Universal Waring theorems with cubic
summands,
By

L. E. Dickson (Chicago).

1. Introduction. We shall obtain systematically !) 116 cubic poly-
nomials f(x) with rational coefficients such that f(x) has an integral
value = 0 for every integer x =0 and such that every positive integer
is proved to be a sum of nine values of f(x) for integers x = 0. The
proof avoids the use of other papers. For several of the f, we obtain
facts which indicate that it is highly probable that (instead of 9) 5 or 4
values suffice.

The triangular and pyramidal numbers are

T (x) = %(x2—~ d, Pl = % (x® — x).

THEOREM 1. The following functions F(y) are inlegers == O for

all integers y =k, while every infeger =0 is a sum of nine values of Fly)
for infegers y =Fk:

P(y), P+1, P4y for k=0; P4y 1, k=1

P—y+41, k=0, —1, --2, —3;

P—2y-43 k=—2 —3, — 4, P—4y-+8 k= -2, —3, —4, —5
P—5y+11, —6=k=0; P—Ty-+18, —1=k=0;

'} The general theory applies to many further f(x), for which it is improbable
that 4 or 5 summands suffice.
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P—9y+26 —8=k=2; P—11y-+35, —9<k=1;
P—14y450, —10=k=2: P—16y+61, —11 =k =4;
P—20y-+85 —12=k=3 P—271y+133, —14=k=4.

Such a theoreﬁ concerning F(y) for integers y =% is equivalent
to the like theorem concerning F(x--%) for integers x=>0, For example,
it F=P—9y--26, k==—3, then F(x—3) is

(1) Gx)=P(x)—3T(x) —6x-449.

It is shown that every integer®) from 0 to 30,000 inclusive is a sum
of four values of G(x) for integers x=0. Then in Lemma 3 we have
m=247 and conclude that every integer from 0 to 2,478,752 is a sum
of five such values. Both facts®) evidently hold also for G(x—1)
when #=1, 2, 3, 4 or 5, since G(—#) >0, G(—6)=—13,

When F=P—7y-4-18, k=—4, F(x—4) is :

@) H{x)=P(x) —4 T(x) — x-+36.

It is shown that every integer from 0 to 20,000 inclusive is a sum o
four values of /7 (x) for integers x=0. In Lemma 3 we have m=199
and conclude that every integer =1,351,900 is a sum of five such values.
Both facts hold also for H(x —?) with £=1, 2 or 3, since H(—1?) >0,
H(—4)=—10,

When F=P—11y-+435, k=—3, F(x—3) is
J(%) =P (%) —3 T (x) — 8 x -+ 64.

Every integer = 25,000 is a sum of four values of J(x) for integers
x=0. Thus every integer = 1,895,771 is a sum of five such values by
Lemma 3 with 7 ==226, Both facts hold also for J{x — ) with f=1,...,6,
since J(—1%)>>0.

Four summands suffice to 6000 for P— 16y 61, y=—6 (§ 7).

2. Sums of nine values of f(x)=P(x)} gx.

?) Since we used 59 values of G () our result is to be compared with a Waring
problem on cubes to 593 = 205,379,

3) Their extensions to a larger range are more likely to hold than the facts for
G (x) since we now have available new summands,

13. Acta Arithmetica, L, 2.
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LEMMA 1. Given the positive infegers n and s, and any infeger h,
we can find an integer m such that

s=f(3m) (mod 37, h=m<3"+h

By induction on £, we see that f(x--3r)-——f(x) is not divisible
by 3% if 7 is not, Let j and & be any two distinct ones of the integers

) B -1, ..., A3 —1.
Then r=7j—F is not divisible by 3%. Also take x==3% Then
FBA—fBR=Fflx43r)—f(x)5£0 (mod 3").

Hence when m ranges over the 37 integers (4), the values of f(3m)
are incongruent modulo 37, whence 5 is congruent to one of those
values, A simple computation yields

LEMMA 2. F 0=h=234, g<15713, m<3*-+h, 1n=8, then
fBm)<5.3%"

If s and C are given positive numbers, we can evidently choose
a positive integer # so that '

C.arss<sC.21"+.

