

so folgt aus (94), (124), (91) und (92)

$$\begin{split} A_{r,s+1}(\nu) &= \pi^r \Gamma^{-2} \left(\frac{r}{2} + s \right) d^{\frac{1-r}{2}} (2 h \log \eta)^{-s} \, \widehat{\mathcal{Z}}_{r,s}(\nu) \\ &+ o \left(N \nu^{\frac{r}{2} + s - 1} \log^{-s} N \nu \right) \sum_{\omega < \nu, \, \omega' < \nu'} 1 \\ &= \pi^r \Gamma^{-2} \left(\frac{r}{2} + s + 1 \right) d^{\frac{1-r}{2}} (2 h \log \eta)^{-s - 1} N \nu^{\frac{r}{2} + s} \log^{-s - 1} N \nu . \, \widehat{\mathcal{Z}}_{r,s+1}(\nu) \\ &+ o \left(N \nu^{\frac{r}{2}} \log^{-s - 1} N \nu \right), \end{split}$$

d. h. es gilt (125) mit s+1 statt s. Also ist auch (93) mit s+1 richtig, w. z. b. w.

Radość, den 24. November 1934.

(Eingegangen am 24. November 1934.)

Congruences involving only e-th powers.

B

L. E. Dickson (Chicago).

1. A. Hurwitz1) proved that if e is an odd prime,

$$ax^e + bv^e + cz^e \equiv 0 \pmod{p}$$
, $abc \neq 0$.

has solutions prime to p for every prime p exceeding a specified limit. He also gave recursion formulas for the number N of solutions of the analogous congruence in any number of variables. We shall show that these formulas, in a more convenient form, serve to express N in terms of the cyclotomic constants (k, h). Nor can the latter be avoided in spite of Hurwitz's explicit exclusion of the theory of cyclotomy.

Moreover we remove the restriction that e is a prime.

2. Let g be a primitive root of the prime p = ef + 1. For given integers a_i , Hurwitz defined the symbol $[a_1, \ldots, a_r]$ so that its product by f denotes the number of sets t_1, \ldots, t_r of integers each chosen from $0, 1, \ldots, f-1$ which satisfy

(1)
$$\sum_{i=1}^{r} g^{et_i + a_i} \equiv 0 \pmod{p}.$$

We may also permit t_i to range over any complete set of residues modulo f, since the replacement of t_i by $t_i + nf$ inserts in the i-th term of (1) the factor $g^{nef} \equiv 1 \pmod{p}$. For a fixed integer k, $t_i + k$ ranges with t_i over a complete set of residues modulo f. Hence $[a_1, \ldots, a_r]$ is unaltered when we replace a_i by $a_i + ke$. The

¹⁾ Jour. für Mathematik, vol. 136 (1909), p. 272. Case a=b=c=1 by Dickson, ibid., vol. 135, by cyclotomy,

^{11.} Acta-Arithmetica, I.

symbol is also unaltered if we add the same integer c to each a_i , since (1) is then multiplied by g^c . The case $c = -a_r$ gives

$$[a_1, \ldots, a_{r-1}, a_r] = [a_1 - a_r, \ldots, a_{r-1} - a_r, 0].$$

Call two sets (t_1, \ldots, t_r) and (T_1, \ldots, T_r) congruent modulo f if and only if $t_1 = T_1, \ldots, t_r = T_r \pmod{f}$. When as above, each t_i ranges independently over a complete set of residues modulo f, we obtain from (t_1, \ldots, t_r) a complete system [of f^r incongruent sets modulo f. The latter is evidently obtained also from $(t_1 + t_r, \ldots, t_{r-1} + t_r, t_r)$. After making this replacement in (1), we may remove the common factor g^{et_r} . Since t_r has f values, we obtain

THEOREM 1. The symbol $[a_1, \ldots, a_r]$ denotes the number of sets t_1, \ldots, t_{r-1} each chosen from any complete set of residues modulo f which satisfy

(3)
$$g^{a_r} + \sum_{i=1}^{r-1} g^{et_i + a_i} \equiv 0 \pmod{p},$$

In particular, [k, h, 0] is the number of sets t, T each from a complete set of residues modulo f which satisfy

