Two-sided estimates for the approximation numbers of Hardy-type operators in L^∞ and L^1

by

W. D. EVANS, D. J. HARRIS and J. LANG (Cardiff)

Abstract. In [2] and [3] upper and lower estimates and asymptotic results were obtained for the approximation numbers of the operator $T: L^p(\mathbb{R}^+) \to L^p(\mathbb{R}^+)$ defined by $(Tf)(x) = \nu(x) \int_0^x u(t)f(t) \, dt$ when $1 < p < \infty$. Analogous results are given in this paper for the cases $p = 1, \infty$ not included in [2] and [3].

1. Introduction. In [2] and [3] the operator $T: L^p(\mathbb{R}^+) \to L^p(\mathbb{R}^+)$ defined by

$$Tf(x) = \nu(x) \int_0^x u(t)f(t) \, dt \tag{1.1}$$

was studied in the case $1 < p < \infty$, with u, ν real-valued functions and $u \in L^p_{\text{loc}}(\mathbb{R}^+)$, $\nu \in L^{p'}(\mathbb{R}^+)$, $p' = p/(p-1)$. Estimates for the approximation numbers $\alpha_n(T)$ of T were obtained in [2], but the procedure for extracting the upper and lower bounds from the results is rather cumbersome to apply. This deficiency was overcome in [3] where asymptotic bounds for the approximation numbers which are easy to check in practice were determined. Specifically, it was proved that

$$\lim_{n \to \infty} n\alpha_n(T) = \frac{1}{\pi} \int_0^\infty |u(t)v(t)| \, dt \tag{1.2}$$

when $p = 2$; and when $p \neq 2$,

$$\frac{1}{4} \alpha_p \int_0^\infty |u(t)v(t)| \, dt \leq \liminf_{n \to \infty} n\alpha_n(T) \leq \limsup_{n \to \infty} n\alpha_n(T) \leq \alpha_p \int_0^\infty |u(t)v(t)| \, dt \tag{1.3}$$

for some constant α_p depending on p. Further in [3], two-sided estimates

1991 Mathematics Subject Classification: Primary 47G10.
are given for the \(L^p \) and weak \(L^p \) norms of \(\{ a_n(T) \} \) when \(\alpha > 1 \); in the case \(p = 2 \), these results recover those in [5].

The analysis in [3] is no longer valid when \(p = \infty \) or 1, and, indeed, the result itself has to be modified in the following way: when \(p = \infty \), the function \(v \) in the integrals in (1.2), (1.3) is replaced by

\[
v_\varepsilon(t) = \lim_{\varepsilon \to 0} \|v\|_{L^\infty(t-\varepsilon, t+\varepsilon)} \int_{t-\varepsilon}^{t+\varepsilon} u(t) dt,
\]

while if \(p = 1 \), then \(u \) is replaced by \(u_\varepsilon \). Three critical ingredients of the proof in [2] and [3] are no longer available in these cases. The first is that the operator \(P \) defined by the integral mean over an interval \(I \subset \mathbb{R}^+ \), namely

\[
Pf := \frac{1}{|I|} \int_I f(x) dx,
\]

where \(|I| \) denotes the length of \(I \), is such that the distance from \(T \) to the one-dimensional operators on \(L^p(I) \) is comparable to \(\|T - P\| \|L^p(I) \| \). The second concerns the basic strategy which relies on a partition of \(\mathbb{R}^+ \) into intervals \(I_k \) which are defined by means of a compact set function \(L(I) \) with \(I = (c, d) \), decreasing as \(c \) increases and increasing as \(d \) increases. In the \(L^\infty \) and \(L^1 \) cases the analogue of \(L \) is no longer continuous and an alternative function, and technique, have to be found. Finally, the fact that the step functions are not dense in \(L^\infty \) causes difficulties, and indeed, it is this which dictates the form of the result noted above.

It is just as easy to consider a general interval \((a, b) \) instead of \(\mathbb{R}^+ \), so that in this paper

\[
Tf(x) := \int_a^x u(t) f(t) dt, \quad a < x < b;
\]

this simple extension will have a useful consequence when \(T \) is considered as an operator on \(L^1 \), as we can then simply translate the dual of the \(L^\infty \) result. Also, as was observed in [3], the condition on \(v \) assumed there, namely \(v \in L^p(\mathbb{R}^+) \), can be weakened to \(v \in L^p(a, \infty) \) for all \(a > 0 \), and we incorporate this fact in the present paper.

Finally, to give some insight into the significance of the function \(v_\varepsilon \) in the \(L^\infty(a, b) \) case, we show that, with the operator in (1.4) denoted by \(T_{u,v} \), the following is possible:

\[
\begin{align*}
\|T_{u,v}\| &= \|T_{u,v}\| = \|T_{u,v} - T_{u,v - v}\|, \\
\int_a^b |u(t)v(t)| dt &\neq \int_a^b |(u(t)v_\varepsilon(t)| dt, \\
\limsup_{a} n\alpha_n(T_{u,v}) &< \limsup_{a} n\alpha_n(T_{u,v - v}), \\
\liminf_{a} n\alpha_n(T_{u,v}) &\geq \liminf_{a} n\alpha_n(T_{u,v - v}),
\end{align*}
\]

where the symbol \(\asymp \) indicates that the quotient of the two sides is bounded above and below by positive constants. Analogous possibilities exist in the \(L^1(a, b) \) case.

2. Preliminaries. In most of the paper we shall be concerned with the operator \(T \) defined in (1.4) as a map from \(L^\infty(a, b) \) into itself. The assumptions made on \(u, v \) in this case are that, for all \((a, b) \),

\[
(2.1) \quad u \in L^1(a, b),
(2.2) \quad v \in L^\infty(a, b).
\]

The results for \(T \) acting between \(L^1(a, b) \) will follow on taking duals, and for this part of the paper alternative conditions to (2.1) and (2.2) will be required.

For \(I = (c, d) \subset (a, b) \), define

\[
J(I) := \sup_{x \in I} \left\{ \int_c^x |u(t)| |v(x) - v_\varepsilon(t)| dt \right\},
\]

where \(\chi_{S} \) denotes the characteristic function of the set \(S \), and \(\| \cdot \|_p \) denotes the norm on \(L^p(a, b) \); we shall write \(\| \cdot \|_{p, I} \) for the usual norm on \(L^p(I) \), \(1 \leq p \leq \infty \), but use \(\| \cdot \|_p \) when \(I = (a, b) \). It is easy to see that

\[
J(I) = \text{ess sup}_{x \in I} \left\{ \int_c^x |u(t)| |v(x)| dt \right\}.
\]

We also have

\text{Lemma 2.1. Suppose that (2.1) and (2.2) are satisfied. Then the function}

\(J(\cdot, d) \) \text{ is continuous and non-increasing on } (a, d), \text{ for any } a < b.

\text{Proof. Given } x \in (a, b) \text{ and } \varepsilon > 0, \text{ there exists}

\(h = h(x, \varepsilon) \in (0, \min \{ \frac{1}{2}(x + a), b - x \}) \)

\text{such that}

\[
\int_{x-h}^{x-h+\varepsilon} \|u(t)\| dt < \min \left(\frac{\varepsilon}{\|v\|_{\infty, \infty, (x-a)/2, d}}, \frac{\varepsilon}{\|v\|_{\infty, \infty, (x-a)/2, d}} \right).
\]

Then

\[
J(x, d) \leq J(x-h, d) - J(x-h, d)
\]

\text{max} \left\{ \sup_{x-h < \tau < x} \int_{x-h}^{x-h+\varepsilon} |u(t)| \|v(x) - v_\varepsilon(t)| dt \right\},

\sup_{x-h < \tau < x} \left(\int_{x-h}^{x-h+\varepsilon} |u(t)| \|v(x) - v_\varepsilon(t)| dt \right)
\leq \max \{ \varepsilon, \varepsilon + J(x, d) \} = \varepsilon + J(x, d) \]
and so $0 < J(x-h,f, a)-J(x,d) < \varepsilon$. Similarly, $0 < J(x) - J(x+h) < \varepsilon$ and
the continuity is established. It is obvious that $J(\cdot, d)$ is non-increasing and
hence the lemma is proved. ■

The following result is known (see [4] and [6]):

Proposition 2.2. The operator T in (1.4), with u, v satisfying (2.1) and
(2.2), is bounded as a map from $L^\infty(a, b)$ into $L^\infty(a, b)$ if and only if
$J(a, b) < \infty$. It is compact if and only if $\lim_{xt\to a, b} J(a, c) = \lim_{xt\to a, b} J(d, b) = 0$.

