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Errata to the part I oy this paper (Aeta Arithm. 10(1964), pp. 137.182),

p. 165%: read J, instead of y,,
p. 172%: read o ) instead of ¢ 3,
p. 1773: read 4(g—&') kni instead of 4 (9—08") glms.
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Some remarks on a series of Ramanujan
by
W. StA§ (Poznat)

1. In my previous papers [7], [8] I was concerned with the Rama-
nujan series

\48

(L 5 = 34 e
N

=1

]

where p(n) was the function of Mobius and 8 a real parameter.
G. H. Hardy and J. E. Littlewood have proved (see [1]) that

1
(1.2) 8() =08 %, B> oo,

is equivalent to the conjecture of Riemann.

At present we shall prove by Tur4n’s methods the following theorem,
which is stronger than my previous result (see [8]), based on Riemann’s
hypothesis and on the conjecture that the f-function has only simple
Zeros.

TueoREM. Suppose Riemann’s conjecture. Then for T > C

-3—00)
(1.3) max |S(B)| =T * .
pl-o(Dper ’

In the proof we shall apply the method of Turdn, namely we shall
use the following modification ([2]) of Turdn’s Satz X ([11]):

LevmmA 1. Suppose that m =0, 2,,2,,...,2y are complex numbers
with

(1.4) l=lzgl >kl z...2l=... 2%l 2. >
and

N N
(1.5) len) > 2 Tom' o, | < lewl — N

Then there exists am integer u with
(1.6) m < u<m+N
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such that

H ' B N
[by2f 4 byt . .+ byl > min lb1+bz+u-“|‘by‘|( 1 N ) .

1.7 ———
0 (% lanl)* hesg <y 24¢ 2N+m

2. Before we turn to the proof we shall list some known properties
of the functions I'(s) and {(s) which will be used in the following:

There is a constant ¢, > 2 such that each interval (2, 2--1) contains
a value of & =1(Q) for which

(2.1) [Elo+at)] >0, —1<o<2, t=1(Q)

([9], Theorem 9.7).
With 0 1 <k <V1+£, 0< o<1,

. k(14 o) ]/ ont
2 =
(2 ) Ir(g"l‘”)l m 6nt_e—ﬂt *

Now let N(z) stand for the number of zeros of £(s) in 0 <o <1,
0<i<, 7222
We have

(2.3) N(7) < eyrloge.

The function of Riemann satisfies the functional equation

1
- =D
(2.4) I(s)C(28) == ° I'(3—s)t(1—2s).
Suppose that 1 is & constant, 0 < n < 2. Then by Riemann’s hypothesis
o . 13
(2.5) C(h 4|t < oo™y 5y
([5], p. 164).

3. We turn to the proof of the theorem. Let us write

(31) n = (loglog 7)™,
(3.2) w = 2logT.
Integer » will be supposed to satisfy the inequality
: log1' log'  aet
(3.3) )% <v g =
o(T) = ( 17)10g10g1, ¥ S fogloaT 9 (T)-

Further, put

(3.4) p— gl
(loglogT)*’

(3.5) ® = By-+g¢,
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where ¢, satisfies at the moment only
(3.6) 1<0, K2,
Owing to (3.2) we then have from (3.5)

(3.7) PR )
v
We start from the formula
_1 el (3—s)
(3.8) B0 =57 | P gy
(3+1)

which follows by (1.1) and by the well-known formula of Cahen and
Mellin

X100

(3.9) Tt f I(syy™*ds = e (2 >0, rey >0).
278

&—1oo
Substituting
(3.10) B =

we integrate (3.8) » times from 0 to w,, ws,...,®,, ®, respectively. On the
one hand, we then have

w y D.I3 wy
(3.11) I, = f f f (128 (6*1%) oy ooy ... do,
0 0 0 0
and this gives clearly
(3.12) L] < = max |6®28(e™%)].
»! <o) <o

On the other hand,
1 fe'“sl’(%‘—s) 1 e fn%—s)
ds

(3.13) Ly = — T oy T o —iN (2
211:%%“) §"C(28) 27i s (» J)'(%;M) §C(2s)
Further we have
1 I'(3—s)
14 - | =2l s = O(loglogT
(8.14) 5w | e 00 = OCoglogD)
+n)
and
il o(%-+7)
1 ¢°I'($—3s) (e )
_ R (A ¢ ket PR (IURY AT, Y i N
B8 55 f s f (s +0 =
(3+n) Ftn—il

where I i§ to be chosen as in (3.4).
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We apply Cauchy’s theorem of residues to the right integral:

ntil o
e”I'(}—s)
(3.16) — f e ds
27h yea-i s'C(2s)
il
1 -0+ gms['(%—-«?) a5t Res OMF(JZ“-—-?) I (6(%4-3)«))
27 it §"C(2s) ey 52 §"C(2s) [4
But again
$-n+il
¢"I'(}—s) (3~
3. —_ — s = () ey,
(8.17) 27t o 8"C(2s) s (e )
30
Owing to (3.12)-(3.17) we have the inequality
4 v o(§+n)
(3.18) 3' max |e“1’ZS(e“1/2)[+o41(9f) PRI LT
V<o n [

|\ (4 —s
> } ! Resf_.#;_l)
lé‘a-|-</,8=e/2 $"((2s)

