
LOGIC, ALGEBRA, AND COMPUTER SCIENCE
BANACH CENTER PUBLICATIONS, VOLUME 46

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1999

STRONG NORMALIZATION PROOFS
FOR CUT ELIMINATION

IN GENTZEN’S SEQUENT CALCULI

ELIAS TAHHAN BITTAR

LLAIC1, Université D’Auvergne
BP 86, 63172 Aubière Cedex, France
E-mail: tahhan@llaic.u-clermont1.fr

Abstract. We define an equivalent variant LKsp of the Gentzen sequent calculus LK. In
LKsp weakenings or contractions can be performed in parallel. This modification allows us to
interpret a symmetrical system of mix elimination rules ELKsp

by a finite rewriting system;
the termination of this rewriting system can be machine checked. We give also a self-contained
strong normalization proof by structural induction. We give another strong normalization proof
by a strictly monotone subrecursive interpretation; this interpretation gives subrecursive bounds
for the length of derivations. We give a strong normalization proof by applying orthogonal term
rewriting results for a confluent restriction of the mix elimination system ELKsp .

1. Introduction. The purpose of this paper is to give a presentation of several tech-

niques of strong normalization proofs for sequent calculi like Gentzen’s calculi LJ and

LK. Gentzen gave in his Hauptsatz a system of rewriting rules as a cut elimination pro-

cedure; he proved that an innermost strategy of reductions, i.e. successive applications of

rewriting rules to subderivations containing only one cut, leads to a cut free derivation in

a finite number of steps. Therefore cut elimination procedures are computations leading

to cut free derivations; a main aspect to understanding the computational content of se-

quent calculi is the definition of cut elimination systems satisfying confluence and strong

normalization properties. We focus in this work on the strong normalization properties

of cut elimination systems.

We give in section 2 a variant LKsp of the calculus LK. In section 3 we give several

cut elimination systems for LK and LKsp. Strong normalization proofs for these cut

elimination systems are investigated in section 4. We observe first that under additional

confluence properties normalization by an innermost strategy implies strong normaliza-

tion; this approach is applied in subsection 4.2 to orthogonal restrictions of the calculi

1991 Mathematics Subject Classification: Primary 03F05; Secondary 68Q42.
The paper is in final form and no version of it will be published elsewhere.

[179]

180 E. TAHHAN BITTAR

LK and LKsp. We give in subsection 4.3 proofs for strong normalization by recursive

path orderings; one of these strong normalization proofs is machine checkable. Gentzen’s

innermost normalization proof is performed by structural induction on a rank associ-

ated to derivations; in subsection 4.4 we define a rank of a derivation which allows us

to prove strong normalization by structural induction. Finally in subsection 4.5 we give

strong normalization proofs by interpretation of the inferences by monotone subrecursive

functions on natural numbers; these interpretations give upper bounds for the number of

steps of reductions required to normalize a derivation. We refer the reader to subsections

3.1 and 4.1 for detailed introductions and historical remarks on mix elimination systems

for sequent calculi and strong normalization proofs for such systems.

2. The calculus LKsp

2.1. Preliminaries. We consider a first order language L without equality with only

the connectives: ¬, ∨, ∃. Formulae of L will be denoted by capital letters, A,B, etc. A

formula of L without any occurrence of any connective is called an atomic formula. A

multiset of formulae is a finite sequence of formulae modulo permutations. Multisets of

formulae will be denoted by capital Greek letters, Σ,∆, The concatenation of two

multisets Σ and ∆ will be denoted by Σ,∆. The set of non-null natural numbers will

be denoted by N+, natural numbers will be denoted by the letters i, j, k, l,m, n, ki, kj . . .

The multiset of n copies of a formula A will be denoted by An; by definition, A0 is an

empty multiset. The contraction of an empty multiset A0 is A0 itself, the contraction of

a non-empty multiset An (with n 6= 0) is the multiset A. We recall that the degree of a

formula A, denoted by |A| is defined by:

|A| = 1 if A is atomic, |¬A| = |∃xA| = 1 + |A|, |A ∨B| = 1 + max{|A|, |B|} .

A sequent is a pair (Σ,∆) of multisets of formulae, usually denoted by Σ`∆, where Σ

(resp. ∆) is called the antecedent (resp. consequent) of the sequent. The sequent ` where

both antecedent and consequent are empty multisets is called the absurd sequent.