In [2], the analogue of the function J in (2.3) could have been used to
construct the partition of (a, b) into the intervals I_i, which feature so
prominently in the analysis; see the Remark at the end of §4 in [2]. However,
in the L^∞ case, for the reason given in the introduction, we need to use
directly the function

$$A(I) := \sup_{f \in L^\infty(I), f \neq 0} \inf_{\alpha \in \mathbb{R}} \|Tf - \alpha v\|_{\infty, I} / \|f\|_{\infty, I}$$

if $v(I) > 0$,

$$0$$

if $v(I) = 0$,

where $v(I) := \int_I v(t) \, dt$. If v is continuous, it can be shown that $A(\cdot, b)$ is
continuous, but in general, this is not so. For, consider the example

$$v(x) = \begin{cases} 1 & \text{for } x \in (0, 1) \cup (2, \infty), \\ 0 & \text{otherwise,} \end{cases}$$

with $(a, b) = (0, \infty)$. Then $A(\cdot, \infty) = 0$ for $x > 1$, but for $x < 1$,

$$A(x, \infty) \geq \inf_{\alpha \in \mathbb{R}} \left(\int_0^x u(t) - \alpha \, dt \right) \|v(y)\|_{\infty, (x, \infty)} = \inf_{\alpha \in \mathbb{R}} \max\{|\alpha|, 1 - |\alpha|\} = \frac{1}{2}.$$

It is of interest to note that if (2.1) and (2.2) are satisfied and $v \notin L^\infty(a, b)$,
then, since $\int_0^x u(t) f(t) \to \infty$ as $x \to a_+$ for every $f \in L^\infty(a, b)$, we must have
if $\alpha \neq 0$, $\|Tf - \alpha v\|_{\infty, (a, \infty)} = \infty$ for $c \in (a, b)$. Hence, with $I = (a, c)$,

$$A(a, c) = \sup_{\|f\|_{\infty, I} = 1} \|Tf\|_{\infty, I} = \sup_{\|f\|_{\infty, I} = 1} \sup_{\alpha \in \mathbb{R}} |v(\alpha)| \int_0^a |u(t)| \, dt = J(a, c)$$

by (2.4).

We now define, for any interval $I \subseteq (a, b)$ and $\varepsilon > 0$,

$$M(I, \varepsilon) := \inf \left\{ n: I = \bigcup_{i=1}^n I_i, A(I_i) \leq \varepsilon \right\}.$$

Observe that if $I \subseteq (a, b)$, then we have $M(I, \varepsilon) < \infty$. For, since $J(c, d) \leq ||u||_{L^\infty(I, c, d)} ||v||_{\infty, I}$ for any $(c, d) \subseteq I$ and $\|\cdot\|_I$ is absolutely continuous, it
follows that the number

$$N(I, \varepsilon) := \inf \left\{ n: I = \bigcup_{i=1}^n I_i, A(I_i) \leq \varepsilon \right\}$$

is finite, and

$$A(I) \leq \sup_{f \in L^\infty(I), f \neq 0} \frac{||Tf||_{\infty, I}}{||f||_{\infty, I}} \leq \sup_{f \in L^\infty(I), f \neq 0} \frac{\text{ess sup} \{ |v(x)| \int_0^a |u(t)| \, dt \}}{||f||_{\infty, I}} \leq J(I)$$

by (2.4); thus $M(I, \varepsilon) \leq N(I, \varepsilon) < \infty$. If $I = (a, b)$, we still have
$M(I, \varepsilon) < \infty$ if

$$\lim_{x \to a_+} J(a, x) = \lim_{x \to a_+} J(x, b) = 0$$

since $N(I, \varepsilon) < \infty$ and (2.9) remains valid.

Lemma 2.3. Suppose that (2.1) and (2.2) are satisfied and let $M(I, \varepsilon) = m \leq \infty$ for $I \subseteq (a, b)$ and $\varepsilon > 0$. Then we have:

(i) if $m = 2n$, there exist intervals I_i, $i = 1, \ldots, n$, such that $I = \bigcup_{i=1}^n I_i$ and $A(I_i) > \varepsilon$;

(ii) if $m = 2n + 1$, there exist intervals I_i, $i = 1, \ldots, n + 1$, such that $I = \bigcup_{i=1}^{n+1} I_i$, $A(I_i) > \varepsilon$, $i = 1, \ldots, n$, and $A(I_{n+1}) \leq \varepsilon$.

Proof. From the definition of $M(I, \varepsilon)$ in (2.7) there exist $I_i, i = 1, \ldots, m,
$ such that $A(I_i) \leq \varepsilon$ and $A(I_i \cup I_{i+1}) > \varepsilon$. Now set $J_1 = I_1 \cup I_2$, $J_2 = I_3 \cup I_4, \ldots$, with $J_{m+1} = I_m$ in case (ii).

The final preliminary result is the following critical lemma which will
yield a one-dimensional approximation to T on I.

Lemma 2.4. There exists $\omega \in L^\infty(I)$ such that $\omega_I(1) = 1$, $||\omega_I||_{L^\infty(I)} = 1$ and, for all $f \in L^\infty(I)$,

$$\inf_{\alpha \in \mathbb{R}} \| v - \alpha v\|_{\infty, I} \leq ||(f - \omega_I(f))v||_{\infty, I} \leq 2 \inf_{\alpha \in \mathbb{R}} \| (f - \alpha)v\|_{\infty, I}.$$

Proof. For $0 < \gamma < ||v||_{\infty, I}$ and $A_\gamma := \{ x : v(x) > \gamma \}$, define $\omega_\gamma \in L^\infty(I)^*$ by

$$\omega_\gamma(f) := \frac{1}{|A_\gamma|} \int_{A_\gamma} f(x) \, dx, \quad f \in L^\infty(I).$$

Then $\omega_\gamma(1) = 1$, $||\omega_\gamma||_{L^\infty(I)^*} = 1$ and

$$||\omega_\gamma(f)|| \leq \frac{1}{\gamma} ||f||_{\infty, I}.$$

The set $W := \{ W_\beta : 0 < \beta < ||v||_{\infty, I} \}$, where $W_\beta := \{ \omega_\gamma : \gamma > \beta \}$, is a filter base whose members W_β are subsets of the unit ball in $L^\infty(I)^*$.
Hence, by the weak* compactness of this unit ball, \(W \) has an adherent point, \(\omega_f \) say. It follows that \(\omega_f(1) = 1, \| \omega_f \|_{(L^\infty'(I))^*} = 1 \) and, from (2.11), for all \(\beta \in (0, \| v \|_\infty, I), \)

\[
|\omega_f(f)| \leq \frac{1}{\beta} \| fv \|_\infty, I, \quad f \in L^\infty(I).
\]

Consequently, for any \(\delta \in \mathbb{R}, \)

\[
\inf_{\alpha \in \mathbb{R}} \| (f - \alpha)v \|_\infty, I \leq \| (f - \omega_f(f))v \|_\infty, I \\
\leq \| (f - \delta)v \|_\infty, I + |\omega_f(f - \delta)v|_\infty, I \\
\leq \| (f - \delta)v \|_\infty, I \left\{ 1 + \frac{\| v \|_\infty, I}{\beta} \right\}.
\]

Since \(\delta \in \mathbb{R} \) and \(\beta \in (0, \| v \|_\infty, I) \) are arbitrary, the lemma follows. ■

3. Bounds for the approximation numbers. We recall that, given any \(m \in \mathbb{N}, \) the \(m \)th approximation number of a bounded operator \(T, a_m(T), \)

is defined by

\[
a_m(T) := \inf \| T - F \|,
\]

where the infimum is taken over all bounded linear maps \(F : L^\infty(a, b) \to L^\infty(a, b) \) with rank less than \(m \). General information on approximation numbers may be found in [3]. Since \(L^\infty(a, b) \) has the approximation property, \(T \) is compact if and only if \(a_m(T) = 0 \) as \(m \to \infty \).

The first two lemmas of this section give estimates for \(a_m(T) \) which are the analogues of those obtained in [2]. Hereafter, until §7, we shall always assume (2.1) and (2.2).

