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so folgt aus (94), (124}, (91) und (92)

= 7’

1—r
At (V) -2 (% —+ s) d? 2hlogn) 3,0

- log—*‘Nv) Z 1

w<ly, w’ <y’

~+o0 (Nviﬁ_

1—r r

=02 1) 7 Alog ) NS log A 2,040

—+o ( Ny7? Jog—s—1 Nv),

d: h. es gilt (125) mit s+1 statt s

Also ist auch (93) mit s-+1 rich-
tig, w. z. b. w.

Radosé¢, den 24. November 1934,

(Eingegangen am 24, November 1934,

. Congruences involving only e-th powers.
. by
L. E. Dickson (Chicago).

1. A. Harwitz!) proved that if € is an odd prime,
axt 4+ by -+ cz=0 (mod p}, abc£0,

has solutions prime to p for every prime p exceeding a specified
limit. He also gave recursion formulas for the number N of solu-
tions of the analogous congruence in any number of wvariables.
We shall show that these formulas, in a more convenient form,
serve to express /N in terms of the cyclotomic constants (%, #).
Nor can the latter be avoided in spite of Hurwitz's explicit, exclu-
sion of the theory of cyclotomy.

Moreover we remove the restriction that & is a_prime.

2. Let g be a primitive root of the prime p=ef+1. For
given integers a; Hurwitz defined the symbol [ay,...,a] so that its
product by f denotes the number of sets %,..., 7 of integers each
chosen from 0, 1,...,f—1 which satisfy A

N r I
(1) T gflitei==0 (mod p).
i=t

We may also permit #; to range over any complete set of residues

modulo f, since the replacement of # by Z;-F#f inserts in the

ith term of (1) the factor U”E/“‘l (mod p). For a fixed integer

k, t;k ranges with # over a complete sef of residues modulo f.

Hence [a,,..;,a,] is unaltered when we replace a; by a;+ke. The
b Jo;:r. fiir Mathematik, vol, 136. (1909), Case a=b=¢=1 by

Dickson, ibid., vol. 135, by cyclotomy,

11, Acta-Arithmetica, 1.

p. 272,
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symbol is also unaltered if we add the same integer ¢ to each a;,
since (1) is then multiplied by g°. The case c=—a, gives

(2) (@, .0 @ty @] =8y — @y . @ G, O],

Call two sets (%,....%) and (7y....7;) congruent module
fif and only if £,==T,,....4=T; (mod /). When as above, each
% ranges independently over a complete set of residues modulo
/. we obtain from (#,...,%) a complete system {of /" incongruent
sets modulo f. The latter is evidently obtained also from' (7, -,

b=t ;). After making this replacement in (1),
remove the common factor g% Since f, has f values, we obtain

THEOREM 1. The symbol [ay, ... a;] denotes the number of
sets t,,..., t—1 each chosen from any complete set of residues mo-
dulo f which satisfy

r—1 ’
@® gort 2 g U=0 (mod p),

In particular, [%, /, 0] is the number of sets z, 7 each from
a complete set of residues modulo f which satisfy

{4) ‘ ' 1+g¢t+k_|_gnT+"EO (mod p).

3. Theory when f is even. Then

: L P
15) ‘p—1=28'—;-f,'~412g2[1 1J=g 57

(mod p),.
and' {4) ma& be written as
i6} ) 1 —I—-gﬂf;i'k = gez+h

where 2=T-f, In the standard notation of cyclotomy, (%, %)

(mod p),

denotes the number of sets £, z chosen from O, 1., .o f = 1 which
satisfy (6). Thus
a . Tk R Ol=(k k) (f even).

~ As a generalization, let (a“., @) be the number of sets:

%,...,tm each chosen from any complete set of resxdues modulo
f Wthh sahsiy

R

8 14X

i=1

gelitai==0 (mod p).

we may .

icm
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For m==2, the symbol is that of cyclotomy. By Theorem 1,
{9) [a,...,

For m=1, we see at once from (5) that

my O] = (@1, .., ).