An inference is a pair where the first element is a sequence of sequents called the

premises of the inference and the second element is a sequent called the conclusion of the

inference. We notice that the sequence of premises of an inference may be empty and, in

this case, the conclusion is said to be an axiom. An inference is usually denoted by:

sequence of premises of the inference

conclusion of the inference
inference name,

as in the following example: Σ, B `∆ Σ, C `∆

Σ, B ∨ C `∆
∨L.

2.2. LK inference rules. We recall Gentzen’s calculus LK in order to fix terminology.

The LK inference rules on sequents are defined as follows.

Axiom inference rule - For each atomic formula B of L we have the axiom inference

(for which the set of premises is empty):
B `B Ax ; atomic formulae B of both

sides are called formulae introduced by an axiom inference.

STRONG NORMALIZATION PROOFS 181

Structural inference rules -

The left and right weakening inference rules:

Σ`∆
Σ, A`∆

WL and Σ`∆
Σ`A,∆ WR .

The left and right contraction inference rules:

Σ, A,A`∆

Σ, A`∆
CL and Σ`A,A,∆

Σ`A,∆ CR .

Logical inference rules -

The left and right negation inference rules:

Σ`A,∆
Σ,¬A`∆

¬L and Σ, A`∆

Σ`¬A,∆
¬R ;

any such formulae ¬A are called formulae introduced by a negation inference.

The left and right disjunction inference rules:

Σ, B `∆ Σ, C `∆

Σ, B ∨ C `∆
∨L ,

Σ`B,∆
Σ`B ∨ C,∆

∨R and Σ`B,∆
Σ`C ∨B,∆

∨R ;

any such formulae B ∨ C are called formulae introduced by a disjunction

inference.

The left and right existential inference rules: If a variable y is free in a for-

mula B, (and B in this case is denoted B(y)), and is not free in any formula

of Σ or ∆, we say that y is an eigenvariable of the formula B in the sequent

Σ, B(y)`∆ and we define the left existential inference by:

Σ, B(y)`∆

Σ,∃yB(y)`∆
∃L .

If t is any term of the language L, if a variable y is free in a formula B, and

if B(y ← t) denotes the substitution of the variable y by the term t in the

formula B, we define the right existential inference by:

Σ`B(y ← t),∆

Σ`∃yB(y),∆
∃R .

Any such formulae ∃yB(y) are called formulae introduced by an existential

inference.

The Capture-avoiding substitution of a variable z by a term t in a formula B is

defined recursively by:

• if A is an atomic formula then A(z ← t) is a capture-avoiding substitution,

• if B(z ← t) and C(z ← t) are capture-avoiding substitutions then (¬B)(z ← t)

and (B ∨ C)(z ← t) are capture-avoiding substitutions;

• and if B(z ← t) is a capture avoiding substitution and x is a variable which

does not occur in t then the substitution (∃xB)(z ← t) is capture-avoiding.

182 E. TAHHAN BITTAR

Capture-avoiding substitutions on left existential inferences satisfy:

Fact 2.1. Given an eigenvariable y of a formula B in the sequent Σ, B(y)`∆ and

given a left existential inference:
Σ, B(y)`∆

Σ,∃yB(y)`∆
∃L ; we may rename the eigenvariable

y or perform a capture-avoiding substitution.

Indeed, if a variable z does not occur in any formula of the inference then z is an

eigenvariable of the formula B(y ← z) in the sequent Σ, B(y ← z)`∆ and we have the

inference:

Σ, B(y ← z)`∆

Σ,∃zB(y ← z)`∆
∃L ;

.

If z is a variable different from y and t is a term with no occurrence of the variable y,

then the capture-avoiding substitution of the variable z by a term t given by:

Σ(z ← t), B(z ← t)(y)`∆(z ← t)

Σ(z ← t),∃yB(z ← t)(y)`∆(z ← t)
∃L ,

is also an inference.

Mix inference rules - A mix of a formula A is the following inference:

Σ, An `∆ Σ′ `Am,∆′

Σ,Σ′ `∆,∆′
mix|A| ;

where each of the numbers n and m may be equal to zero. Such a formula A is called

the principal formula for the mix inference. The multisets of formulae An and Am

are called the eliminated multisets of formulae by the mix inference; if n = m = 1

the mix inference is also called a cut inference.

2.3. LKsp inference rules. The calculus LKsp is a variant of Gentzen’s LK calculus

with the same non-structural rules and with two new parallel structural inference rules

which we now define.