Lemma 3.1. Suppose that \(T : L^\infty(a, b) \to L^\infty(a, b) \) is bounded. Let \(\varepsilon > 0 \) and suppose that there exist \(N \in \mathbb{N} \) and numbers \(a_k, k = 0, 1, \ldots, K, \)

with \(a = a_0 < a_1 < \ldots < a_N = b \), such that \(A(I_k) \leq \varepsilon \) for \(k = 0, 1, \ldots, N - 1, \)

where \(I_k = (a_k, a_{k+1}). \) Then \(a_{N+1}(T) \leq 2\varepsilon. \)

Proof. Let \(f \in L^\infty(a, b) \) be such that \(\| f \|_\infty = 1, \) and write

\[
Pf := \sum_{i=0}^{N-1} P_{I_k} f
\]

where the \(P_{I_k} \) are the one-dimensional operators

\[
P_{I_k} f(x) := \chi_{I_k}(x)v(x)\omega_{I_k}\left(\int_a^x uf dt\right), \quad k = 0, 1, \ldots, N - 1,
\]

and

\[
\omega_{I_k}\left(\int_a^x uf dt\right) = \int_a^b u f dt + \omega_k\left(\int_a^x uf dt\right),
\]

with \(\omega_k \in (L^\infty(I_k))^* \) the functionals in Lemma 2.4.

It is obvious that \(P_{I_k}, k = 1, \ldots, N - 2, \) are bounded. With \(k = 0 \) or \(N - 1 \) we have on \(I = (a, c_1) \) or \((c_N, b), \)

\[
\left| \int_a^x \omega_k\left(\int_a^u uf dt\right) \right| \leq \| \omega_k \|_{(L^\infty'(I))^*} \| v(x) \| \| \int_a^x uf dt \|_\infty, I
\]

and hence \(P \) is bounded in view of Proposition 2.2 and (2.4). We have

\[
\| T - Pf \|_\infty = \sup_{k \in \{0, 1, \ldots, N-1\}} \| T - P_{I_k} f \|_\infty, I_k
\]

\[
= \sup_{k \in \{0, 1, \ldots, N-1\}} \left\| \left.v(x)\omega_k\left(\int_a^x uf dt\right)\right|_{I_k}\right\|_\infty, I_k
\]

\[
\leq 2 \sup_{k \in \{0, 1, \ldots, N-1\}} A(I_k) \| f \|_\infty, I_k \leq 2\varepsilon \| f \|_\infty, I
\]

by Lemma 2.4. Since \(\text{rank} P \leq N, \) the lemma follows. ■

Lemma 3.2. Suppose that \(T : L^\infty(a, b) \to L^\infty(a, b) \) is bounded. Let \(\varepsilon > 0 \) and suppose that there exist \(N \in \mathbb{N} \) and numbers \(a_k, k = 0, 1, \ldots, K, \)

with \(a = a_0 < a_1 < \ldots < a_K \), such that \(A(I_k) \leq \varepsilon \) for \(k = 0, 1, \ldots, K - 1, \)

where \(I_k = (a_k, a_{k+1}). \) Then \(a_K(T) \geq \varepsilon. \)

Proof. Let \(\lambda \in (0, 1). \) From the definition of \(A(I_k) \) we see that there exists \(\phi_k \in L^\infty(I_k) \) with \(\| \phi_k \|_{\infty, I_k} = 1 \) and such that

\[
\inf_{\alpha \in \mathbb{R}} \| T\phi_k - \alpha v \|_{\infty, I_k} > \lambda A(I_k) \geq \lambda \varepsilon.
\]

Set \(\phi_k(x) = 0 \) for \(x \notin I_k. \) Let \(P : L^\infty(a, b) \to L^\infty(a, b) \) be bounded and rank \(P \leq K - 1. \) Then there are constants \(\phi_0, \ldots, \phi_{K-1}, \) not all zero, such that

\[
P\left(\sum_{k=0}^{K-1} \lambda_k \phi_k \right) = 0.
\]

Put \(\phi = \sum_{k=0}^{K-1} \lambda_k \phi_k. \) Then

\[
\| T\phi - Pf \|_{\infty} = \| T\phi \|_{\infty}
\]

\[
\geq \sup_{k \in \{0, 1, \ldots, K-1\}} \| T\phi_k + \alpha_k v \|_{\infty, I_k}
\]

\[
\geq \sup_{k \in \{0, 1, \ldots, K-1\}} \inf_{\alpha \in \mathbb{R}} |\lambda_k| \| T\phi_k - \alpha v \|_{\infty, I_k}
\]

\[
\geq \sup_{k \in \{0, 1, \ldots, K-1\}} |\lambda_k| \| \phi_k \|_{\infty, I_k}
\]

\[
\geq \sup_{k \in \{0, 1, \ldots, K-1\}} |\lambda_k| \varepsilon = \varepsilon \lambda \| \phi \|_{\infty}
\]

\[
\geq 0.
\]
by (3.1). This implies that $a_K(T) \geq \lambda \varepsilon$, whence the result since $\lambda \in (0,1)$ is arbitrary.

Corollary 3.3. Suppose that T is compact (see Proposition 2.2). Then, for $\varepsilon \in (0, A(a,b))$,

$$
\phi_{M(\varepsilon)+1}(T) \leq 2\varepsilon, \quad a_{M(\varepsilon/2)+1}(T) > \varepsilon,
$$

where $M_\varepsilon \equiv M((a,b),\varepsilon)$ is defined in (2.7) and $[\cdot]$ denotes integer part.

Proof. This is an immediate consequence of Lemmas 3.1 and 3.2.

4. Local asymptotic results. We need some preliminary results and the functions v_ε mentioned in §1, namely

$$
v_\varepsilon(x) := \lim_{\varepsilon \to 0^+} \|v\|_{\infty,(x-\varepsilon,x+\varepsilon)}
$$

for $x \in (a,b)$.

Lemma 4.1. For any $I \subseteq (a,b)$, we have $J(I;u,v) = J(I;u,v_\varepsilon)$ and $A(I;u,v) = A(I;u,v_\varepsilon)$, where $J(I;u,v)$ and $A(I;u,v)$ are the functions defined in (2.3) and (2.6) respectively.

Proof. For any continuous function ϕ, it is readily shown that $\|v_\varepsilon \phi\|_{\infty,I} = \|v \phi\|_{\infty,I}$, and this fact yields the lemma.

Lemma 4.2. Let $I \subseteq (a,b)$, and let $\theta_n = \{I_n^{(n)}\}_{n=1}^{(n)}$ be a partition of I by intervals $I_n^{(n)}$ such that each $I_n^{(n)}$ is a subinterval of some $x_n \in \theta_n$, and $|I_n^{(n)}| \to 0$ as $n \to \infty$. Define

$$
v_\varepsilon^n(t) := \sum_{i=1}^{i=n} \chi_{I_i(t)}(t)c_\varepsilon^n, \quad c_\varepsilon^n := \|v_\varepsilon\|_{\infty,I^n}.
$$

Then for a.e. $t \in I$,

(i) $\|v_\varepsilon\|_{\infty,I} \geq v_\varepsilon^n(t) \geq v_\varepsilon(t)$,

(ii) $v_\varepsilon^n(t) \searrow v_\varepsilon(t)$ as $n \to \infty$,

(iii) $\lim_{n \to \infty} \int_I u(t)\|v_\varepsilon^n(t) - v_\varepsilon(t)\|dt = 0$.

Proof. Since v_ε is upper semi-continuous and bounded, it is known that it can be approximated from above by a decreasing sequence of step functions. However, we shall give a proof of the lemma for completeness and subsequent reference.

If $t \in \text{int } I^n$, the interior of I^n, then $v_\varepsilon^n(t) = \|v_\varepsilon\|_{\infty,I^n}$ satisfies

$$
v_\varepsilon(t) \leq v_\varepsilon^n(t) \leq \|v_\varepsilon\|_{\infty,I^n}.
$$

This establishes (i), the exceptional set being $S = \bigcup_{n \in \mathbb{N}} S_n$, where S_n is the set of end-points of the intervals $I_n^{(n+1)} \subseteq \theta_n$. If $t \in \text{int } I_n^{(n+1)} \subseteq \theta_n$, say, we have $c_\varepsilon^{n+1} \leq c_\varepsilon^n$ and so $v_\varepsilon^{n+1}(t) \leq v_\varepsilon^n(t)$ for $t \in I \setminus S$. Also, if $t \in \text{int } I_n^{(n)}$, we have $v_\varepsilon^n(t) = \|v_\varepsilon\|_{\infty,I_n^{(n)}} = \|v\|_{\infty,I_n^{(n)}} \geq v(t)$ as observed in the proof of Lemma 4.1. Moreover, given $\delta > 0$ there exists $\varepsilon_0 > 0$ such that

$$
v_\varepsilon(t) > \|v\|_{\infty,I \setminus [t-\varepsilon_0,t+\varepsilon_0]} - \delta.
$$

Now choose N such that for all $n \geq N$,

$$
t \in \text{int } I_n^{(n)} \subseteq (t-\varepsilon_0,t+\varepsilon_0).
$$

Then we have, for all $n \geq N$,

$$
0 < v_\varepsilon^n(t) - v_\varepsilon(t) < \delta
$$

and hence $v_\varepsilon^n(t) \to v_\varepsilon(t)$ for all $t \in I \setminus S$.

