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Introduction. An almost prime is an integer with a bounded number
of prime factors. The concept is a relative one; the bound displayed depends
on the problem at hand.

The questions to be discussed in this paper stem from the twin-prime
problem, i.e. are there an infinite number of primes p sach that p+4 2
is again a prime? The answer is not known but weaker results in this
direction are available. V. Brun, [2], for example, proved that there are
an infinite number of positive integers m such that the polynomial value
m(m-+2) has at most 9 prime factors. A. Selberg reduced the bound to 5.
Similar statements have been obtained for other polynomials. Y. Wang
[11] proved that there are an infinite number of positive integers m such
that m*- 2 has at most 4 prime factors; B. V. Levin, [5], has shown
that the polynomial n*+1 will generate an infinite sequence of integers
having at most 5 prime factors.

We shall extend this type of result to integral valued polynomials.
We shall show that if G(n) is an integral valued polynomial, is of degree I,
and has % irreducible factors then there are an infinite number of integers
m such that G{m) has, roughly speaking, at most (9%/5+ klogk) prime
factors. Our major result, Theorem 1 below, has & slightly different bound,
contains information about the manner in which the prime factors of
the almost primes ave distributed, and is applicable to a fairly large
class of polynomials. A result which is applicable to any integral valued
polynomial will be derived as a corollary to Theorem 1.

Tet us be specific. We shall prove:

&
TupoREM 1. Let G{n) = [] G4(n) where Gy(n) is an drreducible poly-
=1

nomial with integral coefficients of degree hy; in addition suppose that no

* This work, which was supported by the Office of Naval Research, is based
on a doctoral dissertation that was submitted to the University of Illinois.
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one of the irreducible factors is a constant multiple of aiy other. Suppose

that o(p), the wumber of solutions of the congruence
G(n) = 0(modp),

is strictly less than p for every prime p. As for notation: let [2] denote the
integral part of x, let N be any number greater than N, where Ny is a con-
stant that depends on the polynomial G(n), and let h denote the moximiem
of the numbers Ty, hyy ..., Iy Then there is « positive constant (!, which de-
pends on G(i), such that there wre more than ON [(log N)F positive integers
m not cxceeding N for which: .

1) G(m) has no prime factors less than or equal to N°, where 6 is a posi-
tive calewlable constent that depends only on k, and at most

k
[1.: N 1lj+ klog 3|

=1

prime factors less than or equal to N¥, where B = (3R 2)/(9(2h +1));
none of these prime factors ocewrs maulliply.

‘-2,) Eacl.z, Gi(m) has at most [9h;[D] prime factors greater than N,
maultiple prime ]l‘m‘tors being counted multiply. In brief, there exist more
than ON [(log N)" dntegers m not exceeding N such that G (m) has at most

"
(R3] 4.+ [0/ 1+ [k N 1/j+ Klog }
=i

prime factors.
Thus, each of the polynomials

nn-2), W41, w42, and (WP u41) (1)

will generate an infinite sequence of almost primes; the bounds will be
6, 4, 6, and 10, respectively. ’

Atter Theorem 1 has been proved we shall prove:

COROLLARY 1. Let G(n) be an integral valued polynonial wnd suppose
that .G(n) has % drveducidle factors with rational GWfﬁcimzts which are of
-mul'hpli?'i?‘,y Guy Gy ooy gy and of degree hy, ..., by, respectively. Then there
are p.os.ztw'e constants U, Ny, Gy, non-negative integers i and ly, and
@ positive integer Dy, oll of which depend on the polynomial (F(n) sw';n that
z‘.hm"e are more than ON [(log NY* integers m of the form Dyt--1 ‘1’10'4 exeeed-
ing N, N being any number greater than N, for which (}('m)o has: o

1) At most M prime factors less than or equal to (.

2} No prime facior ; e qreates e '
0 (¥ [Doy. P factors which are greater than Cy and less than or equal
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3) At most

x
(max{a;}) [(l; S 1/j+ klog _ )]

Leis =

prime factors greater than (X[D,) and less or equal v (N D"

4) At most

W [90 5]+ @y [9Rs /5] + ...+ ap [9R; 0]

prime factors greater than (N|Dg)".

AW maltiple prime factors are counted multiply. The constants 6 and B
are identical to the constants 6 and B of Theorem 1.