Parallel structural inference rules -

the weakening inference rules: We add simultaneously one multiset in the an-

tecedent and one multiset in the consequent:

Σ`∆
Σ,Γ`∆,Γ′

W ;

where each of the multisets of formulae Γ and Γ′ may be empty. If this is the

case the weakening inference is said to be a dummy weakening.

the contraction inference rules: We contract simultaneously several multisets

occurring in the antecedent and in the consequent:

Σ, Ak1
1 , . . . , A

kn
n `∆, Bl11 , . . . , B

lm
m

Σ, A
δ(k1)
1 , . . . , A

δ(kn)
n `∆, B

δ(l1)
1 , . . . , B

δ(lm)
m

C ;

with δ(n) := min{1, n}.

STRONG NORMALIZATION PROOFS 183

2.4. LK and LKsp proofs. For the sake of completeness we give in this section a

formal definition of proofs.

The concatenation of two sequences of natural numbers p and q is denoted by p·q. The

empty sequence of natural numbers is denoted by Λ. Given three sequences of natural

numbers p, p′ and q such that the equality q = p · p′ holds, the sequence p is said to be a

prefix of the sequence q and is denoted by p ≤pr q and conversely the sequence q is said

to be an extension of the sequence p. The prefix relation ≤pr over the set of sequences of

natural numbers is a partial order.

Sequences of natural numbers are denoted by < n0, . . . , nk >. A (non-empty) tree T

is a set of finite sequences of natural numbers such that if a sequence p belongs to T then

any prefix of the sequence p is also an element of T . If n is a natural number and p is a

sequence of natural numbers then the sequence p· < n > is said to be a successor of p.

The elements of a tree are said to be nodes or positions. The node Λ of a tree T is said

to be the root of T , and the nodes of maximal length in a tree T are said to be the leaves

of T . A tree labeled by elements of a set S is a mapping from a tree T to the set S.

Let K be either LK or LKsp. A K-deduction D is a tree labeled by K-inferences, the

domain of which is denoted by T (D) and such that:

• if a node p is labeled by a K-inference:

Σ`∆
Σ′ `∆′

,

then either the position p has no successor in T (D) and then the sequent Σ`∆ is

said to be a hypothesis of D, or the position p has one successor p· < 0 > in T (D)

labeled by an inference, the conclusion of which is Σ`∆;

• If a node p is labeled by a K-inference:

Σ0 `∆0 Σ1 `∆1

Σ′ `∆′
,

then p has in T (D) at most two successors, respectively p· < 0 > and p· < 1 >,

labeled by inferences, the conclusion of which are, respectively, Σ0 `∆0 and Σ1 `∆1;

denoting by ε a natural number among {0, 1}, if the sequence p· < ε > is not in

T (D) then the sequent Σε `∆ε is said to be a hypothesis of D.

The deduction tree of a K-deduction, D, is the domain of D; the root of D is labeled by

a K-inference, the conclusion of which is said to be the conclusion of D. A K-proof Π of

a sequent Σ`∆ is a K-deduction, the conclusion of which is the sequent Σ`∆ with no

hypothesis. The calculi LK and LKsp satisfy:

Fact 2.2. A sequent has an LK-proof if and only if it has an LKsp-proof.

Hence, the calculi LK and LKsp are equivalent. Furthermore, in the absence of am-

biguity we omit the mention of whether LK or LKsp is being used.

If Π is a proof and we replace the labels of the proof tree, which are inferences, by

their respective names we obtain the proof name of Π, this proof name is represented

as a term; if we replace the labels of the proof tree of Π by their respective conclusions

we obtain what Gentzen called proof figures which are the usual representation of proofs

184 E. TAHHAN BITTAR

in sequent calculi. In the following example we give a proof and its corresponding proof

figure and proof name.

Proof Proof figure and name

A,B `A B `B
A,B `A

mix|B|

B `B Ax .
A`A
A,B `A W

A`A Ax .

J
J
J
J
J �

�
�
�
�

t t
t

t
A`A Ax .

A,B `A W B `B Ax .

A,B `A
mix|B|

Proof figure

Proof name

mix|B|(W(Ax),Ax)

We remark that in the calculi LK and LKsp several proofs may have the same name; so

we cannot recover a proof from its name.

A K-deduction D of a sequent Σ`∆ is represented by the figure:

.... D
Σ`∆ .

The subdeduction of a deduction D at position p, denoted by D|p, is defined recursively

by:

• the equality DΛ := D holds;

• and if D is a deduction given by:

D =

.... D0

Σ`∆
Σ′ `∆′

or D =

.... D0

Σ0 `∆0

.... D1

Σ1 `∆1

Σ′ `∆′
;

then D|<0>·p := D0|p or D|<0>·p := D0|p and D|<1>·p := D1|p.