4. Let us write further
dot 6" I"(§—3)

4.1 Vi S T
(4.1) W (8) 7E (39)
and
(4.2) L Y ResT,(s).

IFel<18=0/2

We shall prove the following
Lemma 2. By Riemann’s conjecture and for T >e¢,
3 longogloglggg'v
(4.3) max |L,| > VTe loglogZ'
P1T)<r<ep(T)
by ¢ (), @ (1), from (3.3).

I am using in the proof of the lemma an interesting idea of 8. Kna-
powski, the so-called “shifted zeros” (see [4]). This idea seems very useful
from the point of view of some applications connected with the funetion
1/¢(s).

‘ Let ¢; = §+1iy;, §=1,2,3,...,7r Tun through the set of (-zeros
mo<o<i1, 0<t<l, so that

0<)’1<'}/2<...<)/,.<l,

the possible multiple zeros being, however, counted only once.
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Buppose that &> 0 sabisfies the inequalities

(4.4) e< min (y,—y), &<l—y,.

I<fsr—1

If the order of multiplicity of , is, for instance, &, we define & “shifted
zerog” corresponding to g;:

k—1

. & 2 .
45) =g, o= gtiz, o ) =gti

£&.
In this way we get a set B of “shifted zeros”, so that to each ¢ with

|Sel < T there corresponds an p,. This definition implies in particular
that

(4.6) le— el <e.
Now we introduce

28 —
(4.7) 2.09) = tlan) [ [ =2
IFel<l s—e
It is easy to see by (4.4) and (4.5) that {,(2s) has only simple zeros
(namely those at 4¢,’s) In the rectangle 0 < o <1, |t| < L

Writing
det e’I'(—8)

) () 2

(4.8) )

and

(4.9) IO Y ResF(s)
IGel<l 8=}ee

we see at once that

AT (1 —o,)
& adle)

But let us note that by (4.2) and (4.10)

(4.10) o = o1

1 1
(4.11) L= [BEa, I =5 [ I,
0 P ‘n:’bc

where the contour of integration O consists of
0<O‘<%, b= 15 G=§: [ <1,

1
=0, <<y AHf=g, I <i
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One can show (see [4], section 3) that

(4.12) LimIL® = IL,.

£—»00

In order to prove (4.3) we shall first find by Turén’s methods a lower
estimate of [L{] and then, after passing to the limit as & — 0, we shall
get (4.3) at once.

5. In view of (3.5) and (3.6), putting

(5.1) Bo=o¥0, Ve<p <o,
we have from (4.10)
I(3— 805\ »
(5.2) o =2t e 3 —1te) (_6_,_) ,
& Leled) e

Let us denote by o that zero at which

G%B 2

(5.3) o 1Sel <

(3

attaing its maximum.
We put (5.2) in the form

A7 18(e=el") \»
I'(3—%e.) (e

S

“ 1el<1 Cs(@t’ 0./6 l
and define

—®

(5.5) ,_”%B(l_)_’ b, — pl = 1e)

2./al" ! o)

arranging them as required in lemma (1.4)-(1.7).
Using (2.3) and (3.4) we can choose

log?
(5.6) =
* (loglog T)’

Putting Q = Qp = (loglogT)} with 1 = 1/(2¢,+3) in (2.1), we
define

2(T) = 4(Q0).
Then obviously

(87 2,(1) = (loglog T < x(T) < (loglog TV +1 = 5 (T)+1
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and by (2.1)
‘ 1
S (T~ T _
(5.8) [lo+ig(D)| > P 1<o<2.
Let
B(oM_p®) o
(5.9) o= ot ) &

o
denote that one of our #’s corresponding to o’s with |Sp| < »(T) which
has the maximal index j = .

Further, let

18"~ ot

(5.10) %, =6 o
be any of #’s with |Sg| > g ().
Writing
(5.10) d =3l o = i

it is eagy to show, using (5.8), (5.7) (see [8], p. 267) that

1
5.11 hl) — (h) r——
( ) [—lye ( NU)E
Choosing
519 — (1—n) logT B 1
(6.12) m=(1=n loglogT ' 7~ ToglogT '

N as in (5.6), and using (8.11), (5.6) we can prove that conditions (1.5)
are satisfied (see [8], pp. 268, 269).

