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Dirichlet convolutions and the Silverman-Toeplitz
conditions

by

8. L. SecAL (Rochester)

In connection with his recent paper [3], L. A. Rubel asked the
author about the possible characterization of classes of (complex-valued)
functions f(n) of a positive integral variable satisfying the following
three conditions:
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The interest of these particular conditions (which are for example
satisfied if f(n) is the Mobius function) is that one can obtain an Abelian
theorem for the Dirichlet convolution of an arbitrary function on the
positive integers with such an f(n). Precisely, we have

TemorEM A. Let h(n) be a function onm the positive integers.
Define

hyn) = D f(@)h(n]d),
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where f satisfies (I), (II), (III). If lim h(n) = L ewxists and is finite, then
! n—00

SLION

n

L.

Nl


GUEST


icm®

288 8. L. Segal

The proof of this theorem follows exactly as Rubel’s proof [3] of the
case where f(n) is the Mdbius function. One merely observes that

Ne=]

may be written in the form

I

- 1
S =20'.mh(n), whete Oy, = = =

=1 k<min

(all terms with » > m in fact = 0). It is then easily verified that (L),
(II), (III) ensure that the matrix (C,,,) satisfies the Silverman- -Toeplitz
conditions for regularity, whence the theorem follows.

It is perhaps slightly surprising that comparatively mild conditions
on f(n) imply that it satisfies (I), (IX), (III). In fact we have as a partial
answer to Rubel’s problem, the

THEOREM. Suppose

lg(m) e N g(n)
D = Arolog @) a3 g,

n<x =1

where A and O are constants, 0 # 0, and 4 is a fized positive number. De-

fine
1) =5 > u@g ( )
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where u(d) is the Mobius function. Then f(n) satisfies (I), (XX), (IIL).
Proof. That f(n) satisfies (I) follows from the Mébius inversion
formulas.

To prove (II) since by hypothesis 2 [g(n)]/n  converges,

@G(s) =
= Z’g(n)/n » 8§ = o4, is absolutely convergent for 0 > 1. Since by

the prime number theorem,

1
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converges for ¢ > 1, we have by the Dirichlet series analogue of Mertens
theorem for power-series ([1], p. 63)
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converges for o >
on letting s — 1 that Z fn)fn = 0.

> 1. IIence sinee G(1) = C 54 0 by hypothesis, it follows

n=1
Finally to prove (III), write N(z) = ¥ u(n)/n, and
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For }', we have
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Now by two classical results of Landau ([2], pp. 613, 528)
IN@) = 0(&Xp(—-aVi0E_§)) as

Y — 00

where a is a positive constant, and [N (y)] < 1forally > 1. Let 6 be a fixed
but otherwise arbitrary number in (0, 1), to be determined later, then
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=Y (exp(~ “(log(m/%)~—10g1"5(m/n))1/z)> .
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by the hypothesis that

N 4 0(tos ).
P, n
n<a
Since 6 was an arbitrary fixed number in (0, 1), choosing § so that
0= A/[(1+4d)—¢, where ¢ is a fixed positive number, and 0 < ¢ «
< 4/14+4), we get
- { , !
(4) N —}MIN ( i )|= Oflog™'~*(m/n)) for a fixed &> 0.

ko nk
k<zin

Substituting (4) in (3) gives

, B R T
(8) !(’le - O(‘._J nlog'**(xz n) )
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Al 1 1
<, nlog™**(afn) — 2 a(n[a) [log™** (n]x)]

n<wf2 n<E/2

and this last sum converges as & — oo to

______ du = 22l
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By £l (log2)r
f T O = f -
y t{logt|
on setting t = ¢ ",

Since ¢ was fixed > 0, it follows that Y', = O(1). Substituting this
and (2) in (1) proves (ILI).

Remarks. Taking
1, »=1,

0, otherwise

g(n) =‘

gives f(n) = u(n) and Rubel’s result, taking

1, n a perfect square,
g(n) = )

0, otherwise
gives

6
f(n) = —TAn),

where A(n) is Liouville’s function, ete. If we drop the condition ¢ 5% 0
in the statement of the theorem and define f(n) = 2 uld)g(njdyit 0 = 0,
afn

then (II) and (IIT) may be derived as above, but (I) fails to hold.
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The author wishes to thank Professor L. A. Rubel for several con-
versations during the Number Theory Institute held at Boulder, Colo-
rado in August 1963.
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