A subdeduction Π|p (at position p) of a proof Π is also said to be a subproof at position

p of the proof Π; the subproofs Π|<0> (and possibly Π|<1>) are said to be immediate

subproofs of Π. A context of a position p in a proof Π is the subdeduction denoted by Π|p
obtained by restricting the proof Π to the positions which do not extend the sequence p.

For example, given the proof:

Π =

A`A Ax .

A,B `A W B `B Ax .

A,B `A
mix|B| ;

the subproof at position < 0 > of Π and the context of the position < 0 > in Π are

respectively:

Π|<0> = A`A Ax .

A,B `A W
and Π|<0> =A,B `A B `B Ax .

A,B `A
mix|B| .

We adopt the following terminology: a sequent occurs in an inference if it is a premise

STRONG NORMALIZATION PROOFS 185

or a conclusion of the inference; a sequent occurs in a proof Π if it occurs in an inference

labeling a node of the proof tree of Π, a formula occurs in a proof Π if it appears in a

sequent occuring in Π and a variable occurs in a proof Π if it is a variable of a formula

occuring in the proof Π. The substitution of a variable z by a term t in each formula of

a proof Π is denoted Π(z ← t); if each one of these formulae substitutions is capture-

avoiding then the substitution Π(z ← t) is also said to be capture-avoiding and satisfies

the:

Lemma 2.1 (Capture-avoiding substitution lemma). If Π is a proof and Π(z ← t) is

a capture-avoiding substitution then Π(z ← t) is a proof; moreover, the proofs Π and

Π(z ← t) have the same name.

Proof. By structural induction on the construction of the proof Π; the main point

is:

Fact 2.3. Given an eigenvariable y of a formula B in the sequent Σ, B(y)`∆ and

given a proof Π obtained as follows:
.... Π1

Σ, B(y)`∆

Σ,∃yB(y)`∆
∃L ;

we can rename in Π the eigenvariable y or perform a capture-avoiding substitution in Π.

Indeed, these facts hold by the two arguments given below.

If a variable z does not occur in the proof Π then z is an eigenvariable of the formula

B(y ← z) in the sequent Σ, B(y ← z)`∆ and by inductive hypothesis the capture-

avoiding substitution Π1(y ← z) is a proof, hence Π(y ← z) is a proof given by:
.... Π1(y ← z)

Σ, B(y ← z)`∆

Σ,∃zB(y ← z)`∆
∃L ;

moreover, since by inductive hypothesis the proofs Π1 and Π1(y ← z) have the same

name then the proofs Π and Π(y ← z) have the same name.

Given a term t with no occurrence of the variable y and such that the substitution of a

variable z different from the variable y by the term t in the proof Π1 is capture-avoiding,

then by inductive hypothesis Π1(z ← t) is a proof and therefore the capture avoiding

substitution Π(z ← t) is proof given by:
.... Π1(z ← t)

Σ(z ← t), B(z ← t)(y) `∆(z ← t)

Σ(z ← t),∃yB(z ← t)(y)`∆(z ← t)
∃L ;

moreover, since by inductive hypothesis the proofs Π1 and Π1(z ← t) have the same

name, the proofs Π and Π(z ← t) have the same name.

Remark 2.1. The above lemma allows one to identify proofs up to bounded variable

renaming; henceforth, we will assume this identification.

186 E. TAHHAN BITTAR

3. Mix elimination systems

3.1. Historical remarks. In his works Gentzen defined the sequent calculus in order

to establish the consistency of logical theories. A logical theory is not consistent if every

formula can be deduced from such theory. In particular the LK calculus is not consistent

if and only if there is an LK proof of the absurd sequent `. In fact if each premise of a

non-mix inference is not the absurd sequent then the conclusion of the inference is not

the absurd sequent. So, to demonstrate the consistency of LK it is sufficient to show

that for each LK proof of a sequent Σ`∆ there is an LK proof of this sequent which

does not contain any use of a mix inference. For instance, Gentzen defined several proof

transformation systems and for each one of those systems he chose a particular strategy of

proof transformation and established that the application of this strategy leads to a mix

free proof. These results are called normalization theorems, and the proof transformation

systems which satisfy normalization property are called mix elimination systems.

In order to fix terminology for further discussions we distinguish two families of mix

elimination systems as follows.

Non-symmetrical mix elimination systems: this family contains the mix elimina-

tion system defined by Gentzen in “Investigation into logical deduction” [Gen35].