6. We can now apply the modified lemma of Turin (1.4)-(1.7), with
by = h--1.
‘We then get with a » satisfying (3.3)

12 ’ (24e 2N1:m)N'

But owing to (5.5) and the definition of kb in (5.9) we have

(6.2) 12,,{’ _ ’ " F(i::)&) |

1¥el<X(T)

¥if
A5

(")

(6.1) L) = 2

det

= |P(g)|.
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In view of (3.1), (3.3), (3.7), (5.6), (5.9), (5.12) and (6.2) we have
from (6.1)

1 6}3«: _ logTlogloglogT
(63) |L$!)| >E Ig(h)l,. ¢ log o |P<€)]
€
1 0%(2 logT'—cg) _logTlogloglogT
— loglogT }P(b’)]
= 9 ( 1/——--—~—-———2 »
+(n+1) )

. _glogTlogloglogT
> I/Te loglog?' |P(s)|,

P(e) can be considered as the sum of residues of the function

23F(%_s)
° L(2)
and we can use the integral representation of it,
1 2l (3—3)
. Pls) = — f 28 T 8)
(6.4) O =53 ) % %
0

where O, is a slight modification of the contour ¢ defined in (4.11).
Writing

des 1 0ed (3—8)
6.5 P (g i
(6.5) mi ) P e ®
Co

we get as in (4.12)
(6.6) limP(e) = P.

80

Suppose that for a B,

_logT'log loglogT

(6.7) [Plze loslosT | g,

Then after passing to the limit & - 0 we get our lemma (4.3) at once
from (6.3), (6.6), (6.7) and (4.12). It is necessary to note that » in (6.1),
(6.3) really depends on e But an easy reasoning leads to the conclusion
that one can dispense with this dependence. Namely we can choose an
e-sequence tending to zero by which the »,-sequence is a constant sequence,

In order to finish the proof of (4.3) it is necessary to show (6.7).
We start with the integral .

(3+20)+ix(T)
(6.8) I, =— gal‘(i—s)
£(2s)

ds,
Y
(+20)-12(T)

where & = 4.
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On the one hand, we have from (3.8)

| 1 PR rges)
(6.9) [o=ﬂns(5o)-§7§ By £(@) ds—
et inT)
1 Freg—iu®) gsf(%—s)
2N D

On the other hand, applying Cauchy’s theorem of residues to the
integral (6.8) and replacing the residues of the function under considera-
tion by the integral representation, we have from (6.5) in view of (2.1),
(2.2), (2.4), (2.5) and (6.5)

3 == ] __l_ : 23[’(‘%—8) L
(6:20) =" +27:7}(?£_J " e dsw(exm)'
£,
Bat
L A e IV S 1 ) R s (f—)
(6.11) 2_’“'(&J )50 n ds—l/nz 2 gttt — g .
—20 =

(see [1], p. 157). (6.10) and (6.11) combined with (6.9) gives, after esti-
mating the integraly in (6.9),

— T [ T Cg
(612)  |P| > 130'5'(130)“‘/“8(3;) = = qa(ﬁo, E) —
We can obviously suppose (see [8], pp. 262, 270)
1 1 -
?’(ﬂml) = max !‘7’(/3,_)‘=09:/‘50-
Bo Veshe ! B

Hence by (5.7) we have (6.7) at once, and fhen by (4.12) owing to
(6.3) follows (4.3).

In order to finish the proof of theorem (1.3) we combine (4.3) with
(3.18).

Owing to (3.10), (3.1)-(3.4) we get the estimate

_ g log'log loglogd

max |88(B) >VTe N T>ay.

1<p<T
Now using (1.2) we obviously get (1.3).
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Lattice points in a sphere
by

M. N. Brerouer and M. I. KNopp* (Madison, Wis.)

1. Introduction. In this paper we consider the eclassical lattice
point problem for the three-dimensional sphere. The problem can be
described as follows. Let  be a positive real number and let % be a positive
integer. Consider a k-dimensional sphere of radins ¥z and center (0,...,0).
Following the notation of Walfisz ([4]), we let Ay(2) be the number of
integer lattice points in this sphere. A simple geometric argument shows
that as # - o0, Ax(5) ~ Vi(2), where Vi(z) is the volume of the sphere
in question. The problem then is to get an asymptotic estimate of the
difference Ry (%) = Ay (2)—Vy(x).

Here we are considering only Ry(w) = A;(w)—ins’. We obtain
the following results:

(1) By(o) = 0(¢*loga), @ > +oo,

(2) By(z) = Q(2*loglogs), @ — +oo.

Of course (1) is not new. Vinogradov ([3]) has in fact shown that Ry ()

19
= 0(#% "), & > 0, an upper estimate better than (1) (). However this result
depends upon his difficult theory of exponential sums. Our estimate (1),
on the other hand, is better than the elementary result 4;(z) = O(x)
and depends only upon a fairly standard application of the circle method.
As far as we can ascertain (2) is new. It is based upon the Q-estimate
for R,(2) ([4], p. 95)

(3) R,(z) = Q(zlogloge), - +oo.

*The authors would like to thank the National Science Foundation for financial
assigtance.

(MAdded in proof. Chen Ting-run (Chinese Mathematics 4(1963), pp. 322-339)
claims the result Rg(w) =~ O(w%/3).
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