Theorem 1 is proved by sieve methods. Its proof is, for the most
part, a direct generalization of the method Selberg employed in the twin-
prime case. His work is not generally available but the notes of Profes-
sors I. Reiner, P. Bateman, and L. Rubel on Selberg’s lectures given
at the Institute for Advanced Study, in the years 1948, 1950, and 1958,
were zvailable to me. (A broad outline of Selberg’s method can be found
in [9] and [10]; detailed expositions of the way his method can be
used to obtain upper bounds can be found in [7] or [8].) The simple
transformation used to prove the corollary is explained in Section 7 of
this paper. )

An upper bound for the numbers of integers s not excee-
ding N such that @G(m) has precisely % prime factors, i.e. such that
each irreducible factor Gy(m),...,G(m) is prime was presented in
a paper by P. Dateman and R. Stemmler [1]. The bound is of order
N/(log N)*.

1 would like to take this opportunity to acknowledge my conside-
rable debt to Professor Paul T. Bateman for suggesting this problem
to me and for the guidance he gave me during the preparation of this
paper.

1. A survey of the proof. Several definitions are needed before we
can get started. As usual, let

e JI
pgFop)=0
where p is a prime and 2 is a positive number which depends on N. The
greatest common divisor of the integers ¢ and b will be denoted by (a, b);
n(n) will be the number of distinet prime factors of n. The letters T, M,
M,, ..., and (4, C,, ... will denote absolute constants which depend

only on the polynomial G(n).
The first step in the proof of Theorem 1 will congist of defining
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a sequence of numbers {p;: 4 =1,2,...} having the following prop-
erty:
Y e <M i of(G(n), D)) < T,
ay(G(n),D)
N w0 it of@m, D) 1.
d(G(n), D)
Then, letting @,(V) denote the number of values of n less than or equal
to N such that G'(n) has no more than 7' prime factors less than or equal
to z, we shall have
(1.0.1) MBy(N) > N D (ealf(@)+0( N leaftal ),
an a1
where 1/f(d) = o(d)/d and R is an error term not exceeding o(d) in
absolute value.
We shall then show that

(1.0.2) Dlealf (@) = Clllog2)t,
an

where (0 is a positive constant that depends on G (n). This inequality is
developed in the second and third sections of this chapter,

The next step deals with the error term. Generally speaking, wo shall
have:

(1.0.3) : Dkl = 0(),
D
where # is @ positive number.
Relations (1.0.1), (1.0.2), and (1.0.3) lead us to the inequality:
M,8y(N) = ON [(log NY* 10 ().
After we have reached this point we shall set
2 = N(lr-w)/t’

W-héﬂ'& w is & positive number. The interpretation of this inequality will
give us the conclusions of Theorem 1.

2. The @'s. Following Selberg, we begin by defining the sequence
gf numbers {gz: d =1,2,...} in terms of three other sequences of num-
ers:
{at 0 =1,2,..}, {4: b=1,2,..}, {y:7r=1,2,..}

These three sequences are fairly arbitrary at the moment, but they will
have to satisfy the following conditions:
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1) yo =0 if (I) p(a) =0 or (II) @ > 2; (u(a) is the Mobius fune-
tion);

2) 2y = 0if (I) u(b) = 0, or (IT) b > =, where a is a positive number
less than 1 that will be determined later;

3) A= 3 u(r)y, #0 for any z exceeding 1;

r<gs®

4) (I) | fA] =1, (II) |Aq/A| < M, if v(d) is absolutely bounded.

These four conditions will be necessary at various times; they are
listed here for convenience.

To get back to the main project at hand, let us insist that:

Y =Y ve X (lA))
a;D

aD b
dgsl+la a<s bga®

This leads to the definition
Ty Fe
Qa = Ya 4 4’
[a,b,c]=d
where [a, b, ¢] is the least common multiple of the integers @, b, and ec.
The o’s are defined; we must now show that they behave in a tolerable

manner,
If m is any integer then

Su=3 3 nhk- Su(3%5) (XA 25)

aym dim [a,b,0]=d am aym bim
cim

Thus, the equality we insisted upon is met.
Now, let:

y. =0 if a is composite,

y; = T (T is a positive fixed number that will be determined later),
yp = — T if p <2 (g like T, will be chosen later),

Pp=— 1 if & <p<e.

Using these definitions we have:

Samfe- S 3034

L
ajm. ppa nim ame
e 2 pLs a<gz"

Let [7] be the integral part of 1'; then the following can be deduced from
the above equation:
M) 0< Yea < M,

djm
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if the number of prime factors of m between ¢ and z is less than or equal
to [T'] and if s hag no prime factors less than or equal to 2. (Condition
4 is used here.) If this inequality holds for an integer m let us say “mel”.