Finally, (iii) follows by the dominated convergence theorem since $u \in L^1(I)$ and $\|v_\varepsilon^n\|_{\infty,I} = \|v_\varepsilon\|_{\infty,I} = \|v\|_{\infty,I} < \infty$.

Lemma 4.3. Let u,v be constant on $I \subseteq (a,b)$. Then

$$
A(I) = \frac{1}{2}\|u\|_{I} + \|v\|_{I}.
$$

Proof. We have, if $I = (c,d)$,

$$
A(I) = \|u\|_{I} \inf_{\alpha} \|x - c - \alpha\|_{\infty,I} = \|v\|_{I} \|x - c - \frac{1}{2}(d-c)\|_{\infty,I} = \frac{1}{2}\|u\|_{I} + \|v\|_{I}.
$$

Let $f \in L^\infty(I)$ and set $F(x) = \int_a^x f dt$. Then there exist $x_0,x_1 \in [c,d]$ such that

$$
F(x_0) \leq F(x) \leq F(x_1), \quad x \in [a,b],
$$

and hence

$$
\inf_{\alpha} \|F - \alpha\|_{\infty,I} \leq \|F - \frac{1}{2}(F(x_0) + F(x_1))\|_{\infty,I} = \frac{1}{2}\|F(x_1) - F(x_0)\|_{\infty,I} = \frac{1}{2}\int_{x_0}^{x_1} f dt.
$$

This yields

$$
A(I) \leq \sup_{\|f\|_{\infty,I} = 1} \left\{ \frac{1}{2}\int_{x_0}^{x_1} f dt \right\} \leq \frac{1}{2}\|I\|
$$

and the lemma is proved.

Lemma 4.4. Let $I \subseteq (a,b)$ and $u_1,u_2 \in L^1(I)$. Then

$$
|A(I;u_1,v) - A(I;u_2,v)| \leq \|u_1 - u_2\|_{1,I} \|v\|_{\infty,I}.
$$

Proof. We have

$$
|A(I;u_1,v) - A(I;u_2,v)| \leq \sup_{\|f\|_{\infty,I} = 1} \left| \inf_\alpha \inf_\beta \|v(x)f dt - \alpha\|_{\infty,I} - \inf_\alpha \inf_\beta \|v(x)f dt - \alpha\|_{\infty,I} \right|.
$$

Two-sided estimates
Suppose \(f \) is such that
\[
\inf_{\alpha} \left\| v(x) \left(\frac{\partial}{\partial a} u_1 f dt - \alpha \right) \right\|_{\infty,L} \geq \inf_{\alpha} \left\| v(x) \left(\frac{\partial}{\partial a} u_2 f dt - \alpha \right) \right\|_{\infty,L}.
\]

Given \(\varepsilon > 0 \) there exists \(\alpha_0 \in \mathbb{R} \) such that
\[
\inf_{e} \left\| v(x) \left(\frac{\partial}{\partial a} u_1 f dt - \alpha \right) \right\|_{\infty,L} > \left\| v(x) \left(\frac{\partial}{\partial a} u_2 f dt - \alpha_0 \right) \right\|_{\infty,L} - \varepsilon.
\]

Hence
\[
0 \leq \inf_{\alpha} \left\| v(x) \left(\frac{\partial}{\partial a} u_1 f dt - \alpha \right) \right\|_{\infty,L} - \inf_{\alpha} \left\| v(x) \left(\frac{\partial}{\partial a} u_2 f dt - \alpha_0 \right) \right\|_{\infty,L} + \varepsilon
\]
\[
\leq \left\| v(x) \left(\frac{\partial}{\partial a} u_1 f dt - \alpha_0 \right) \right\|_{\infty,L} - \left\| v(x) \left(\frac{\partial}{\partial a} u_2 f dt - \alpha_0 \right) \right\|_{\infty,L} + \varepsilon
\]
\[
\leq \left\| v(x) \left(u_1 - u_2 \right) f dt \right\|_{\infty,L} + \varepsilon
\]
\[
\leq \left\| v(x) \right\|_{\infty,L} \left\| u_1 - u_2 \right\|_{1,L} \left\| f \right\|_{\infty,L} + \varepsilon.
\]

This remains valid if the inequality (4.3) is reversed, and so
\[
|A(I; u_1, v) - A(I; u_2, v)| \leq \left\| v(x) \right\|_{\infty,L} \left\| u_1 - u_2 \right\|_{1,L} + \varepsilon.
\]

Since \(\varepsilon \) is arbitrary, the lemma is proved. \(\blacksquare \)

In the next lemma \(\psi \) denotes the non-increasing rearrangement of a function \(g \) on an interval \(I \): \(\psi \) is the generalised inverse of the non-increasing distribution function \(g_* \) of \(g \), namely
\[
(4.4) \quad \psi(x) := \inf \{ t \in I : g_*(t) \geq x \}
\]
where
\[
(4.5) \quad g_*(t) := \{ x \in I : g(x) \geq t \}.
\]

Note that since we have \(\geq \) in the definitions above, \(g_* \) and \(\psi \) are left-continuous functions.

Lemma 4.5. Let \(I \subset (a, b) \) and \(\gamma, \delta \in \mathbb{R} \) with \(\delta \geq v_0(t) \geq 0 \) on \(I \). Then
\[
(4.6) \quad A(I; \gamma, \delta) \geq A(I; \gamma, v_0) \geq \frac{1}{2} \gamma \| (\psi \psi) \|_{\infty,(0,|I|)}.
\]

Proof. The first inequality in (4.6) is obvious. The set
\[
M_\delta := \{ y \in I : v_0(y) \geq \delta \}
\]
is relatively closed in \(I \). For if \(\{ y_n \} \subset M_\delta \) and \(y_n \rightarrow y \in I \) as \(n \rightarrow \infty \), then given \(\varepsilon > 0 \) there exists \(N \) such that \((y - \varepsilon, y + \varepsilon) \supset (y_n - \frac{1}{2} \varepsilon, y_n + \frac{1}{2} \varepsilon) \) for \(n > N \). Hence
\[
\| v \|_{\infty,(y - \varepsilon, y + \varepsilon)} \geq \| v \|_{\infty,(y_n - \frac{1}{2} \varepsilon, y_n + \frac{1}{2} \varepsilon)} \geq \| v \|_{y_0} \geq \beta
\]
whence \(v_0(y) \geq \beta \) and \(y \in M_\beta \). From the observed left continuity of (4.4) and (4.5), we have
\[
\| (\psi \psi) \|_{\infty,(0,|I|)} = \max_{t \in (0,|I|)} \| (\psi \psi)(t) \| = \| (\psi \psi)(t_0) \| t_0
\]
for some \(t_0 \in (0,|I|) \), and there exists \(\beta > 0 \) such that \(|M_\beta| = t_0 \). Choose the optimal \(\alpha_0, \alpha_0 \) such that \(M_\beta \subset [\alpha_0, \alpha_0] \subset I \). Then, with \(I = (c, d) \),
\[
A(I; \gamma, \delta) \geq \| \gamma \|_{\infty,L} \| (\psi \psi)(t) \|_{\infty,L} + \varepsilon
\]
\[
\geq \| \gamma \|_{\infty,L} \| \psi \psi \|_{1,L} \| f \|_{\infty,L} + \varepsilon
\]
\[
\geq \frac{1}{2} \beta \| \gamma \|_{\infty,L} \| \psi \psi \|_{1,L} \| f \|_{\infty,L} + \varepsilon.
\]

The lemma is therefore proved. \(\blacksquare \)

Lemma 4.6. Let \(I \subset (a, b) \) and \(\gamma, \delta \in \mathbb{R} \) with \(\delta \geq v_0(t) \geq 0 \) on \(I \). Then, for any \(\alpha > 1 \),
\[
(4.7) \quad A(I; \gamma, \delta) - A(I; \gamma, v_0) \leq \frac{\alpha}{2} \int_I \| (\psi \psi)(t) \| dt + \frac{\delta |I|}{2 \alpha}.
\]