Then s is one of the integers S; of the three sub -intervals
) -1 CPr=g5,< 3 C33n (i=1, 2 3).

By Lemma 1 we can choose an integer m; so that
(6) Si=f(3M[j+3nMi. h=m< 3"k,
where M; is an integer. Let f(3m;) =0, Using also Lemma 2, we get

BF1C—5)3n I M; <3 C32%,

Write M; =327~ N;. Then
(7 (31 C—6)32r < N;< (33 C—1) 32",
Henceforth employ sumx;nands fx), x=1 where t=3%
(8) 0=1=702, —3% =g<15773, n=8

Then b, =5, by="17, by=11, C==168 satisly the inéqualities
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© b*+(1~-~) +o+5 3f‘—lcgibis+%(izbi~é)2

3
+i4 2

32n+1

for i=1, 2, 3. where Si=(1+—;—bi>[6g—‘1). Then (7) imply

(10) LENE L, zi=%bﬁazn+(3n_nz S
L:—b 2320 L Z ( b 3n-z) LS
Write .
(11) Ai=s[f\5¥irs~15;——6§—g]—%bﬁszﬂ+1, G,-=Ai——b27(3”——t]2.

These with (10} imply

{12) (G;=0 (whence A;=0), ]/

For any number v; in the interval

{13) —b 3n+]/1 Gi=v zwb[3”+ ~~Al,
the final inequality (12) and the first one (13) give
(14) t< =363 —t.
Employ the abbreviation
Vi= ——»—;— b 3n,

Thus (13) give

{15) V,/]/ Gi, -

——~AL> Vi.
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These imply
0=N,+1—6g—3b; [g + —Hs Ve -%bﬁ 3 1}]g @ — £,

Write

"

(16) B;:3b1{g——}—%[9bi232"—-1-—3@1[3b13"-—-’(!i] j,

Then the last inequalities give

(17) 0=N:+1—6g—B/=(3"—1)
Write

(18) w=3b; 3" —v;, Ri=f(vi)+f(w).

Hence R:=23"B;, The identity

3

E{m"— xf)+f(3"+le}=33”+3”(Qf—-1+6g).Qz=x1’+xu2+x.«,2.
j=1

and (6) show that s;=f(3n) -+ 37(3?%»+ N)) will be the sum of the va-
lues of f(x) for the nine values

(19) 3mi, v, W, 3—x;, 3% (F=1, 2, 3)

of x provided only

(20) Q,‘=N1—[-—1~6g——31

is a sum of three squares x;?, In that case, (17) gives 3*~—x;=f By
(14) and (18), both v; and w; are ={ By Lemma I, 37,27 since
t=3h4. Thus the nine arguments (19) are all =1.

It remains only to prove that we can choose an integer v so
that Q; will be a sum of three integral squares,

Consider the difference D; between the limits in (13}:

1 1 2(3"— 1)
21 o=}/ Lay/ Lo, p= 2000
( 3 ER AW

By (11,) and Gi=0

G,
Zj=1--[7i. o pi=1.
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Thus D; is the product of]/;— A; by

T Pi pi
1—V1—p = LIRS L
1-H/1—p 2
whence
. £)2
(22) Di> —@“i"t_)‘: .
bi]/3‘Ai

By (7) for C=168 and (11),

i 2 _ .
(23) 3A,~<18{“"8'3 R I )
—

We readily find that each D;>>8. Hence (13) holds for at least
eight consecutive integers v;, But

ZBi——Bb,'g———‘——biF,

where F denotes the quantity in square brackets in (16). It involves
the function v (k —v), where £=35;3" is odd. Evidently v(2—o) can
be made congruent ito any assigned even integer modulo 8 by choice
of v. Hence in (20) we can choose 7; (mod 8) so that 2 Q;=22 (mod 8),
where z is an arbitrary integer. Take z=1, Then Q;=1 (mod 4).
But Q:=0 by (17). Hence Q; is a sum of three integral squares, This
proves?)