(4)
$$1 + g^{et+h} + g^{eT+h} = 0 \pmod{p}.$$

3. Theory when f is even. Then

(5)
$$p-1=2e\cdot\frac{1}{2}f,-1=g^{\frac{1}{2}(p-1)}=g^{e\cdot\frac{1}{2}f}\pmod{p},$$

and (4) may be written as

$$(6) 1 + g^{et+k} \equiv g^{ez+k} \pmod{p}$$

where z = T + f. In the standard notation of cyclotomy, (k, h) denotes the number of sets t, z chosen from $0, 1, \ldots, f-1$ which satisfy (6). Thus

[
$$h, h, 0$$
] = (h, h) (f even).

As a generalization, let (a_1, \ldots, a_m) be the number of sets t_1, \ldots, t_m each chosen from any complete set of residues modulo f which satisfy

(8)
$$1 + \sum_{i=1}^{m} g^{at_i + a_i} \equiv 0 \pmod{p}.$$

$$[a_1, \ldots, a_m, 0] = (a_1, \ldots, a_m).$$

For m=1, we see at once from (5) that

(10)
$$(a) = 1$$
 if $a \equiv 0 \pmod{e}$, $(a) = 0$ if $a \not\equiv 0 \pmod{e}$.

The symbol (a_1, \ldots, a_m) is unaltered if we permute the a_i in any way. If we multiply (8) by the reciprocal of its last term, we see that

$$(a_1, \ldots, a_m) = (a_1 - a_m, \ldots, a_{m-1} - a_m, -a_m).$$

Although the results by Hurwitz, pp. 280-6, were stated only for the case in which e is an odd prime, the proofs are valid also when e is composite, provided always that f be even. By (2), his symbol can be replaced by (9). Without loss of generality we may take $\beta_s = 0$ and replace s by m+1. Then

(12)
$$(a_{2}, \ldots, a_{r}, b_{1}, \ldots, b_{m}) = f(a_{1} - a_{r}, \ldots, a_{r-1} - a_{r}) (b_{1}, \ldots, b_{m}) + \sum_{j=0}^{e-1} (a_{1} + j, \ldots, a_{r} + j) (b_{1} + j, \ldots, b_{m} + j, j),$$

$$\sum_{j=0}^{e-1} (a_{1} + j, \ldots, a_{r} + j, b_{1}, \ldots, b_{m}) =$$

$$\{p-1\} (a_{1} - a_{r}, \ldots, a_{r-1} - a_{r}) (b_{1}, \ldots, b_{m})$$

Since (12) is trivial if m=0 or if r=1 by (11), the first case of interest is given by m=1, r=2:

 $+\{f^{r-1}-(a_1-a_r,\ldots,a_{r-1}-a_r)\}\{f^m-(b_1,\ldots,b_m)\}.$

(14)
$$(a_1, a_2, b) = f(a_1 - a_2)(b) + \sum_{j=0}^{e-1} (a_1 + j, a_2 + j)(b + j, j),$$

which expresses (a_1, a_2, b) in terms of the cyclotomic constants (h, h). For r = 1, m = 2, (13) becomes

(15)
$$\sum_{j=0}^{e-1} (a_1 + j, b_1, b_2) = f^2 - (b_1 b_2).$$

But for r=2, m=1, (13) gives a relation free of the cyclotomic numbers (k, h). Since we may take a_2+j as a new summation index, the result is not more general than the case $a_2=0$:

(16)
$$\sum_{j=0}^{p-1} (a+j, j, b) = \{p-1\} \ (a) \ (b) + \{f-(a)\} \ \{f-(b)\}.$$