% ~
(2) Z 0q <0
i

if the number of prime factors of m between 2° and z is strictly greater
than [7'] or if m hag onc or more prime factors less than or equal to "

We want to count the number of polynomial values f(n) (with
n <5 N) which have no prime factors less than or equal to 2° and no more
than [T prime factors between 2° and =z, ie. the number of values of
n with “(G(n), D)el”. Letting ®(N) denote this number, we have:

- TN e - N R Al
Ny =M N 1= M Ny,

e
=N s N d|(G(n),D)
(G(n),19)el

) Z L

=Na D 1= Y ulo@Nidl R,
D an

dy ngN
G{n)=0 (mod d)

=N M (oalf(d) +0( > feakal),
an anrn
where 1/f(d) = w(d){d and Rg is an error term. Later on we ghall need
to know that |[R;| < w(d), but this is immediate since

S 1 =[N]dle(d) R,

N

(S
G(1)=20(mod d)
where Ry is & non-negative integer not exceeding w(d).
‘We have defined the g’s in terms of other parameters and have shown
that

MD(N) =N Y ealf(d)+0( ) leaRal).
aD amn

These ave the two main results of this section.

3. Some estimates. Several formulas needed to estimate the sum
2 0qff (@) will be developed in this section. (See Lemmas 3.9, 3.10, and 3.11.)

A function must be defined before we can continue. Let 1/f(n) be
defined as in Section 1, 1/f(n) = w(n)/n. Let us restrict the domain
of the function to the square free integers n such that w(n) is positive;
then it iy possible to discuss the function f(n) withont any ditficulties.
Define f'(n) by the relation

fon) = Y f'(m)

e
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or, by the Méabins inversion formula,
Foy=fo) [Ta=1/5),
i
the domain of f'(n) being the same as that of f(n).
The function f'(n) will appear in a sum of the form

(3.0.1) M mf m,

N
the prime on the summation symbol indicating that the summation is
to be taken only on those square free integers n for which w(n) is greater
than zero. The major purpose of this section is to transform this quan-
tity into & more tractable one. We shall do so by first finding an asymyp-
totie formula for the summatory funetion of the Dirichlet series

(3.0.2) Ml ) (s> 1),
A=l

i.e. the sum

(3.0.3) :’ W) rff (1),

L

We can then find an estimate for (3.0.1) from (3.0.3) by partial summa-
tion. We shall also estimate sums of the form
D logp ()
Dl
in this seetion. Most ot the lemmas that follow are taken to be known;
the details of the proofs are left to the reader.
The estimate to be derived for (3.0.3) is a consequence of
Lenia 3.1. Let

[a~] no ~N
\ g Al .8 Wl P -
(3.1.1) _\J /i’ = N, Mot (5> 1),
Ml =1 H=1

and suppose that Y b,[n° converges absolutely for s > sq, where sy is such
that 0 << sy < 1. In addition suppose that
Ny = (o400 (5 < v < 1)
e
0
E(’,, = CrQogr) V4 Oe(ogey ) A k2.
"eoJ

Then

d
Wl WL

N, = ( ) b,,/n) (-0 (2")
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oy

g

! @y = (Z bn/n’) Ox (Iogm)k_I +0 (vmlogk—gw) .

2 =1

[\

n

N

To prove this lemma in the second case write

b et . 5.0 . bn
N a, = / \j eq = O E —"(log ﬁ) +0 (;nlog"’“‘“m E ‘__l)’
L .’_J n n n

nxz gL 12!1\1 N =1

expand (logz—Ilogn)*~* by the binomial theorem, and then use what
has been assumed. The proof in the first case is similar.

The firgt step in passing from the series (3.0.2) to formula (3.1.1)
is based on the following property of the quantities involved:

) ST E T )
(3.1.2) ,T:S; 2 (n) B +Ps_1f,(p)

L L A U

2l

It is not difficult to show that the first of the products in the double pro-
duet of (3.1.2) is a Dirichlet series which is absolutely convergent for
s > 1/2. Several facts about congruences are needed before we can deal
with the remaining product. The first is:

LemmA 3.2. Let G(n) H G;(n) and w(p) be defined as in Theorem 1.

Define w;(p) similarly for ¢ = 1 2, .., k. Then for oll but o finite number
of primes p we have:

@(p) = ou{p)+ ...+ o (p).

This lemma can be proved by contradiction, making use of the fact
that if @&, (x) and @,(2) are relatively prime polynomials then there are
polynomials & () and b(z) with integral coefficients and an integer ¢
such that a(z)@ (2)+ b(2)¢,(x) = O for every integer z.