THEOREM 2. Every integer = 168.3% is a sum of nine values
of f(x) —"gx—-l— (x® —x) for integral values =t of x, if O<t<702

—315§g<15773, and if f(X)=0 for every infeger x=".

3. LEMMA 3. Let a polynomial f(x) tfake an integral value =0
for every infeger x==1,.where the given integer { may be negative.
Make the hypothesis (H) that every integer [ for which [<i=g
is @ sum of k—1 values of f(x) for infegers x=t. Letf

@9 fU+HD—fN<g—!1 G=t....,m),

) When £=0, I bad proved that every integer = = 171.3* is a sum of nine
values if 2 < 3%; also a like theorem for gx--AP(x), Trans, Amer, Math Soc
vol. 36 (1934), p, 740; cf., pp. 1 — 12, 493 —510, . .
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where the integer m exceeds t, Then every integer which exceeds [-|-f(t}
and is <g-f(m-+1) is a sum of %k values of f(x) for infegers x=¢,
For a fixed j consider an integer / for which

(25) g+ri<d=g+ri+1).
Write i=1—f(j+1). By (24) and (25), g={>¢-+/(N—fU+10>0

By (H), i is therefore a sum of #— 1 values of f(x), whence [ is a sum
of k values. Apply the latter result for j=1Z, ..., j==m in turn, and
note that each interval (25) ends just where the next begins. Hence
every integer which exceeds g+ f(f) and is = g-Ff(m--1) is a sum

of £ values of f(x), By (H), those from [ to g are sums of k£ —1 values;
employ the further value f(f); hence all from [-+f(!) to g-4f(f) are
sums of %2 values, The two conclusions together yield the lemma.

4. Proof of Theorem 1. For each function F=P(y)—ry—+s
in Theorem 1, we have —1=r =27, 0=5=133. We shall verify later
‘that all integers from 0 to 2000 inclusive are sums of five values
of F(y) for integers y=17, where —2={=4. Let a function F have
the latter property when

(26) —63=t=21, —15=r=27, 0=5=133.

Apply Lemma 3 with /=0, g=2000, 2=6. Since
, , 1 .., .
F(J+1)~F(])=—2—U“+/)——r.

condition (24) is equivalent to
(27-4-1)°< 16001 +87

and holds if —63= =62, Hence for any ¢ in (26), (24) holds if m=62
Then

g1=g - F (63) = 43664 — 63 r -5, F () < 2000,

Hence Lemma 3 shows that every integer =g, is a sum of 6 values
of F(y) for integers y=¢.

Apply Lemma 3 with /=0, g=g,, k="7. Now (24) is
(2/+1)2< 349313 — 496 + 8.

For any 7 and s in (26), this holds if (2/4-1)*=(579)%, Thus for any!?
in (26), (24) holds if m =289, Then
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g2 =g, -+ F(290) = 4108449 — 353 r |- 25,

and every integer =g, is a sum of 7 values of F{y) for integers y=+£.
The next m is 2862, and

&8s = & + F(2863) = 3915331000 — 3216 7 | 3 s.

All integers = g, are sums of 8 values. Then m=288488, and all inte-
gers = 11,548,650 10" are sums of 9 values. This number exceeds

168 X 3% = 4,744,816 X 107

If Nis a sum of 9 values of f{y) then N4 95 is a sum of 9 values
of f(3)+5. Theorem 2 implies a like result when £ is negative, We have
now proved

THEOREM 3. Let all integers from 0 to 2000 inclusive be sums
of five values of F=—;-[y-" —y)—ry-+s for integers y=t, where

r, S, t satisfy inequalities (26), and F==0 for every infeger y=t. Then
every infeger =0 is a sum of nine values of F for infegers y=1.

This implies Theorem 1.