Proof. We first observe that
\[
(4.8) \quad (\psi \psi)(t) \geq v_0(t) := \left(\frac{\delta - V \alpha}{\gamma |I|} \right) \chi_{(0,|I|)}.
\]
where \(V = |\gamma| \int_I (\psi \psi)(t) dt \). For, with \(S := \{ x : v_0(x) < \delta - V \alpha / (\gamma |I|) \} \),
\[
V \gamma I > \int_S (\delta - \delta + V \alpha / |I|) dt = \frac{V \alpha}{|I|} |S|,
\]
which implies that
\[
\left\{ x : v_0(x) > \delta - V \alpha / |I| \right\} \geq |I| - \frac{|I|}{\alpha}
\]
and hence (4.8). Note that (4.8) is trivially true if \(\delta - V \alpha / (\gamma |I|) < 0 \). On
using (4.1) and (4.6),

\[
0 \leq A(I; \gamma, \delta) - A(I; \gamma, v_\eta) \leq \frac{1}{2} |\gamma| |\delta| I - \frac{1}{2} |\gamma| \|v_\eta \chi_I^*(t)\|_{\infty,(0,|I|)} I
\]

\[
\leq \frac{1}{2} |\gamma| |\delta| I - \frac{1}{2} \max_{(0,|I|)} (tv_0(t))
\]

\[
= \frac{1}{2} |\gamma| |\delta| I - \frac{1}{2} |\gamma| \left(\delta - \frac{V\alpha}{|\gamma| I} \right) \left(|I| - \frac{|I|}{\alpha} \right)
\]

\[
= \frac{\alpha V}{2} + \frac{|\gamma| |\delta| I}{2\alpha} - \frac{V}{2}
\]

\[
\leq \frac{\alpha}{2} \int |\gamma| (\delta - v_\eta(t)) dt + \frac{|I|}{2\alpha} |\gamma| |\delta|,
\]

which is (4.7). \(\square \)

Theorem 4.7. For any \(I \subset (a, b) \),

\[
\frac{1}{2} \int_I |u(t)| v_\eta(t) dt \leq \liminf_{\varepsilon \to 0^+} \varepsilon M(I, \varepsilon)
\]

\[
\leq \limsup_{\varepsilon \to 0^+} \varepsilon M(I, \varepsilon) \leq \int_I |u(t)| v_\eta(t) dt.
\]

Proof. On using Lemma 4.2, we infer that for each \(\eta > 0 \) there exist step functions \(u_\eta, v_\eta \) on \(I \) such that

\[
\|u - u_\eta\|_{1, I} < \eta, \quad \int_I |u(t)| (v_\eta(t) - v_\eta(t)) dt < \eta
\]

and

\[
\|v_\eta\|_{\infty, I} \geq v_\eta(t) \geq v_\eta(t)
\]

on \(I \). We may assume that

\[
u_\eta = \sum_{j=1}^{m} \xi_j \chi_{W(j)}, \quad v_\eta = \sum_{j=1}^{m} \eta_j \chi_{W(j)},
\]

where the \(W(j) \) are disjoint subintervals of \(I \), and \(\eta_j \geq 0 \).

Let \(\varepsilon > 0, M \equiv M(I, \varepsilon) \), and let \(c_k \equiv c_k(\varepsilon), k = 1, \ldots, M+1 \), be the endpoints of the intervals in (2.7): with \(I = [c, d] \) and \(I_k \equiv I_k(\varepsilon) = [c_k, c_{k+1}] \), we have \(c = c_1 < < c_{M+1} = d \) and

\[
A(I_k) \equiv A(I_k; u, v) \leq \varepsilon, \quad k = 1, \ldots, M,
\]

\[
A(I_k \cup I_{k+1}) > \varepsilon, \quad k = 1, \ldots, M - 1.
\]

Then

\[
(4.10) \quad \left| \int_I |u(t)| v_\eta(t) dt - \int_I |u(t)| v_\eta(t) dt \right|
\]

\[
\leq \int_I |u(t)| (v_\eta(t) - v_\eta(t)) dt + \int_I |u(t)| (v_\eta(t) - v_\eta(t)) dt
\]

\[
< \eta(1 + \|v_\eta\|_{\infty, I}) \leq \eta(1 + \|v_\eta\|_{\infty, I}).
\]

Next, let \(K := \{ k : \text{there exist } j \text{ such that } I_{2k} \cup I_{2k+1} \subset W(j) \} \). Then

\[
\#K \geq \frac{M}{2} - 2m \geq \frac{M}{2} - 1 - m, \text{ and, by Lemmas 4.4 and 4.6,}
\]

\[
\left(\frac{M}{2} - 1 - 2m \right) \varepsilon \leq \sum_{k \in K} A(I_{2k} \cup I_{2k+1}; u, v)
\]

\[
\leq \sum_{k \in K} \{ A(I_{2k} \cup I_{2k+1}; u_\eta, v_\eta)
\]

\[
+ A(I_{2k} \cup I_{2k+1}; u, v) - A(I_{2k} \cup I_{2k+1}; u_\eta, v_\eta)
\]

\[
+ (A(I_{2k} \cup I_{2k+1}; u, v) - A(I_{2k} \cup I_{2k+1}; u_\eta, v_\eta))
\]

\[
\leq \frac{1}{2} \sum_j |\xi_j| |v_j| W(j)
\]

\[
+ \sum_j \left\{ |u - u_\eta|_{1, W(j)} \|v_\eta\|_{\infty, W(j)} + \frac{\alpha}{2} \int_I |v_j| (v_\eta - v_\eta) dt + \frac{|\xi_j| |v_j|}{2\alpha} |W(j)| \right\}
\]

\[
\leq \frac{1}{2} \int_I |u_\eta| v_\eta dt + |u - u_\eta|_{1, I} \|v_\eta\|_{\infty, I}
\]

\[
+ \frac{\alpha}{2} \int_I |u_\eta| (v_\eta - v_\eta) dt + \frac{1}{2|\xi_j|} |u_\eta| v_\eta dt
\]

\[
\leq \frac{1}{2} \int_I |u_\eta| v_\eta dt + K \left(\alpha \eta + \frac{1}{\alpha} \right)
\]

\[
\leq \frac{1}{2} \int_I |u(t)| v_\eta(t) dt + K \left(\alpha \eta + \frac{1}{\alpha} \right)
\]

by (4.10), for some constant \(K \) independent of \(\varepsilon \). We therefore conclude that

\[
\limsup_{\varepsilon \to 0^+} \varepsilon M(I, \varepsilon) \leq \int_I |u(t)| v_\eta(t) dt + K \left(\alpha \eta + \frac{1}{\alpha} \right)
\]

and the right-hand inequality in (4.9) follows since \(\eta > 0 \) and \(\alpha > 1 \) are arbitrary.
For the left-hand inequality in (4.9), we add the endpoints of the intervals \(W(j), j = 1, \ldots, m \), to the \(c_k, k = 1, \ldots, M - 1 \), to form the partition \(c = e_1 < \cdots < e_n = d \), say, where \(n \leq M + 1 + m \). Note that each interval \(J_i := [e_i, e_{i+1}] \) is a subinterval of some \(W(j) \) and hence \(u_{e_i}, v_{e_i} \) have constant values on each \(J_i \). We again use Lemmas 4.3, 4.4 and 4.6 to get

\[
\frac{1}{2} \int \left| u_{e_i} v_{e_i} \right| \, dt = \sum_{j=1}^{m} \sum_{J_i \subseteq W(j)} A(J_i; u_{e_i}, v_{e_i}) \\
\leq \sum_{i=1}^{n} \left\{ A(J_i; u, v) + \| u - u_{e_i} \|_{L_1} \| v \|_{L_\infty, J_i} \right\} \\
+ \frac{\alpha}{2} \int_{J_i} \left| u_{e_i} v_{e_i} \right| \, dt + \frac{\alpha}{2} \int_{J_i} \left| u_{e_i} v_{e_i} \right| \, dt \\
\leq (M + 1 + m) \varepsilon + K \left(\alpha \eta + \frac{1}{\alpha} \right).
\]

Hence, from (4.10),

\[
\frac{1}{2} \int \left| u(t) v(t) \right| \, dt \leq (M + 1 + m) \varepsilon + K \left(\alpha \eta + \frac{1}{\alpha} \right)
\]

and the left-hand inequality in (4.9) follows.

5. The main result. With \(U(x) := \int_{\xi}^{x} |u(t)| \, dt \), we define \(\xi_k \in \mathbb{R}^+ \) by

\[
U(\xi_k) = 2^k;
\]

if \(u \notin L^1(a, b) \), then \(k \) may be any integer, but if \(u \in L^1(a, b) \), then \(2^k \leq \| u \|_1 \).

For each admissible \(k \) we set

\[
\sigma_k := \| u \|_{L_\infty, Z_k}, \quad Z_k = (\xi_k, \xi_{k+1}),
\]

so that

\[
2^k \| u \|_{L_\infty, Z_k} \leq \sigma_k \leq 2^{k+1} \| u \|_{L_\infty, Z_k}.
\]

For non-admissible \(k \) we set \(\sigma_k = 0 \). The sequence \(\{ \sigma_k \} \) is the analogue of that defined in [3, 33], which in turn was motivated by a similar sequence introduced in [5].