The second result about congruences that will he of use is:

Levma 3.3, Let g{(n) be an irreducible polynomial with integral coef-
ficients and let R(0) be the field generated by the relation g(0) == 0. Then
Jor all but o finite number of primes p, w(p), the number of solutions of the
congruence g(n) = 0(modp) is equal to the number of prime ideals of the
first degree (in R(0)) containing the prime .

See [6], page 63, Theorem 8.1, for the proof. The theorem cited can-

not be applied directly unless the leading coefficient of g(n) is 1, but

the moditications for the-contrary case are minor.
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If we apply Lemma 3.3 we shall have:

Lemma 3.4. Let g(n), o(p), and R(6) be defined as in Lemma 3.3.
Let £(s) be the zeta function of the algebraic number field R(6). Then

[10-1/p7*0 = m,(0)26) (s> 1),

2

where H,(s) is a Dirichlet series that is absolutely convergent for s > 1/2.
If we return o formula (3.1.2), apply Lemma 3.2, and then employ
Lemma 3.4 we can assert:

LemMA 3.5, Let G(n) = ” @i (n) and w(p) be defined as in Theorem 1

and let (;(s) be the zeta functwn of the field generated by a zero of Gi(n).
Then

oo k
D B mn* = Hye) [[ () (s> 1),

where Hy(s) is a Dirichlet series which is absolutely convergent for s > 1/2.
The next two lemmas deal with the summatory funetion of the prod-
uct of the zeta functions that appears above.

TrEMMA 3.6. (Weber). Let

[{]a

G(s) = D an/n®  (s>1).

n

il
-

(Recall that G(n) is of degree h; and that a, is the number of ideals in
the field generated by &;(0) with norm equal to n.) Then

Z a, = Ar+0(") (v =1-—-1/h),

KL

where the constant A, as well as the one implied by the O-term, depends on
the polynomial G;(n).,

See [3], page 81.

LeMMA 3.7, Let {;(s) be defined as in Lemma 3.5 and let

I
[ = e’ (s>1).
=1
Then
_}_j(‘,, =Co+0@") if k=1 (v=1—1jh),

!

e, = Cr(loge)* ' +0(sgfler)~*) if k=2

\

i

s

I
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Proof. The assertion of this lemma ig identical to Lemma 3.6 if
k=1. 1t k=2 use Lemma 3.6 and the fact that

20" = Za; 2 ag = Za;,(flm/w-t—()((m/n)”)),
nd<x

n<e n<w (<]

the notation being taken to be obvious. Then use the formula

ld W &
nLE 1 Nl

T
Y G a1 v o, 1
RN EE e
ner
The general result can be obtained by induction after the result hag been

proved for k = 2. .
Tt we employ Lemmas 3.5, 3.7, and 3.1 we shall have the following

estimate for the summatory funection (3.0.3):
LEMMA 3.8. Using previous notation we have:
N m)-nlf (n) = Ba+0(a")
if k=1, v=max(2/3, 1—1/k), and
2’ @) nff (n) = Ba(logz)*~--0(nlog" )
ngr
if & =2, where B is a positive constant which depends on G(n).
Using the formula

CEm) XY ) 1 Y E(n)-n‘) 1
,Zm fn) "lf (é Q) )u” d“(% fimy Ja’
we have:

LeEMMA 3.9. Suppose that © >y > 1. Then

" Rm)f (n) = 0, (log"z—log*y) +0 (log"lx +log" )
u"

Y<HEE

for & = 1. The positive constant Cy is equal to E[k.

This is the formula that was sought for (3.0.1).
Let us turn to the sums

D (logpYf(p), §=0,1,...,%
DL
‘We shall need a result of Landau’s:
Y 1/N(P) = log loga-+B+0(1 loga),

N(P)<z
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where P is a prime ideal in the field generated by a zero of the irredu-
cible polynomial g(n), N (P) is the norm of the ideal P, and B is a con-
stant depending on g(n). See [3], pages 114-115 and pages 149-150,
for the proof. If we apply this formula, making use of Lemma 3.2 and
3.3, we shall have:

LeMMA 3.10. Let G(n) and o(p) be defined as in Theorem 1. Then
D1fw) = Y o(p)fp = klogloga+ B +0(1/loga),

PLT L
where B', as well as the constant in the O-term, depends on G(n). The num-
ber o must be greater than 2.

This lemma gives the estimate desired for the case j = 0. If j > 0,
we have another exercise in partial summation:

Lemma 3.11. Let 1/f(p) = o(p)/p. Then
N (logp)/f(p) = klogz+0(logloga),

D (logpy [f(p) = (k[j)(logzf +0(log "'z}, j =2,..., k.
<<

The error term of the last two lemmas could be improved by employ-
ing the prime ideal theorem ([4], page 113, theorem 191) instead of the
result of Landau we have used, but we shall not need such results.

