

Let b=3. By (31), F=P-5y+11, $y \ge -6$. For $y \ge 3$, 31 is not a sum of five values. The least positive integer not a sum of four is 27 if $y \ge 2$ or $y \ge 1$, 53 if $y \ge 0$ or $y \ge -1$, 696 if $y \ge -2$, 1631 if $y \ge -3$, 1652 if $y \ge -4$ or $y \ge -5$ or $y \ge -6$. For $y \ge 0$, 53, 85, 217, 351, 391, 472 are the only integers ≤ 501 which are not sums of four values of F. We readily conclude that all ≤ 2700 are sums of five values.

Let b=5. By (31), F=P-14y+50, $y \ge -10$. The least integer not a sum of five values of F is 37 if $y \ge 4$, and 63 if $y \ge 3$. Also 19 is not a sum of four values with $y \ge -10$. Using the twenty-four integers ≤ 500 which are not sums of four values of F for $y \ge 2$, we find that all ≤ 3000 are sums of five.

Let b=6. Then F=P-20y+85, $y \ge -12$. Then 13 is not a sum of four values. For $y \ge 4$, 122 is not a sum of five. All integers ≤ 3775 are sums of five values of F for $y \ge 3$.

Finally, let b=7. Then F=P-27y+133, $y \ge -14$. Then 5 is not a sum of four values. For $y \ge 5$, 43 is not a sum of five. Every integer ≤ 10000 is a sum of five values of F for $y \ge 4$.

(Received 8 June, 1935.)

On the arithmetical density of the sum of two sequences one of which forms a basis for the integers.

By

P. Erdös (Manchester).

Let a_1 , a_2 , ... be any given sequence of positive steadily increasing integers and suppose there are x=f(n) of them not exceeding a number n, so that

$$a_x \leq n < a_{x+1}$$

The density \hat{o} of the sequence is defined by Schnirelmann as the lower bound of the numbers f(n)/n, $n=1, 2, \ldots$. Thus if $a_1 \neq 1$, $\hat{o} = 0$.

Clearly $f(n) \ge \delta n$.

Suppose also that the steadily increasing set

$$A_0 = 0, A_1, A_2, \dots$$

forms a basis of order l of the positive integers. This means that every positive integer can be expressed as the sum of at most l of the A's. I prove the following

Theorem: If δ' is the density of the sequence a+A, i. e. of the integers which can be expressed as the sum of an a and an A, then

$$\delta' \geq \delta + \frac{\delta (1-\delta)}{2l}$$
.

Particular cases of this theorem have been proved by Khintchine and Buchstab in an entirely different and more complicated way.

I prove my theorem as a particular case of a more general one. Let the positive integers $\leq n$ not included among the a's be denoted by b_1, b_2, \ldots , and let

$$b_y \leq n < b_{y+1}$$
.

Put

$$E = b_1 + b_2 + \ldots + b_y - \frac{1}{2}y(y+1)$$
,

Clearly $E \ge 0$, since $b_1 \ge 1$, $b_2 \ge 2$ etc. Then there exist at least $x + \frac{E}{ln}$ integers $\le n$ of the form a + A, where in fact we need only use A = 0 and a single other A. This theorem is deduced from the one that there are at least $\frac{E}{ln}$ of the b' s $\le n$ which can be represented in the form a + A, and in fact only a single A is used.

We require the

Lemma: An integer J>0 exists such that there are at least $\frac{E}{n}$ of the b's among the integers $\leq n$ in the set a_1+J , a_2+J ,....

For the number of solutions of the equation

$$a + v = b$$

in positive integers v and a's, $b's \le n$ is E. Thus for given $b = b_r$, there are $b_r - r$ solutions since the number of $a's < b_r$ is clearly $b_r - r$ and every such a gives a solution v. Hence summing for $r = 1, 2, \ldots, y$, the total number of solutions is

$$E = \sum_{r=1}^{y} (b_r - r).$$

But there are at most n possible values of v, namely 1, 2, ..., n and so for at least one value of v, say J, there are not less than $\frac{E}{n}$ solutions of a+J=b in a's and b's not greater than n.

Now express J as a sum of exactly l A's, say

$$J = A_1 + A_2 + \ldots + A_l$$

by including a sufficient number of A_0 's among the A's if need be and where A_1 need not denote the first, A_2 the second etc.

Denote by μ_s fine number of b's in the set $a+A_s$, $s=1, 2, \ldots, l$. I prove now that

$$\mu_1 + \mu_2 + \ldots + \mu_l \geq \frac{E}{n}$$
.