(10)- (@)=1 if a=0 (mod ¢), (2)=0 if 250 (mod e).

The symbol (a;,...,as) is unaltered if we permute the a; in

any way. If we multiply (8) by the reciprocal of its last term, we
see that
(11) (@, ....am)=(a; —m.,...,, Un-1— Cm, — Om).

Although the results by Hurwitz, pp. 280-6, were stated only
for the case in which € is an odd prime, the proofs are valid also
when e is composite, provided always that f.be even. By (2), his
symbol can be replaced by (9). Without loss of generality we may

take B;==0 and replace s by m+1, Then
(@oyovitr by by =fla,—ay ..., &r1— ;) (by,..., 5m)

(12) ‘

e—1

+j;—'0(a,+j,....ar—l—j) by +jie oy butJ J),

e—1

jio(dl—l—j,...,ar—i’“j. bll--~!bln] =
(13) {p—1} (@, —an... a1 —a) (by,...,0n)

+{rt—(a—a.... Greg — @)} (P — (b .0 b m) -

Since (12) is trivial if m==0 or if r =1 by (11), the first case
of interest is given by m=1, r=2:

(14) (o, a5, 0) =] (2, —a)) [b)+ (al FJo a7 (044, J)
which expresses (a,, @,, 8) in terms of the cyclotomic constants
(k, h). For r=1, m=2, (13) becomes

e—1
(15) 3 (@, by b)=F— (60
But for r =2, m=1, (13) gives a relation free of the cyclotomic
numbers (&, k). Since we may take 2,/ as a new summation
index, the result is not more general than the case 2.=0:
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4, Case e=3, By (i1), 11=02, 22==01, and
111 =002, 112 =122 =012, 022=011, 222 = 001.
The theory of cyclotomy?) gives
1800)=2p—16-+2L, 1801)=2p—4-~L--9M,
18(12)=2p+-2 +2L, 1802)=2p 4 L—9M,

where 4p=L*-4-27M? L==1 (mod 3). Then (14) gives

27(000) = p* -3p -+ 15 — 4 L, 54(001) =2 p*
210011) =p*+3 +21L, 54(002) =2 p*
270012y =p*—3p+ L. Cos

These satisty the following relations, to which (16) reduce:

(011) +-2(012) = f*, (000) 4 20011 = F* - F - 1,
(001) 4~ (002) -+ (012) =f* — f.

5. Case e=4, f even, By (11),

11= 03, 13= 12, 22= 02, 23= 12, 33=01,
111=003, 112=013, 113==122 =023, 222=002, ‘
223=133=012, 033=011, 233=013, 333=001.

By the theory of cyclotomy (cf. D),

16(00)=p —11 —6x, 16(02) =h=p-—-3 -+2x, 16(01)==/-}-8y,

Then (14) gives

64(000) =p* +14p 421 24 5 -+ 4 42,
64(001) =2 10p +9 -8y (x+3),
64{002) =p* —6p -9 —4x2

64(003) = p*— 10p 9 48 (x --3),
64(011) =p*+-6p, +5 —8x —4x7,

b

?) Dickson, American Jour. Math., vol, 57 (1935), Cited as D.

icm

~12p +12+ L—27 M,
—=12p+12--L-21 M,
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64(012)=p*—2p 1,

64(022) =p*—2p +5 —8xf 4,
64(013) =p*—6p 1+ 447,

64(023) =p*—2p -1 -+48y(1 —x),
64(123) =p*—2p —3-48x  4xr

‘These satisfy the following relations, to which (16) reduce:
o

(002) 4+ (013) =  (F*-~F). (O11)2013) + (123)=f*, .

(001) 4~ (003) = ;f —Jfo [000)4-2(011) + (022) = (F + 1),

1,

(012)4- (023) = 1 %, 022)+ (123)=3 7.

6.. Theory when f is odd. Let lag, ... 1 @m)  denote the
number of sets f,, ... ,%y modulo f which satisfy (8). By Theo-

rem 1,
(17) T, 0= {ay, ..., aa),
(18) (o) =1 if a= ¢ (mod o). [a) =0 it azE e (mod o).