4. An inequality. The aim of this section is to show that

N oaif(d) = Cloga)",

d:D

where (! is a positive constant which depends on the polynomial G ().
Several lemmas are needed to obtain this inequality. The first two
deal with technical details that arise in the proof of the third.
Limma 4.1, Let 1/f(n) = o(n)[n and suppose that n is resiricted to
square free n with w(n) > 0. Let

fuld) :f(d/(a', d)) .
Then
1f([a, b, e]) = fa((ba ('))/(f(a)fa(b)fu(‘j)) .
Proof. Write the equation in the form
f(a)f(b/(a, ) fle/a, ) = f(la, b, eDF((B, ) [(a; b, ).

Since a, b, and ¢ are square free, the result is then immediate.
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Lmmra 4.2. Let f(n) and fo(n) be defined as in Lemma 4.1, and
suppose that the same restrictions regarding the domain of these fmu-

tions are made. Let the functions f'(n) and fo(n) be defined by the rela-
tions
foy = Nf(o),  faln) = D fula)
ajn oln
Then
, Fny if (n,a)=1
fu(n) = N ’ !
0 if  (n,e)>1

Proof. The proof is based on the Mébius inversion formula and the
fact that the integers involved are square free.
LeMMA 4.3. Let

= > lalf(@)

d<z®
rd

Yr

Recall that A = 3 u(r)y,, and let f'(n) be defined as in Lemmn 4.2.

Then e
_ 1 Y a2 ""’__2’_7’_ L, ) L \
‘7‘53’: ealf(d) = e (71;% f (/)3/&% @) rs%i b (l)(y,. - f (p)ym) )

(r,p)=1

The prime on the summation symbol (Y) is used to emphasize the fact that
the summation is taken over only those r for which w(r) 0.

Proof. Let us begin by using the definition of the ¢’
ing Lemma 4.1. Doing so we obtain:

D ailf(@) =

D

s and then apply-

e
Fal®)  fale)

! Ya_
f(a)

b, cgz"

T fel,0)-

If we now replace f,((b, ¢)) by the sam D' f'(r), reverse the order of
) . B0
summation on the resulting sum, and then use the conclusion of Lemma
4.2 we shall find that the last sum is equal to
i)

?‘a

Hg s ol S

(r a)=

Ja(b)

icm

Almost primes generaled by a polynomial 21

If we apply the same sort of inversion to the squared term in the bra-
ckets we get, if (v, a) =1,

YR N NN
= AT = 119 2 g0y = 2 T
rlb arib
That is,
' 04 . 1 4 ) ’, 2
D i = D T 2 IO e
=t

Since the y’s arve zero unless ¢ is 1 or @ prime, the conclusion of Lemma
1.3 follows directly.
The next result will be used when the error term is estimated.
LEMMA 4.4. Let vy, be defined as in Lemma 4.3. Then

half@y = 3

rd<s®

P‘(T)yrd-

Conversely, this tnplies that

E’ )«I/f(d) = Y-

d<z
rid
Proof.
N = Y w0) 3 dlfle) = 3 Aifle) X ulr) = Zalf(@).
rd=zst r<s%d :;fra ‘:ﬁfa ri{eld)

The proof of the converse iy similar.
We shall now select the 4’s which is equivalent to selecting the 4’s
in view of Lemma 4.4.

Since
I
= D' half(@),
de<z®
rid
we mugt have
y, =0 i r>2.

It r < 2% let
= p(Mf ()

Aocording’ to Lemma 4.3 we need to know the value of

) if w(r)>> 0, and Y, =0 if w(r) =0.

¥e+f (D)

Yrp

when (r,p) =1
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It is easy to calculate:

o ) 0 if  rp <2
oy = ALy 2R
Yot f (P)Ypr = f/ ) -f (p)f/ (rp) - ;% it " R

If we substitute these values in the conelusion of Lemina 4.3 we shall
have:

Z ea _ 1 (y NVEE) LN o Y ED

” =\ S T T S iy sy

i@ AV = T f(p)za/,,:fﬂnf ")
(#,0) =

Since the y,’s are non-positive the condition (7, p) =1 appearing
in the index of summation can be dropped if we replace the equality by
an inequality, i.e.

Qd 1 ( v :”'2 () v' 7’11 A ) )
Z 3 = R[A*

where R is a quantity that is defined by the equation in which it appears.
This brings us to

LeMMa 4.5. Let ¢ = fa where 0 < f < 1. Then R 4s equal o

k k .
0" log2)® { —(r— (V3 ﬂ—) & ML _hog 5}+
/"il Ji 7‘:{1 J o

+ O(loglogz-(logz)* ).