The following technical lemma has a central role in this section.

Lemma 5.1. Let \(k_0, k_1, k_2 \in \mathbb{Z} \) with \(k_0 < k_1 < k_2 \), and let \(I_j = (a_j, b_j) \) \((j = 0, 1, \ldots, l)\) be intervals in \((a, b) \) which are non-overlapping and such that \(I_j \subset Z_{k_2} \) \((j = 1, \ldots, l)\), \(a_0 \in Z_{k_0}, b_0 \in Z_{k_2} \). Let \(x_j \in I_j \) \((j = 0, 1, \ldots, l)\) and \(x_0 \in Z_{k_1} \). Then, if \(\alpha \geq 1 \),

\[
S := \sum_{j=0}^{l} \left(\int_{a_j}^{x_j} |u(t)| \, dt \right)^\alpha \| v \|_{L_\infty, (x_j, x_j + 1)}^\alpha \leq (2^\alpha + 1) \max_{k_3 \leq n \leq k_2} \sigma_n^\alpha.
\]

Proof: On using Jensen's inequality, we have

\[
S \leq \left\{ \int_{\xi_{k+1}}^{\xi_{k+2}} |u(t)| \, dt \right\}^{\alpha} \| v \|_{L_\infty, (\xi_k, \xi_{k+2})}^{\alpha} + \sum_{j=1}^{l} \left(\int_{I_j} |u(t)| \, dt \right)^\alpha \| v \|_{L_\infty, I_j}^{\alpha}
\]

\[
\leq \left(2^{k+1 - 2k} \max_{k_1 \leq n \leq k_2} \sigma_n^2 \right)^\alpha + \left(\int_{\xi_{k+2}}^{\xi_{k+3}} |u(t)| \, dt \right)^\alpha \| v \|_{L_\infty, Z_{k_2}}^{\alpha} \text{ by (5.3),}
\]

\[
\leq \left(2^{k_2 + 2k_3} \sigma_{k_2} \right)^\alpha + \left(\sigma_{k_3} \right)^\alpha,
\]

whence (5.4).

Lemma 5.2. The quantity \(J(a, b) \) defined in (2.3) satisfies

\[
\frac{1}{2} J(a, b) \leq \sup_k \sigma_k \leq 2 J(a, b).
\]

Proof: From (2.4) and Lemma 5.1,

\[
J(a, b) \leq 3 \sup_k \sigma_k.
\]

Also,

\[
\sigma_k \leq 2^{k+1} \| u \|_{L_\infty, Z_k} \leq 2 \int |u(t)| \, dt \| v \|_{L_\infty, (\xi_k, b)} \leq 2J(a, b).
\]

Corollary 5.3. The operator \(T : L^\infty(a, b) \to L^\infty(a, b) \) is bounded if and only if the sequence \(\{ \sigma_k \} \) is bounded, in which case their norms are equivalent:

\[
||T|| \asymp ||\{ \sigma_k \}||.
\]

Also, \(T \) is compact if and only if \(\lim_{k \to \infty} \sigma_k = 0 \).

Proof: The first part is an immediate consequence of Proposition 2.2 and Lemma 5.2. We also have from Lemma 5.2, as in its proof,

\[
\frac{1}{2} J(a, \xi_{k_3}) \leq \max_{n \leq k_2} \sigma_n \leq 2J(a, \xi_{k_2+1})
\]

and

\[
\frac{1}{2} J(\xi_{k_2}, b) \leq \max_{n \geq k_0} \sigma_n \leq 2J(\xi_{k_2-1}, b).
\]

Since \(\xi_{k_2} \to a \) if and only if \(k_2 \to -\infty \) and \(\xi_{k_0} \) tends to \(b \) if and only if \(k_0 \) tends to \(\infty \) in the case \(u \notin L^1(a, b) \) and otherwise to the largest admissible value of \(k \) in the definition of \(\sigma_k \), the corollary follows.
The main result is

Theorem 5.4. Suppose that (2.1) and (2.2) are satisfied, T is compact, and that \(\sum_{n \in \mathbb{Z}} \sigma_n \) is convergent. Then

\[
\frac{1}{4} \int_{a}^{b} |u(t)| v_s(t) \, dt \leq \liminf_{n \to \infty} n \alpha_n(T) \leq \limsup_{n \to \infty} n \alpha_n(T) \leq 2 \int_{a}^{b} |u(t)| v_s(t) \, dt.
\]

Proof. Let \(I = [c, d] \subset (a, b) \) and suppose that \(c \in [\xi_0, \xi_{k_0+1}] \) and \(d \in [\xi_{k_1}, \xi_{k_1+1}] \). With \(I_j^c, j = 1, \ldots, M(e) \), the covering of \((a, b)\) in (2.7), where \(M(e) \equiv M((a, b), e) \), let

\[
m_0(e) = \#\{j : I_j^c \subset [a, c]\}, \quad m_1(e) = \#\{j : I_j^c \subset [a, d]\}.
\]

Then

\[
m_1(e) - m_0(e) \leq M(I, e) + 1
\]

and

\[
\frac{e}{2} (M(e) - M(I, e) - 9) \leq \varepsilon (m_0(e)/2 + [M(e)/2 - m_1(e)/2] - 2)
\]

\[
\leq \sum_{j=1}^{m_0(e)/2} A(I_{2j-1} \cup I_{2j}; u, v) + \sum_{j=m_1(e)/2 + 2}^{[M(e)/2]} A(I_{2j-1} \cup I_{2j}; u, v)
\]

\[
\leq \sum_{j=1}^{m_0(e)/2} J(I_{2j-1} \cup I_{2j}; u, v) + \sum_{j=m_1(e)/2 + 2}^{[M(e)/2]} J(I_{2j-1} \cup I_{2j}; u, v)
\]

\[
\leq 3 \sum_{n \leq k_0} \nu_n + 3 \sum_{n \geq k_1} \nu_n
\]

on using (2.9) and (5.5).

It follows from Theorem 4.7 that

\[
\limsup_{\varepsilon \to 0^+} M(e) \leq \int_{\xi_{k_0}}^{\xi_{k_1+1}} |u(t)| v_s(t) \, dt + 3 \left(\sum_{n \leq k_0} \sigma_n + \sum_{n \geq k_1} \sigma_n \right),
\]

which yields

\[
\limsup_{\varepsilon \to 0^+} M(e) \leq \int_{a}^{b} |u(t)| v_s(t) \, dt.
\]

On setting \(n = M(e) + 1 \) in Corollary 3.3, we get \(\varepsilon \geq \frac{1}{2} \nu_n(T) \) and hence

\[
\limsup_{n \to \infty} n \alpha_n(T) \leq \frac{b}{a} \int_{a}^{b} |u(t)| v_s(t) \, dt.
\]

Similarly, from Theorem 4.7,

\[
\liminf_{\varepsilon \to 0^+} M(e) \geq \frac{1}{2} \int_{a}^{b} |u(t)| v_s(T) \, dt
\]

and from Corollary 3.3,

\[
\liminf_{n \to \infty} n \alpha_n(T) \geq \frac{1}{4} \int_{a}^{b} |u(t)| v_s(T) \, dt.
\]

6.15 and weak-1^q estimates. In this section we show that the sequences \(\{a_n(T)\}_{n \in \mathbb{N}} \) and \(\{\sigma_n\}_{n \in \mathbb{N}} \) belong to \(l_1^q \) and weak-1^q sequence spaces with the same exponent \(q \), and have equivalent norms. We first need some preparatory results.

Lemma 6.1. Let \(I = [c, d] \subset (a, b) \) and, for \(\varepsilon > 0 \), suppose that

\[
\sigma(e) := \{k \in \mathbb{Z} : Z_k \subset I, \, \sigma_k > \varepsilon\}
\]

has at least 4 distinct elements. Then \(A(I) > \varepsilon/8 \).