For in the set of integers given by

$$a + A_1 + A_2$$
,

there are at most $\mu_1 + \mu_2$ of the b's. Thus the set $a + A_1$ contains μ_1 of the b's together with some a's. When we add A_2 to the numbers of the set $a + A_1$, the μ_1 b's give at most μ_1 b's, while the a's give at most μ_2 b's. Now take the set $a + A_1 + A_2 + A_3$. This contains at most $\mu_1 + \mu_2 + \mu_3$ of the b's by precisely the same argument applied to the sum of $a + A_1 + A_2$ and A_3 . Similarly the set $a + A_1 + A_2 + \ldots + A_1$, i. e. a + J will contain at most $\mu_1 + \mu_2 + \ldots + \mu_l$ of the b's. But since the set a + J contained at least $\frac{E}{n}$ of the b's, clearly one of the

 μ 's say $\mu_k \geq \frac{E}{ln}$, and so the set $a + A_k$ contains at least $\frac{E}{ln}$ of the b's $\leq n$. Now the set $a + A_0$, since $A_0 = 0$, consists of exactly the x a's. Hence the set a + A including $A_k = 0$ contains at least $x + \frac{E}{ln}$ different integers $\leq n$.

Suppose now the a's have a density δ with $\delta < 1$ which is no loss of generality. We have $f(b_r) \ge \delta b_r$ hence $b_r - r = f(b_r) \ge \delta b_r$, $b_r \ge \frac{r}{1 - \delta}$. and therefore

$$E \geq \frac{1+2+\ldots+y}{1-\delta} - \frac{y(y+1)}{2} \geq \frac{\delta}{2(1-\delta)} y(y+1).$$

Hence for the number N of integers $\leq n$ in the set a+A

$$N \ge x + \frac{\delta}{2(1-\delta)} \frac{y^2}{\ln n} = \varphi(x) \qquad (y = n - x),$$

say. For $x \ge \delta n$

$$\varphi'(x) = 1 - \frac{\delta}{2(1-\delta)} \frac{2(n-x)}{ln} \ge 1 - \frac{\delta}{l} > 0.$$

i. e.
$$N \ge \varphi(x) \ge \varphi(\delta n) = \delta n + \frac{\delta}{2(1-\delta)} \frac{(1-\delta)^2 n^2}{l n}.$$

200

hence

$$N \geq n \left(\delta + \frac{\delta (1 - \delta)}{2 l}\right)$$
.

and this is the theorem.

I can prove in the same way that if a sequence a_1 , a_2 ,... is given and there are f(n) of the a's not exceeding n, then in the set $|a\pm A|$, there are at least

$$f(n) + \frac{f(n)(n-f(n))}{2l}$$

numbers not exceeding n.

Before closing my paper I would express my sincere gratitude to Prof. L. J. Mordell for having so kindly helped me with my ms.

(Received 11 March, 1935.)

A note on the distribution of primes.

By

A. E. Ingham (Cambridge).

1. If $\pi(x)$ denotes as usual the number of primes not exceeding x, then, by the prime number theorem, $\pi(x) \sim \text{li } x$ (as $x \to \infty$), and, by a well known theorem of Littlewood 1).

(1)
$$\pi(x) - \ln x = \Omega \pm \left(\frac{x^{\frac{1}{2}}}{\log x} \log \log \log x\right).$$

The first aim of this paper is to give a proof of (1) without the use of the Phragmén-Lindelöf theorem which was an essential feature of Littlewood's original proof; and the second is to adapt the method to the proof of the following result, in which Θ denotes the upper bound of the real parts of the zeros of the Riemann zeta-function $\zeta(s) = \zeta(\sigma + it)$.

Theorem A. If θ is attained, i. e. if $\zeta(s)$ has a zero on the line $\alpha = \theta$, then there exists an absolute constant A > 1 such that, for all x > 1, the interval (x, A, x) contains an integer n and an integer n' satisfying

$$\pi(n) < \text{li } n, \quad \pi(n') > \text{li } n'$$
.

The possibility of dispensing with the Phragmén-Lindelöf theorem and the resulting advantages for the detailed study of the difference

¹⁾ See E. Landau, Vorlesungen über Zahlentheorie (Leipzig, 1927), II. 123—150; or A. E. Ingham, The distribution of prime numbers (Cambridge, 1932), Chapter V. [These books will be quoted as "Vorlesungen" and "Prime numbers" respectively]. The notation is that of Prime numbers.

^{14.} Acta Arithmetica, I. 2.