4. Case
$$e = 3$$
. By (11), $11 = 02$, $22 = 01$, and $111 = 002$, $112 = 122 = 012$, $022 = 011$, $222 = 001$.

The theory of cyclotomy 2) gives

$$18(00) = 2p - 16 + 2L, \quad 18(01) = 2p - 4 - L + 9M,$$

$$18(12) = 2p + 2 + 2L, \quad 18(02) = 2p - 4 - L - 9M,$$

where $4p = L^2 + 27 M^2$, $L \equiv 1 \pmod{3}$. Then (14) gives

$$27(000) = p^{2} + 3p + 15 - 4L, \quad 54(001) = 2p^{2} - 12p + 12 + L - 27M,$$

$$27(011) = p^{2} + 3 + 2L, \quad 54(002) = 2p^{2} - 12p + 12 + L + 27M,$$

$$27(012) = p^{2} - 3p + L.$$

These satisfy the following relations, to which (16) reduce:

$$(011) + 2(012) = f^2$$
, $(000) + 2(011) = f^2 + f + 1$,
 $(001) + (002) + (012) = f^2 - f$.

5. Case e = 4, f even. By (11),

$$11 = 03$$
, $13 = 12$, $22 = 02$, $23 = 12$, $33 = 01$, $111 = 003$, $112 = 013$, $113 = 122 = 023$, $222 = 002$, $223 = 133 = 012$, $033 = 011$, $233 = 013$, $333 = 001$.

By the theory of cyclotomy (cf. D),

$$16(00) = p - 11 - 6x, \ 16(02) = h = p - 3 + 2x, \ 16(01) = h + 8y,$$

$$16(03) = h - 8y, \ 16(12) = p + 1 - 2x, \ p = x^2 + 4y, \ x = 1 \pmod{4}.$$

Then (14) gives

$$64(000) = p^{2} + 14p + 21 + 24x + 4x^{2},$$

$$64(001) = p^{2} - 10p + 9 - 8y(x + 3),$$

$$64(002) = p^{2} - 6p + 9 - 4x^{2},$$

$$64(003) = p^{2} - 10p + 9 + 8y(x + 3),$$

$$64(011) = p^{2} + 6p + 5 - 8x - 4x^{2},$$

These satisfy the following relations, to which (16) reduce:

$$(002) + (013) = \frac{1}{2}(f^2 - f), \quad (011) + 2(013) + (123) = f^2,$$

$$(001) + (003) = \frac{1}{2}f^2 - f, \quad (000) + 2(011) + (022) = (f+1)^2,$$

$$(012) + (023) = \frac{1}{2}f^2, \quad (022) + (123) = \frac{1}{2}f^2.$$

6. Theory when f is odd. Let $\{a_1, \ldots, a_m\}$ denote the number of sets t_1, \ldots, t_m modulo f which satisfy (8). By Theorem 1,

$$[a_1, \ldots, a_m, 0] = \{a_1, \ldots, a_m\},\$$

(18)
$${a = 1 \text{ if } a = \frac{1}{2} e \pmod{e}, \{a\} = 0 \text{ if } a \not\equiv \frac{1}{2} e \pmod{e}.}$$

By the definition in § 3 of the cyclotomic number (k, h),

(19)
$$\{k, h\} = \left(k, h + \frac{1}{2}e\right)$$
 (f odd),

since, by (5), (4) becomes

$$1 + g^{vt+h} = g^n \pmod{p}, \quad n = e\left[T + \frac{1}{2}(f-1)\right] + h + \frac{1}{2}e.$$

By modifying the discussion by Hurwitz, we now get

(20)
$$[a_1, \ldots, a_r, b_1, \ldots, b_s] = f[a_1, \ldots, a_r] b_1, \ldots, b_s]$$

$$+ \sum_{j=0}^{r-1} \left[a_1, \ldots, a_r, j + \frac{1}{2} e \right] [b_1, \ldots, b_s, j], \dots, \dots, \dots, \dots$$

His (27) and (28) hold also if f is odd. Also (29), if we replace

²⁾ Dickson, American Jour. Math., vol. 57 (1935). Cited as D.

 $a_1 = a_2$ by $a_1 = a_2 + \frac{1}{2}e \pmod{e}$. In (20) take r = s = 2, $b_2 = 0$, replace j by -j, and in the symbols of Σ make the final arguments zero by (2). We get

$$\{a_1 a_2 b\} = f\{a_1 - a_2\} \{b\} + \sum_{j=0}^{e-1} \{a_1 + j - \frac{1}{2} e, a_2 + j - \frac{1}{2} e\} \{b + j, j\},$$

From our modification of Hurwitz's (29) for s=2, $\alpha_2=\beta_2=0$.