Proof. Let \(Z_{k_1}, Z_{k_2}, Z_{k_3}, Z_{k_4} \), with \(k_1 < k_2 < k_3 < k_4 \), be distinct members of \(\sigma(e) \), and set \(I_1 = (\xi_{k_1}, \xi_{k_2}), I_2 = (\xi_{k_3}, \xi_{k_4}) \). Then, with \(f_0 = \chi_{I_1} + \chi_{I_2} \),

\[
A(I) \geq \inf_{\alpha} \left\| v(x) \left(\int_{c}^{x} |u(t)| f_0(t) \, dt - \alpha \right) \right\|_{\infty, I}
\]

\[
\geq \sup_{\alpha} \max \left\{ \left\| v \right\|_{\infty, Z_{k_1}} \left\| \int_{I_1} |u(t)| \, dt - \alpha \right\|_{L^1(I_1) \cap L^2(I_1, I_2)}, \left\| v \right\|_{\infty, Z_{k_2}} \left\| \int_{I_1 \cup I_2} |u(t)| \, dt - \alpha \right\|_{L^1(I_1 \cup I_2)} \right\}
\]

\[
\geq \frac{e}{2 k_4 + 1}\left(\frac{2^{k_2} - 2^{k_1} - \alpha}{2^{k_4 + 1}}\right) \geq \frac{e}{8}.
\]

Lemma 6.2. Let \(\varepsilon > 0 \) and \(M(e) = M((a, b), e) \). Then

\[
\#\{k \in \mathbb{Z} : \sigma_k > 8\varepsilon\} \leq 5M(e) + 3.
\]
Proof. Clearly, with \(I_i = (c_i, c_{i+1}) \) the intervals in (2.7) when \(I = (a, b) \),
\[
\# \{ k \in \mathbb{Z} : c_i \in \bar{Z}_k \text{ for some } i \in \{1, \ldots, M(\varepsilon)\} \} \leq 2M(\varepsilon).
\]
Also, for every \(k \in \mathbb{Z} \) not included in the above set, we have \(\bar{Z}_k \subset I_i \) for some \(i \in \{1, \ldots, M(\varepsilon)\} \). Hence, by Lemma 6.1,
\[
\# \{ k \in \mathbb{Z} : \sigma_k > 8\varepsilon \} \leq 2M(\varepsilon) + 3M(\varepsilon) + 1 = 5M(\varepsilon) + 3.
\]

Lemma 6.3. For all \(t > 0 \),
\[
\# \{ k \in \mathbb{Z} : \sigma_k > t \} \leq 10\# \{ k \in \mathbb{N} : a_k(T) > t/8 \} + 23.
\]

Proof. By Corollary 3.3,
\[
\# \{ k \in \mathbb{N} : a_k(T) > \varepsilon \} \geq \frac{M(\varepsilon)}{2} - 2.
\]
Hence, by Lemma 6.2,
\[
\# \{ k \in \mathbb{Z} : \sigma_k > t \} \leq 5M(t/8) + 3 \leq \# \{ k \in \mathbb{N} : a_k(T) > t/8 \} + 23.
\]

Lemma 6.4. For all \(q > 0 \),
\[
\| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} \leq 10 \cdot 8^q \| \{ a_k(T) \} \|_{l^q(\mathbb{N})} + 23 \| \{ \sigma_k \} \|_{l^{\infty}(\mathbb{Z})}.
\]

Proof. Let \(\lambda = \| \{ \sigma_k \} \|_{l^{\infty}(\mathbb{Z})} \). Then, by Lemma 6.3,
\[
\| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} = \int_0^\lambda q \int_0^{t^{-1} \# \{ k \in \mathbb{Z} : \sigma_k > t \} } dt
\]
\[
\leq 10 \lambda \int_0^{q^{-1} \# \{ k \in \mathbb{N} : a_k(T) > t/8 \} } dt + 23 \lambda^q
\]
\[
\leq 10 \cdot 8^q \| \{ a_k(T) \} \|_{l^q(\mathbb{N})} + 23 \lambda^q.
\]

Corollary 6.5. For any \(q > 0 \) there exists a constant \(C > 0 \) such that
\[
\| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} \leq C \| \{ a_k(T) \} \|_{l^q(\mathbb{N})}.
\]

Proof. By (6.6),
\[
\| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} \leq C \| T \| = CA_1(TE) \leq C \| \{ a_k(T) \} \|_{l^q(\mathbb{N})}.
\]
The result then follows from Lemma 6.4.

Theorem 6.6. For \(q \in (1, \infty) \), we have \(\{ a_k(T) \} \in l^q(\mathbb{N}) \) if and only if \(\{ \sigma_k \} \in l^q(\mathbb{Z}) \), and
\[
\| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} \approx \| \{ a_k(T) \} \|_{l^q(\mathbb{N})}.
\]

Proof. Let \(I_i, i = 1, \ldots, N(\varepsilon) \), be the intervals in (2.8) with \(I = (a, b) \) and \(N(\varepsilon) = N((a, b), \varepsilon) \); note that in view of Lemma 2.1, we have \(J(I_i) = \varepsilon \). We group the intervals \(I_i \) into families \(F_j, j = 1, 2, \ldots \), such that each \(F_j \) consists of the maximal number of those intervals satisfying the hypothesis of Lemma 5.1; they lie within \((\xi_k, \xi_{k+1}) \) for some \(k_0, k_2 \), and the next interval \(I_k \) intersects \(Z_{k_2+1} \). Hence, by Lemma 5.1, there is a positive constant \(c \) such that
\[
\varepsilon \# F_j \leq c \max_{k_0 \leq k \leq k_2} \sigma_n = c\sigma_{k_j},
\]
say. It follows that, with \(n_j = \lfloor c\sigma_{k_j}/\varepsilon \rfloor \),
\[
N(\varepsilon) = \sum_j \# F_j \leq \sum_j n_j \sum_{n_j + j n_j \geq n_j} 1 = \sum_{n_j = 1}^\infty \# \{ j : c\sigma_{k_j}/\varepsilon \geq n_j \} \leq \sum_{n_j = 1}^\infty \# \{ k : \sigma_k \geq n_j/\varepsilon \}.
\]
Thus, if \(\{ \sigma_k \} \in l^q(\mathbb{Z}) \) for some \(q \in (1, \infty) \), then
\[
q \int_0^{t^{-1} N(\varepsilon)} dt \leq q \sum_{n_j = 1}^\infty \int_0^{t^{-1} \# \{ k : \sigma_k > n_j/\varepsilon \} } dt
\]
\[
= q \int_0^{t^{-1} \# \{ k : \sigma_k > \varepsilon \} } dt
\]
\[
\leq \| \{ \sigma_k \} \|_{l^q(\mathbb{Z})}.
\]
where \(\preceq \) stands for less than or equal to a constant multiple of what follows. From Corollary 3.3, \(a_M(\varepsilon) + \| T \| \leq 2\varepsilon \) and so
\[
\# \{ k \in \mathbb{N} : a_k(T) > t \} \leq M(t/2) + 1 \leq N(t/2) + 1.
\]
This yields
\[
\| \{ a_k(T) \} \|_{l^q(\mathbb{N})} = \int_0^\infty q \int_0^{t^{-1} \# \{ k \in \mathbb{N} : a_k(T) > t \} } dt
\]
\[
\leq q \int_0^{t^{-1} \# \{ k \in \mathbb{N} : a_k(T) > t \} } dt
\]
\[
\leq \| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} + \| T \| ^q \leq \| \{ \sigma_k \} \|_{l^q(\mathbb{Z})}.
\]
by (6.6) and since \(\| T \| \leq \| \{ \sigma_k(T) \} \|_{l^{\infty}(\mathbb{Z})} \leq \| \{ \sigma_k \} \|_{l^q(\mathbb{Z})} \), by (6.6). The theorem follows from (6.4).

The final result in this section concerns the weak \(l^q \) spaces, which we denote by \(l_w^q \) \((l^q_{\infty}, \infty) \) in the Lorentz scale. Recall that \(l_w^q(\mathbb{Z}) \) is the space of sequences \(x = (x_k) \) such that
\[
\| x \|_{l_w^q(\mathbb{Z})} := \sup_{t > 0} \{ t \# \{ k \in \mathbb{Z} : \| x_k \| > t \} \}^{1/q} < \infty.
\]
The space \(l_w^q(\mathbb{N}) \) is defined analogously.
Theorem 6.7. For $q \in (1, \infty)$, we have \(\{a_k(T)\} \in l^q(\mathbb{N}) \) if and only if \(\{\sigma_k\} \in l^q(\mathbb{Z}) \), and
\[
\|\{\sigma_k\}\|_{l^q(\mathbb{Z})} \gg \|\{a_k(T)\}\|_{l^q(\mathbb{N})}.
\]

Proof. Suppose \(\{\sigma_k\} \in l^q(\mathbb{Z}) \). From Corollary 3.3 and (6.5),
\[
\|\{a_k(T)\}\|_{l^q(\mathbb{N})} \leq \sup_{t>0} \{t^q M(t)\} \leq \sup_{t>0} \{t^q N(t)\} \leq \sum_{n=1}^{\infty} t^q \# \{k : \sigma_k \geq nt/c\} \leq \sum_{n=1}^{\infty} \|\{\sigma_k\}\|_{l^q(\mathbb{Z})}^q (c/n)^q \leq \|\{\sigma_k\}\|_{l^q(\mathbb{Z})}^q.
\]

