} = O(x^{3/2} \log x), \quad x \to +\infty.
\]
By partial summation,
\[
\left| \sum_{1 \leq r \leq \varrho} n^{1/2} e^{-2\pi i n b r} \right| \leq \varrho \left(1 + \frac{1}{q} \right)^{1/2}.
\]
This together with (5) shows that the left hand side of (14) is
\[
O \left(x^{1/2} \sum_{1 \leq g \leq x} \varrho^{1/3} \sum_{1 \leq q \leq \varrho \left(\varrho, g \right)} \left(1 + \frac{1}{q} \right)^{1/2} \right) = O \left(x^{1/2} \sum_{1 \leq g \leq x} \varrho^{1/3} \log \varrho \right) = O \left(x^{3/2} \log x \right), \quad x \to +\infty.
\]
This proves (14) and hence (4) for the case \(k = 3 \).

References

THE UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN
THE NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

Received by the Editor on 25. 2. 1964

On oscillations of certain means formed from the Möbius series II

by

S. Knapski (Poznań)

1. As announced in paper [1], the present work contains some new results concerning the distribution of values of \(\mu(n) \) in relatively short intervals \(a < n < b \). Briefly and roughly speaking, it will be proved that on Riemann hypothesis there exist infinitely many intervals \([U_{1}, U_{2}]\), \(U_{1}^{1/3} \to 0 \to U_{1} \to U_{2} \to \infty \), such that
\[
\sum_{U_{2}^{1/3} < n \leq U_{1}} \mu(n) > U_{1}^{1/3 - \epsilon(n)},
\]
and also that there exists an infinity of similar intervals \([U_{3}, U_{4}]\) with
\[
\sum_{U_{2}^{1/3} < n \leq U_{1}} \mu(n) < -U_{1}^{1/3 - \epsilon(n)}.
\]
This result is a particular case of the following Theorem 1. As a by-product of the proof of this theorem, we will obtain the inequality (again on Riemann hypothesis)
\[
\int_{2}^{T} \frac{|M(x)|^2}{x} \, dx > T^{1/3 - \epsilon(1)},
\]
(\(M(x) \) being, as usual, \(\sum_{n \leq x} \mu(n) \)), which improves on my previous result ([2]).

2. In the following we will use two lemmas. Their proofs can be found respectively in [4] (proof of Lemma II) and in [3] (proof of Theorem 4.1). We call them Lemma 1 and Lemma 2.

Lemma 1. Let \(\beta_{1}, \beta_{2}, \ldots \) be a real sequence and \(a_{1}, a_{2}, \ldots \) an analogous one with the property that
\[
|a_{n}| > U \quad (> 0)
\]