Proof. If we use the definition of the »’s, employ Lemmas 3.9 and
3.10, expand the quantities (logz—logp)’“ which then appear Dby the
binomial theorem, reverse the order of summation of several sumy, and
then gather all the error terms together we shall have

]

R = TC, OogzU)k+.T012( 1y ( ) (log#* ( .S 1},5)‘) ) |
i j=1 pat

k
. R
_]_017.:)—: (—1y (’;) (logz")""j ( E ;(g;l’) -

—C, k(log1/a)(loge")* 40 (loglogz- (loge)"").
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Now, for the sake of uniformity, replace the quantity (log ) ~* appear-
ing in the error term of the second formula of Lemma 3.11 by (loglogz) X
x (logz)y~*. Then we shall have

R = T0,(logz"*+

k
+1’0,E(~7—1y' (’;} (log 2%~ ( (log#)+ 0 (loglogzlog’~* )

=1

k
+0 g{‘ (—1y (’;) (log#*) ’M( (log #*log' 2 —!—()(loglogzlogj"‘z)) -

— 0, k(log1/u) (log#®)* +0(loglogzlog"'z).

Gathering like terms together, putting ¢ = fa, and lettug the constant
in the 0-term depend on &, we get

R = dC, (log2)t {1’+ (T—1) kZ ( )ﬁ’+ ki’ (};)~klog%} +

+ 0 (loglogzlog"™!
The proof of this lemma will be complete if we establish that

k . k .
1Y o 1—8Y—1
451)  S= §(—71’—(’;)ﬁ’:2~( v‘j.’ 1 0<p <)
i1 =1

But this is a simple matter since

— \“1(“] {(14;1) ()}ﬁ,:S(___Eiyk_Jﬁ(Ajl)ﬁy

k —_—
_ v(—l)"(’”'f‘)pf: (a—p—1
k+1 LT K E+1
=
We also have
Si=—f=Q1-p~

Thus (4.5.1) can be established by induction and, as we have said, it
completes the proof of Lemma 4.5.

We now have
2 0alRq = R|A7

am

13 .
v oga) o (NI N0 i}
A

- SR

+0(loglogz: (logz) P4y,
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Thus we Wz.m.t to c.,hoose the number 7' so that t.hc coefficient of: the nmi}l 5. The error term. We shall prove:
term is positive. Since we shall take « to be rational, we can pick a posi- Lixats 5.1 Let e, be any fized positive number. Then
tive 5 such that -
E k L leaRy] = O30+,
[k E 1/j+kloglfu+t 7]] = lk Z 1/j+klogl /(L], ap
i=1 T =l ’ Proof. Let us estimate Ry first. Let @ = hy+Ry-+... 4l and let
where [#] denotes the integral part of . Having selected », set Adg={p: p|d,p"" <Q}, Bs={p:pld, p"">Q}.
* Then, for square free 4,
=l S‘l/j+k1()gﬁl/u-}~ 7. )
= IRyl < o(d) = (][ Osm )([[ ‘”fff, )lzn: — oan®),
. nedg peBg
Then select and fix a sufficiently small value of # so that X
since o(p) <. Thus
k .
w1y N ITEZE (5.1.1) Nioaks = 0 teals>0),
5_-;1 J dD a.D
. . . since 4 < 2129,
A particular value of # could be caleulated but none will be needed. As Now, by definition
for the dependence of § on the other parameters: at this point f depends o ’ S
on «,, and k. After a has been fixed n will depend only on k; conse- 0g = \ 2 2 e
quently f will depend only on k. wimea 4 A4
Assuming that » and A have been chosen properly, we have Consequently
k 17 1\2
i . 5.1.9 NV, /—(V;,‘ 117””)
T (T (Y‘ L=0=B) N e t) 7 (5.1.2) Mot <( D) v Z,A,_ .
= J 7':1/ J T 2 aD d<z hea
Thus The definition of the 5’s implies that
¢, d*(logz)* 5.1.8 ) = 2"
Zed/f(d) > = iﬁ—g)_( +0( 10g10gz/1ogz) (5.1.3) u‘; lyal = O(2(log)™").
a.n <
Since As for the A’s, by Lemma 4.4 and by the definition of ¢,, we have
1 4 () I T - (20 [
4 = y/«‘( Vi = }J ;‘, n = O d* (log )4 O (log® '2), . 5 () rd%zu {2 (nIf ()
ree® (ﬁ 1 1) A _ ‘l(l(.u — .“'(d) . (r,d]:lﬁ .
o fmd ~ X uy  F@ X0
we can assert that regst res® .
2 @) > C’la (logz) (77/ + 0(loglogz/logz) ) Thus, by Lemma 3.10,
0a .
7 7 0% (loge)™ (1+0(1/1log)) ’ ‘)w; L — ) o p)
1 | =M (a ) 7 (l