5. Conditions for a universal Waring theorem. Any cubic
function with rational coefficients may evidently be written in the form

(27) Fx)=AP(x)+BTx)}Cx+4D, A0,
where A, ... ,D are rational numbers. We assume

(28) F(x)is an integer =0 for every integer £==0.
The fact that A, ,.., D are integers follows from

F{0)=D, F1)=C+D, F)=A-+B-+2C-D,
FB)=4A+43B-+43C+D.

Then (27) is an integer for every integer x. Also, A >0 by (28) with
x=00, We desire that

(29) every integer = 0 shall be a sum of v values of F(x),

where v =19, The smaller A is, the more slowly will F(x) increase
with x, and the smaller v will be in general, Hence we shall take 4=1.
By (28) and (29), F (k) =0 for some integer A==0. Let the trans-
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formation y=x-+% replace F(y) by f(x).» Then f (0)=F (h)=o,
Hence Waring's problem for F(y) reduces to that for

(30) fH)=PX)FbT(x)+cx, x=—n

The maximum %2 will be found tentatively in each case, as for (1 )—(3),

By (29), f(z) =1 for some integer 2, Since all terms of 6 f(2) are pro-

ducts of z.by integers, z must divide 6, whence z2=+1, +2, +3, +¢,
The cases z=6 and 2==—3 are excluded since

F6)=35-+15b—46c=1, f(—3)=—4-+6b0—3c=1

are impossible in inteders, in fact, modulo 3.

6. Case z=1. Thus c=1=f(1). If <0, f 3)=7-+3b=0
requires b=-—1 or—2, Postponing to Section 12 less interesting
special cases, let =2, When x=—3b—1, f(x)=x. Also, f(—3b) =

=~;—b(3b—5]>0. Besides the root 0 und the root between — 35 —1
and — 35 of f(x)=0, there is a root between 0 and 1 if 6==3, but

a root between w% and 0 if b=2. Hence f(x) =0 for every integer

=—30b. If =3, the least integral values of f(X) are 0, 1, b—1=
=f(—1). Thus 6—2 summands 1 are required to produce the num-
ber 6—2, and hence at least six summands are needed when 6=8.
We exclude this case.

To (30} apply the transformation x=y —&; we get

(31) F(y)=P(y)+{1—%(b+b21}y+f(—b1.

Thus if 6=2, F(y)=0 for every integer y=—24.
The most interesting case has b==4., Then

(32) F(y)=P(y)—9y26.

Its values for y=-—9, —8, ..., 7 are —13, 14, 33, 45, 51, 52, 49, 43,
35, 26,17, 9, 3,0, 1, 7, 19. Hence we have a universal Waring problem
F(x~#h), for integers x=0, when —8<h=<4, We discard h==4,
since 6 is not a sum of fewer than six values of F(x--4), Also h=3,
since 100 is not a sum of five values of F(x--3), but all others <506
are sums of five.

When % =2, the only integers < 506 which are not sums of four
values of F(x-2) for integers x=0 are

e ®
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62, 89, 97, 99, 135, 181, 183, 190, 236, 263, 265, 328, 336, 391, 433,

437, 443, 445, 500. .

We readily conclude that all integers = 2906 are sums of five such
values,

The least positive integer not a sum of four values of F(x--#)
for integers x=0 is 97 if =1, 336 if £=0, 539 if A=—1, 7243 if

=—2,

By use of a new table of sums of three values of F(x—3) for
integers X =0 covering 0-— 3500, 15000 — 18000, it was verified that
every positive integer = 30000 is a sum of four such values. Note that
F(x—3) is the function (1) discussed in Section 1.

7. Case z=—1. Thus b=c-+1 in (30). Also, f(1)=c=0.
When x=3¢-+42, f(—x)=x; also

fl=3c—=3)=—(c+1)¢—30), f2)=2+3c,

=1, f(—2)=2+-c.

=

fl=1

—

Hence if ¢ =2, f(x) is =0 for every integer Xx=—3¢—2 and its least
values are 0, 1, ¢. Thus ¢—1 is a sum of ¢—1, but not fewer values.
To (30) apply the transformation X=y—c—1; we get

33) F(y)=P(y)~~;~(02+c+2]y+f(——0—11.