(22)
$$\sum_{j=0}^{e-1} \{a+j,j,b\} = \begin{cases} f^2 - f\{b\} & \text{if } a \neq \frac{1}{2} e \pmod{e}, \\ (f-1)f + (p-f)\{b\} & \text{if } a = \frac{1}{2} e \pmod{e}. \end{cases}$$

7. Case e = 4, f odd. By cyclotomy (see D),

$$(22) = (20) = (00), (32) = (13) = (01), (12) = (31) = (03),$$

 $(33) = (23) = (30) = (21) = (11) = (10),$

16 (01) =
$$k - 8y$$
, 16 (03) = $k + 8y$, $k = p + 1 + 2x$,

16 (00) =
$$k - 8$$
, 16 (02) = $p + 1 - 6x$, 16 (10) = $p - 3 - 2x$,

where $p = x^2 + 4y^2$, $x \equiv 1 \pmod{4}$, We get the $\{k, h\}$ by (19). By (21),

$$64 \{000\} = p^{2} - 10p - 3 + 24x + 4x^{2},$$

$$64 \{001\} = p^{2} + 2p - 3 - 8y(x + 3),$$

$$64 \{002\} = p^{2} - 6p + 9 - 4x^{2},$$

$$64 \{003\} = p^{2} + 2p - 3 + 8y(x + 3),$$

$$64 \{011\} = p^{2} - 2p - 3 - 8x - 4x^{2},$$

$$64 \{012\} = p^{2} - 6p + 5 + 8y(x - 1),$$

$$64 \{013\} = p^{2} - 6p + 1 + 4x^{2},$$

$$64 \{023\} = p^{2} - 6p + 5 - 8y(x - 1),$$

$$64 \{022\} = p^{2} + 6p + 13 - 8x + 4x^{2},$$

The remaining $\{abc\}$ are equal to these as in §5. The displayed $\{abc\}$ satisfy the following relations, to which (22) reduce:

 $64 \{123\} = p^2 + 6p + 5 + 8x - 4x^2$

8. Number of solutions of the congruence.

(23)
$$d + \sum_{i=1}^{r} c_i x_i^r \equiv 0$$
, each $c_i \not\equiv 0 \pmod{p}$.

We may write $c_i = g^{a_i} \pmod{p}$. It is readily proved (in D) that the number N of solutions all prime to p of (23) is e^r times the number of sets of values of t_1, \ldots, t_r each chosen from $0, 1, \ldots, f-1$ which satisfy

(24)
$$d + \sum_{i=1}^{r} g^{et_i + a_i} \equiv 0 \pmod{p}.$$

If $d \equiv 0 \pmod{p}$, (24) becomes (1), whence $N = e^r f[a_1, \ldots, a_r]$. But if $d \not\equiv 0$, $d \equiv g^{a_r+1} \pmod{p}$ and Theorem 1 gives

$$N = e^{r} [a_1, \ldots, a_{r+1}].$$

We readily deduce the total number T of all solutions of (23) by using the number of solutions in which a single x_i is a multiple of p, the number of solutions in which just two variables are multiples of p, etc.

The case $d\not\equiv 0$ reduces by multiplication to the case $d\equiv 1\pmod p$. The total number T of solutions of

(25)
$$1 + c_1 x_1^e + c_2 x_2^e + c_3 x_3^e \equiv 0, c_i \equiv g^{a_i} \pmod{p}$$
 is therefore

$$T = e^{3} [a_{1} a_{2} a_{3} 0] + e^{2} [a_{2} a_{3} 0] + e^{2} [a_{1} a_{3} 0] + e^{3} [a_{1} a_{2} 0] + e [a_{3} 0] + e [a_{3} 0] + e [a_{1} 0].$$

For example, if each $c_i = 1$, and f is even,

(26)
$$T = e^3(000) + 3e^2(00) + 3e$$
.

When e=3 or 4. T is respectively

$$p^2 + 6p - L$$
, $p^2 + 17p + 6x + 4x^2$.

(Received 13 January, 1935.)