ma

£ exp (,_ Ylog (1~ © (p))) = O(log"?).
i P

a

i.e. there is a positive constant ¢ such that

D ealf(d) = 0/(logz)".
diD

B<E
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hsat

If we combine (3.1.1), (5.1.2), (5.1.3), and (5.1.5) we shall have

N loaRal = O 2 (logz) ' log™e) = (' A0,
(I\J)

We use the fact that (loge)™=' = 077 in the last step above.

The proof of Lemma 5.1 is complete.

6. The interpretation. We can now prove Theorem 1. If we
combine the resnlts of sections 2, 4, and 5 we shall have

@(N) = ON[(logz) + 0 (20 +en),
Let us set z = N7, where
1 (A—s)
T2 [ e

Then
D(N) = C, N [(og N 40 (N ).

Since @(N) was defined to be the number of positive integers »n for which
G (n) has no prime factors less than or equal to 2%, and no more than [7']
prime factors less than or equal to 2, we can say that there arve more
than C,N [(log N)* integers m not exceeding N sueh that @ (m) has no prime

factors less than or equal to X% and no more than [7] [/a )‘ 1/j-+

+klogl/a] of its prime factors less than or equal to N7,

Let o = 2/5 and let (1—e&) == (1—¢)/(14¢&); thus B = 5 (1--g)/0
Let ¢ = Be. In addition let us call those primes which are greater than
N and less than or equal to N°(!—%2)? “gmall” primes, and those which
are greater than N°(~" “large” primes.

We shall now select an ¢, so that each irreducible factor G;(x) of G+(w)
hag at most [9%;/5] large prime factors for » = m, where m is one of the
integers counted by @(¥). Since G4(z) is of degree h; there is a constant
B; such that

|Gi(@)| < Bye™; i=1,2,...,%; 2>=1.

Suppose that G;(m) were to have ([9%4;/5]-+ 1) or more large prime factors;
we would then have

B;N% > |Gy(m)] > N¥
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or
(6.0.1) BNt~ N¥,
where

M = ([9h:/5]+1)(3/9)(1—e2).

We want to choose s, so that (6.0.1) is false for N sufficiently large, that
is we want to have

(6.0.2) ([9%:/31+1)(B/9)(1 — &) = Ry
This last inequality can be written in the form
1— {Qh,/o }
6.0.3 St}
(6.0-3) B S T 0h5]]

where {r} denotes the fractional part of
Tf we let h denote the maximum of the degrees of the irveducible
factors of G(x) and if we set

11
75 (2h+1)

we will have a value for e for which (6.0.3) holds for ¢ =1,2,..., &.
Thus (6.0.1) will be false for N sufficiently large. This, in turn, implies
that each irreducible factor of Gy(x) has at most [9h;/5] large prime
factors for # = m, where m is an integer counted by ®(N) and N is suffi-
ciently large.

Tt is now possible to caleulate B and to specify how to calculate o.
We have

B =5(1—g)/9 = 2(5h-+2)/{9(2h+1)).
Ay for 9,

(5h+2 1L (Bh+2)
AN ﬁ P
n+

o
§ — Be == —- ~
PERETY 15 (2Rt 1)

£ being a number which must satisfy conditions that were given in Sec-
tion 4.
At this point we have proved that there are more than 03N/(logN)"'

positive integers m not exceeding N such that G (m) has at most [k 5‘ 1/j+
7___

+klog? 1 small prime factors and such that each G;(m) has at most
[9%,;/5] large prime factors. The large prime factors are counted multiply
it they occnr multiply; the small ones are not. It would be possible to
estimate o explicitly and obtain & bound on the possible multiplicity
of the small prime factors, but it would be fairly large. A better result
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can be obtained by discarding those G (m) that are divisible by the square
of a small prime.

We need only show that the number of G(m) divisible by the square
of a small prime is O(N¥N*~%). Once we have this bound we can say Shat
there ave more than C,N [(log N)* ]_)oiitive integers m not exceeding N

such that G(m) has at most [kZ]/j—i—klogg] small prime factors,
7=1

none of which occurs multiply, and such that cach @; (m) has at most
[9%;/5] large prime factors multiple ‘prime factors being counted multiply.
The proof of the theorem will then be complete.