Now suppose that \(\{a_k(T)\} \in l^q(\mathbb{N}) \). From Lemma 6.3,
\[
\sup_{t>0} \{t^q \# \{k \in \mathbb{Z} : \sigma_k > t\}\} \leq \sup_{t>0} \{t^q \# \{k \in \mathbb{N} : a_k(T) > t/8\} + 1\}.
\]

Since
\[
\# \{k \in \mathbb{N} : a_k(T) > t/8\} \geq \frac{M(t/8)}{2} - 2 \geq 1
\]
for sufficiently small \(t \), we conclude that
\[
\sup_{t>0} \{t^q \# \{k \in \mathbb{Z} : \sigma_k > t\}\} \leq \sup_{t>0} \{t^q \# \{k \in \mathbb{N} : a_k(T) > t/8\}\}.
\]
This implies that \(\{\sigma_k\} \in l^q(\mathbb{Z}) \) and \(\|\{\sigma_k\}\|_{l^q(\mathbb{Z})} \leq \|\{a_k(T)\}\|_{l^q(\mathbb{N})} \). The theorem is therefore proved. \(\blacksquare \)

7. The operator \(T \) on \(L^1 \). In this case the assumptions (2.1) and (2.2) on \(u \) and \(v \) are replaced by
\[
(7.1) \quad u \in L^{\infty}(a, b), \quad v \in L^1(a, b),
\]
for all \(x \in (a, b) \). On setting \(a = -B, b = -A, \hat{f}(x) = f(-x) \), and similarly for \(u, v \) in (1.4), we see that
\[
T \hat{f}(x) = \hat{u}(x) \int_{-B}^{B} \hat{v}(t) \hat{f}(t) \, dt, \quad A \leq x \leq B.
\]
But this is the adjoint of the map \(S : L^{\infty}(A, B) \to L^{\infty}(A, B) \) defined by
\[
Sg(x) = \hat{u}(x) \int_{-A}^{A} \hat{v}(t) g(t) \, dt, \quad A \leq x \leq B.
\]
Hence, \(T \) and \(S \) have the same norms and their approximation numbers are equal if one, and hence both, are compact (see [1; Proposition II.2.5]). The results for \(T : L^1(a, b) \to L^1(a, b) \) therefore follow from those proved for the \(L^{\infty}(a, b) \) case on interchanging \(u \) and \(v \). Before stating the results, we need some new terminology.

Let \(\eta_k \in \mathbb{R}^+ \) be defined by
\[
V(x) := \int_{-\infty}^{x} |v(t)| \, dt, \quad V(\eta_k) = 2^k,
\]
where \(k \in \mathbb{Z} \) if \(v \in L^1(a, b) \), but otherwise \(2^k \leq \|v\|_1 \). Set
\[
\zeta_k := \|uv\|_{\infty, W_k}, \quad W_k = (\eta_k, \eta_{k+1}),
\]
with \(\zeta_k = 0 \) if \(v \notin L^1(a, b) \) and \(2^k > \|v\|_1 \).

Theorem 7.1. Suppose that (7.1) and (7.2) are satisfied. Then
(i) \(T \) in (1.4), as a map from \(L^1(a, b) \) into \(L^1(a, b) \), is bounded if and only if \(\{\zeta_k\} \in l^\infty(\mathbb{Z}) \), in which case
\[
\|T\| = \|\{\zeta_k\}\|_{l^\infty(\mathbb{Z})}.
\]
(ii) \(T \) is compact if and only if \(\lim_{k \to \infty} \zeta_k = 0 \);
(iii) if \(\{\zeta_k\} \in l^1(\mathbb{Z}) \) then
\[
\frac{1}{a} \int_{a}^{b} u_s(t) |v(t)| \, dt \leq \liminf_{n \to \infty} n a_n(T) \leq \limsup_{n \to \infty} n a_n(T) \leq \frac{1}{a} \int_{a}^{b} u_s(t) |v(t)| \, dt;
\]
(iv) for \(q \in (1, \infty) \), we have \(\{a_k(T)\} \in l^q(\mathbb{N}) \) if and only if \(\{\zeta_k\} \in l^q(\mathbb{Z}) \) and
\[
\|\{\zeta_k\}\|_{l^q(\mathbb{Z})} \propto \|\{a_k(T)\}\|_{l^q(\mathbb{N})}.
\]
(v) for \(q \in (1, \infty) \), we have \(\{a_k(T)\} \in l^q(\mathbb{N}) \) if and only if \(\{\zeta_k\} \in l^q(\mathbb{Z}) \) and
\[
\|\{\zeta_k\}\|_{l^q(\mathbb{Z})} \propto \|\{a_k(T)\}\|_{l^q(\mathbb{N})}.
\]

Remark 7.2. Let \(M \) be a dense subset of \((0, 1)\) with measure \(|M| = \alpha < 1 \) and let \(u = 1, v = \chi_M \). Then \(u_s = 1, v_s = 1 = 1 \) on \((0, 1)\) and so
\[
\|v\|_{\infty, (a, 1)} = \|v_s\|_{\infty, (a, 1)} = \|v - u_s\|_{\infty, (a, 1)}
\]
for any \(x \in (0, 1) \). Since
\[
\|T_{u,v} L^\infty(0,1) \to L^\infty(0,1)\| = \sup_{0 < \epsilon < 1} \left\{ \epsilon \int_{0}^{1} dt \|v\|_{\infty, (a, 1)} \right\}
\]
[see (6)], where \(T_{u,v} \) denotes the operator in (1.4), it follows that
\[
\|T_{u,v}\| = \|T_{u,0}\| = \|T_{0,v} - T_{u,v} - u\|,
\]
for the operator norms from \(L^\infty(0,1) \) to \(L^\infty(0,1) \). Also,
\[
\frac{1}{a} \int_{a}^{b} |u(t)v(t)| \, dt = |M| < 1 = \frac{1}{a} \int_{a}^{b} |u(t)v(t)| \, dt.
\]
The choice \(u = \chi_M, v = 1 \) gives an analogous example in the \(L^1(0, 1) \) case.
Acknowledgements. J. Lang wishes to record his gratitude to the Royal Society and NATO for support to visit the School of Mathematics at Cardiff during 1997/8, under their Postdoctoral Fellowship programme. He also thanks the Grant Agency of the Czech Republic for partial support under grant No. 201/96/0431.

References

Received September 1, 1997
Revised version December 8, 1997

Corrigendum and addendum:
"On the axiomatic theory of spectrum II"

by
J. J. KOLIHA (Melbourne, Vic.), M. MBEKHTA (Lille),
V. MÜLLER (Praha) and PAK WAI POON (Melbourne, Vic.)

Abstract. The main purpose of this paper is to correct the proof of Theorem 15 of [4], concerned with the stability of the class of quasi-Fredholm operators under finite rank perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write $M \subseteq L$ (M is essentially contained in L) if there is a finite-dimensional subspace $F \subset X$ such that $M \subseteq L + F$. Equivalently, $\dim M/(M \cap L) = \dim(M + L)/L < \infty$.

Similarly we write $M \subseteq M$ if $M \subseteq L$ and $L \subseteq M$.

For a (bounded linear) operator $T \in \mathcal{L}(X)$ write $R^\infty(T) = \cap_{n=0}^\infty \mathcal{R}(T^n)$ and $N^\infty(T) = \cup_{n=0}^\infty \mathcal{N}(T^n)$.

An operator $T \in \mathcal{L}(X)$ is called semiregular (essentially semiregular) if $R(T)$ is closed and $N(T) \subseteq R^\infty(T)$ ($N(T) \subseteq R^\infty(T)$, respectively). Further, T is called quasi-Fredholm if there exists $d \geq 0$ such that $R(T^{d+1})$ is closed and $R(T) + N(T^d) = R(T) + N^\infty(T)$ (equivalently, $N(T) \cap R(T^d) = N(T) \cap R^\infty(T)$).

The proof of Theorem 15 of [4] relies on the following statement (where d is the integer whose existence is postulated in the definition of quasi-Fredholm operators):

If T is quasi-Fredholm and F of rank 1 then $N(T) \cap R(T^d) \subseteq R^\infty(T+D)$.

This, however, need not be satisfied.

Counterexample. Let H be the Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Define $T, F \in \mathcal{L}(H)$ by

\[T e_1 = 0, \quad T e_n = e_{n-1} \quad (n \geq 2), \quad F e_2 = -e_1, \quad F e_n = 0 \quad (n \neq 2). \]

1991 Mathematics Subject Classification: 47A10, 47A53.
Key words and phrases: quasi-Fredholm operators, ascent, descent.