We saw that if =2, F(y) is =0 for every integer y=—2c¢—1, but
is negative if y=—2c—2,

First, let c¢=3. Then F(y)=P () —7y+18, y==—17. The least
positive integer L which is not a sum of four values of F(v) is

(%

y l 3 2 or 1 0 or —1 —2 —3

t~

‘ .19 43 203 2831 3437

while every integer =: 20000 is a sum of four values of F(y) for integers
y=—4. Note that F(x-—4) is function (2). All integers =.15883 are
sums of five values of F(y), y=0.

Second, let c¢=4, Then F=P—11y-+435, y=—19. Now the least
integer not a sum of four values is 11 if y=4, 54 if y=3 or 2, and 363
if y=1,0, —1 or —2. But every integer = 25000 is a sum of four values
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of F(y) for integers y==-—3. Since all <363 are sums of four values
of F for integers y=1, all = 3377 are sums of five such values b
Lemma 3. 4

Third, let c=2. Then F=P—4y+48, y=—5. Al integers
= 200 except 90,163, and 167 are sums of four values with y2—1‘
All = 2000 except only 562, 710, 881, 1869, and 1893 are sums ;E fom:
values with y=—2, All but 1869 of these five exceptions become
sums of four values with y=—4. Since F(—5)=8=F(0), 1869 is not
a sum of four values with y =—25,

Fourth, let ¢=1, Then F=P—2y+43, y=—4. For y=2
{or y=1), 22 is not a sum of five values. The only useful case is
y=—2. Then all =543 are sums of four values except 191, 331, 334
It follows readily that all = 4335 are sums of five. ]

Fifth, let ¢=0, Then F=P—y-1, and

Fl—4)=—5 F(=3)=0=F(1), F(—2)=F (—1)=2=F(3),

Hence we may take y=20. The integers =609, except twenty seven,
are sums of four values. From them we find that 0 — 4718 are all sum;
of five values.

Sixth, let c=5. Then F=P—16y--61, y=—11. If y=5, 14
requires six summands, The least integer not a sum of four va];e; is
33 if y=4 (or y=3), 63 if y=2, 175 if y=1 or y==0, 955 if y=—1
or y=—2 or y=—3, 2221 if y=—4 or y=—5. But all = 6000 are
sums of four values of F(y) for y=—6. We have not ye‘rused the
available summands

F(—1T1)=117, F(—8)=105=F(11), F(—9) =85,
F(—10)=56, F(—11)=17==F (3),

All integers = 3515 are sums of five values of F for yv=-14.
8. Case z=2,

Q);).Tfl()_c), f(t—2]=—1. f(—1)=0=f(0), and we may take x=0.
ile is not a sum of four values of P(x), eve iti integ
N=17000 is a sum of five pyramidal numbers ]5], ey posilive infeer
. Next, let ¢=1. Then f(3})=4—3¢=0 only when ¢=1. Then
=2, Take.x=y+2. Then f(x) becomes 1--P(y). By the result
quo’fed, N-+5 is a sum of five values of 14 P(y) for =20 and hence
o‘f five values of f(x) for x=2. Hence for 0§M§7005TW/|/1 is a sum of
five values of f(x} for =0, But 56 is not a sum of four values of f(x).

®) K. C. Yang, Chicago Dissertation, 1928,
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9. Case z=3, Thus b=—1—c¢, By f{4)=4—2¢c=0, c=

=0,1, or 2, If c=0,f(x]=%_x(x-—1) (x—2) is pyramidal. If c=1,

then b=—2 (end of § 8). If ¢=2, b=—3; taking x=y-+3, we get
P—y-+1 (case c=0 of § 7).

10, Case z=—6. Thus 1=216—6c— 35, b=2B, ¢c=17B—6,
whence B=1 since f(1)=c=20. But f(—5)=10—5B=0, whence
B=2. By f(—4)=14—8B=0, B#2 Hence B=1, b=2, c=1
(duplicate of fourth case c=1 in § ).