We shall actually show that the number of positive integers o not
exceeding N such thatb
(6.0.4) G (1) == 0(modp*),

for sowme prime p with ¥° < p < N®, is O(N'™").
We will need to know that o(p*), the number of solutions of the con-
N

gruence above, is absolutely bounded. It is well known that w(p) = w(p”)
unless the system of equations

G(n) = 0(modp), & (n) = 0(modp) (G (») = d(G(r))/dx)

is solvable. Since (G(m), G’(‘w)) =1, there are polynomials a(x) and b(w)
with integral coefficients and an integer € such that a ()@ (z) 4 b (2)G' (2)=C
for every integer z. Thus the number of primes for which solutions of the
system exist is bounded by the number of prime divisors of ¢, so that
w(p®) is bounded.

Now, the number of integers n < N satisfying (6.0.4) is cerfainly
less than

Sﬂ N )
2 \Z (t)A(Z) )‘|‘R1,z )
No<p<NB

where B , is an error term not exceeding w(p?). This sum in turn is less

than
N Q
2 Z‘ (~—2~.a;(p2)) +0( _\_/ 1),
M<peN12 NgpaNT
and this lagt quantity is
MR
O(N {?dw) 1O(N),

which is Q(N ‘.“’). Thus the number of @(m) divisible by the square of
a gmall prime is O(N'~%) and this fact, as we have mentioned, completes
the proof of Theorem 1.
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7. An extension. The corollary to Theorem 1 can be obtained with-
out any great amount of labor.
Suppose that

G(n) = by by ™ b by 0 b,

where m = a b+ ...+ ayh, and b, is greater than zero. If b, is less than
zero G(n) can be replaced by —G(n) in the following argument. Let H,
denote the least common multiple of the denominators of Jg, by, ..., by
and let
H, = H p, Hy=HH,.
rmil

Let {I, L, ..., s} be a complete set of residues modulo H; and suppose
that [; has been chosen so that G(L;) >0 for 1 =1,2,...;s (s = H;).
Tet D; = H,G(L;). Let us define the polynomial Fy(f) by the equation:

G(D;t+1;) = G(L)F:(1).
That is,
Fy(t) = 14Dyt b+ ... + by md™

where b;1, bio, ..., and by are integers all of which are divisible by H..
This last property insures that the number of solutions of the congruence
Fy(t) = 0(modp) is always less than p,

Let D, and I, be any one of the pairs of integers D; and 1;, and let
Fy(t) denote the corresponding polynomial. By the assumptions of the
corollary and by a lemma of Gauss we have

k
Po(t) = [ ] (#os 07
j=1
where Fy;(t) is an irreducible polynomial with integral eoefficients. If
we apply Theorem 1 to the polynomial
k

[T (Fost0),

i=1

make allowance for the multiplicity of the irreducible factors, and let M
denote the number of prime factors of G(l,) we shall have corollary 1.
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X(1964)

The general sieve
by

N. ¢. AvkeENY and H. Onissr (Cambridge, Mass.)

Introduction. The sieve is a method used to derive bounds on the
number of elements in a set of integers which are not divisible by any prime
number in another set.

Tet us suppose we are given a set S of integers, a set T' of prime num-
bers, and M (S, T) denotes the number of integers in S not divisible by
any prime in T. We would now like to derive bounds on M (S, T). For
example, if Sy ={m|m <N}, Tyx = {p{p < VN } where p ranges
over all primes and N is positive, then M (Sx, Tv¥) equals the number
of prime numbers > VN and < N.

To formulate the problem more precisely, define

(i) Sx as a set of N integers, for every positive integer N,

(ii) T as an infinite set of primes, Ty as the set of primes in T less
than a real number Y.

We are prepared now to observe the behavior of the funetion
M(8y, Tn?) for some fixed 1 > 0, as N — oo. In order to do this we im-
pose restrictions on the sets Sy, Tr. These regtrictions cover not only
the classical cases of the sieve, but also several new cases.

Let d denote a square free integer all of whose prime factors are in T.
‘We require the following assumpbions: !

(A) For each N, there exists a real valued positive multiplicative fun-
ction fy(d) such that

N1 = Nfw(@ 7 +Ra\N),  meSy, dim
m
(3.6. fldids) = f(@d)f(ds) when (dy, dy) = 1).
(B) There ewist positive real numbers a, 6, ¢y, Cy such that fx(p)~
<1—6 for all peT,
N pfyip)t < CiX(logX)™  for X <log¥,
p<X
| S (pfap)—a)| < X(og Xy for log¥ <X <.
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