By the definition in § 3 of the cyclotomic number (&, %),

(19) [k, h}:(k, k-t é—e) (f odd),
since, by (5), (4) becomes

- &,

14 gttt gt (mod p), n=e [T'i" ; f .“1)] + k4 ;

By modifying the discussion by Hurwitz, we now get
v bl =fla,, ...

, 1 .
o+ 2@] b oot il

[a, .. ":Lll’v bq: var]bx....,bs]

{20) oot
: “+ X fa,,.
Jeal) )

G

His (27) and (28) hold also if f is odd. Also (29), if we replace
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a,=2, by “12“2+%'e (mod e). In (20) take r=s=2, b,=0,

replace j by —j, and in the symbols of Y make the final argu-

ments zero by (2). We get

A R R A

From our modification of Hurwitz's (29) for s =2, ¢y ==fiy=0,
- lf2—~f{b} it/ -
(22) X f{atjj b= .

" f=0f 4= 8] if ez

7. Case ¢=4, fodd. By cyclotomy (see D),

(22) = (20} = (00}, (32) ==(13)==(01), (12) = (31)==(03),
{33) = (23) = (30) = (21) = (11) == (10),

16 (01)=k—8y, 16 (03)=Fk--8y, k=p-+1-F2x,

16 (00)=%—8, 16 (02)=p-+1—6x,16(10)=p—3-—2x,.
where p=ux*-4y* x=1 (mod 4), We get the |k %} by (19)-
By (21),

64{000} p*—10p—3-++24 x| 4x2,

64 {001} =p>+2p — 3—8y (x +3),

64 [002) =p*— 6p—+9—4 x*,

64 {003} =p>+-2p—3--8y (x4 3),
64 {011} =p*--2p—3—8x-~4.x°
64{012}:;;2 —~6p 58y (x— 1),

64 (023) =p*— 6p-+5—8y (x— 1),
64 {022} = p*+-6p--13 8 x |- 4 5%,
123} =p*+6p-+548x—4 .1,

The remaining {abc} are equal to these as in §5. The displayed
{abc) satisfy the following relations, to which (22) reduce:

64 {013} =p* —6p 4144 x*
64

icm

{mod p).

Congruences involving only e-th powers. 167

1

{002} + {013y =—-(—/f), {011} +2{013) {123y =13,

'—‘N

{001) + {003}y =3 (21,

{012} 4023y = (),

{000} +2 {011} {022} = f*,

1 a

{0224 {128} = - (F+-1)2,
8. Number of solutions of the congruence.

{23) d—}-— L c, x, =0, each ¢;Z£0 (mod p).

We may write ¢;=g% (mod p). It is readily proved (in D) that
the number N of solutions all prime to p of (23) is &" times the

number of sets of values of #4,...,Z each chosen from
0, 1,...,f—1 which satisfy

r
(24) d+ ¥ gtite=0 (mod p).

i=1

If d=0 (mod p). (24) becomes (1), whence N=e"f][a,,...,a].

But if 4220, d=g%7! (mod p) and Theorem 1 gives
N=ela,, ..., a4l

We readily deduce the total number T of all solutions of
423) by using the number of solutions in which a single x; is a
-multiple of p, the number of solutions in which just two variables
-are multiples of p, etc.

The case @z=0 reduces by multiplication to the case d==
The total numbe? T of solutions of

(25) Lo %00 % oy X5 =0, o=
is therefore
T=e*[a, 2, , 0] - (3, a, 0] +-¢* [, @, 0] + € [3, 22 0]
+ 12, 0] +e[a, 0] e a, 0],

For example, if each ¢;=1, and f is even,

&% (mod p)

(26) 7= ¢3(000) + 3 £2(00) - 3e.
When =3 or 4. T is respectively
p*6p—L, PP+17p+6x+4xt

(Received 13 January 1935)


GUEST