11. Case z==—2. Thus 1=3b—2c—1, b=2B, c=3B—1,
B=1. By f(—1)=1—B=0, B=1, b=2, ¢=2. For x=y—2,
f(x) becomes P—y—+1 (case ¢=0 of § 7).

“12. Case z =1 concluded. If =0, f=P(x)+ % Since
fl—1)=—1, x=0. Except only 37, 115, 122, 166, 334, 372, 541,
every positive integer = 2030 is a sum of four values of f. Then by
Lemma 3 all integers between 541 and A = 28236 are sums of five
values. Employ

B =f(55) =21115, C=f(54)=26289, D =f(22)=1793.
Then B-+541=C-+D-234 is a sum of five, since 234 is a sum of

three, values. Hence by adding B to 461 —2030, we conclude that
all integers from A to 29805 are sums of five values. Similarly, by

adding in turn f(56),.... f(64), we see that all = 45774 are sums
of five.

When b= —1, take x=y-1; we get G=P—+y+1. Let t range
over the former exceptions 37, ..., 541. Thus all integers from 4 to 2034

except the seven 47 are sums of four values of G for integers y=0.

But
41=G@4)+G(5), 119=GC(5)-+CG(8) 126 =3 G (6).

170=G (6) +2 G (7), 338= G(6)-+ G+ a(11).

Since G(—1)=0, all integers = 2034 except only 376 and 545 are
sums of four values of G (y) for integers y=—1. Evidently all = 45779
are sums of five such values,

If b=1, f(x) is the pyramidal number P(x-1).

If 5=2, we have the fourth case ¢=1 of Section 7,

If b=—2, we have the second case of Section 8.
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Let #=3. By (31), F=P—5y-411, y=—6. For y=3, 31 is
not a sum of five values. The least positive integer not a sum of four
is27if y=2 or y=1, 53 ify=0 or y=—1, 696if y=—2, 1631 i
y=—3, 1652 if y=—4 ory=—5 or y=—6. For y=0, 53, 85
2117, 351, 391, 472 are the only integers = 501 which are not sums of'
four values of F. We readily conclude that all = 2700 are sums of
five values,

Let 4=5. By (31), F=P—14y--50, y=>—10. The least integer
not a sum of five values of F is 37 if y==4, and 63 if y=x3. Also 19
is not a sum of four values with y==—10. Using the twenty - four
integers = 500 which are not sums of four values of F for V=2, we
find that all = 3000 are sums of five. B

Let 6=6. Then F=P—20y-185 y=-—12. Then 13 is not
a sum of four values. For ¥y=4, 122 is not a sum of five. All in-
tegers = 3775 are sums of five values of F for y =3,

Finally, let 6=17. Then F=P—27y-+133, y=—14. Then 5 is
not a sum of four values. For ¥ =5, 43 is not a sum of five. Every
integer = 10000 is a sum of five values of F for y==4.

(Received 8 June, 1935)

On the arithmetical density of the sum
of two sequences one of which forms
a basis for the integers.

By

P. Erdss (Manchester).

Let @,, @5, ... be any given sequence of positive steadily increa-
sing integers and suppose there are x=/(1) of them not exceeding

a number n, so that
Ay =< Qatt.

The density & of the sequence is defined by Schnirelmann as the
lower bound of the numbers f(n)jn, n=1, 2,.... Thus if a,#1,
6=0.

Clearly f(n)=odn.

Suppose also that the steadily increasing set

Ay=0, Ay, Ay, ...

forms a basis of order / of the positive integers. This means that every
positive integer can be expressed as the sum of at most [ of the A's.

I prove the following
Theorem: If 3 is the densify of the sequence a4, i e. of the

integers which can be expressed as the sum of an a and an A, then

Particular cases of this theorem have been proved by Khintchine
and Buchstab in an entirely different and more complicated way.
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