Symmetrical mix elimination systems: this family contains the mix elimination sys-

tem defined by Gentzen in “New version of the consistency proof for elementary

number theory” [Gen38]. This family considers mix eliminations which usually called

in the literature cross reductions.

Recently the question of the algorithmic meaning of mix elimination systems has

been raised. As a contribution on this subject we investigate their strong normalization

properties, (i.e. any strategy of mix elimination leads to a mix free proof); and we establish

(sub)recursive upper bounds for the number of transformation steps needed to obtain mix

free proofs. The present contribution is in the tradition of the following works:

• Dragalin gave in [Dra88] a very technical proof of a strong normalization theorem

for the non-symmetrical mix elimination system defined in [Gen35]. This proof

uses a structural inductive approach; Dragalin proved that if Π1 and Π2 are two

LK-proofs which are strongly normalizing, then the proof Π = mix(Π1,Π2) given

by:
.... Π1

Σ, Bn `∆

.... Π2

Σ′,`Bm∆

Σ,Σ′ `∆,∆′
mix|B| ,

is also strongly normalizing.

• In 1990 we gave a constructive proof of a strong normalization theorem for the

propositional fragment of the LK-calculus for an orthogonal and confluent restric-

tion of a symmetrical mix elimination system. This proof uses a rewriting represen-

tation of mix eliminations and techniques of orthogonal rewriting systems theory;

it is based on the fact that if Π1 and Π2 are two LK-proofs strongly normalizing

– the unique normal forms of which are respectively denoted by ↓ (Π1) and ↓ (Π2)

STRONG NORMALIZATION PROOFS 187

– and if a proof mix(↓ (Π1), ↓ (Π2)) is also strongly normalizing, then the proof

mix(Π1,Π2) is also strongly normalizing. In [Tah92] we gave a new version of this

result, using directly a lemma of O’Donnell:

An orthogonal rewriting system is strongly normalizing if and only if

every innermost reduction strategy terminates.

Thus the combination of Gentzen’s normalization theorem which stands for any

innermost strategy and O’Donnell’s lemma implies the strong normalization theo-

rem.

• In [CRS94] Cichon, Rusinowitch and Selhab gave infinite rewriting systems rep-

resenting classical and intuitionistic sequent calculi and several linear calculi and

proved, with recursive path orderings, strong normalization theorems for the linear

calculi which they considered. In [CRS96] they defined an infinite rewriting system

for a symmetrical mix elimination system, without any confluent restriction; the

termination of this rewriting system is obtained through a recursive path ordering.

Another tradition for establishing a strong normalization theorem for mix elimination

systems has been developed by Danos &Joinet & Schellinx and by Herbelin:

• In [Joi93] Joinet defined the calculus LKT , an equivalent restriction of the LK-

calculus; the calculus LKT can be interpreted in a linear logic calculus satisfying

strong normalization; this work has been continued in [DJS95]. Later in [Her95]

Herbelin defined an extension λ̄µ of Parigot’s λµ calculus [Par92] and extended the

Curry-Howard isomorphism to an isomorphism between the sequent calculus LKT

and λ̄µ and gave a strong normalization proof for λ̄µ-terms. In the same work Her-

belin also defined a λ̄ calculus and an equivalent restriction LJT of the intuitionistic

calculus LJ and established an extension of the Curry-Howard isomorphism to an

isomorphism between LJT and λ̄. Recently, in [DP96] R. Dyckhoff and L. Pinto

gave a strong normalization proof by rewriting techniques of the calculus MJ , a

reformulation of Herbelin’s calculus LJT .

3.2. Illustrative example of a mix elimination rule. Given two proofs Π and Π̂′ such

that the conclusion of the proof Π̂′ coincides with the conclusion of the subproof Π|p
of Π at position p; a replacement in a proof Π of its subproof Π|p at position p by the

proof Π̂′ is a proof Π′ such that the subproof Π′|p of Π′ at position p is the proof Π̂′ and

the contexts of the position p in the proof Π and Π′ are equal. A proof transformation

of a proof Π into a proof Π′ is a replacement in a proof Π of a subproof Π|p at a

position p by any proof Π̂′ of the conclusion of Π|p. A finite or infinite sequence of proofs

P =< Π0,Π1, . . . ,Πn . . . > is said to be a sequence of proof transformations of the proof

Π0 if each proof Πi in the sequence P admits a proof transformation into the proof Πi+1.

A set of proof transformation rules E is a mix elimination system if for any proof Π there

is a sequence of proof transformations < Π,Π1, . . . ,Πn > following proof transformation

rules in E and such that there is no mix inference in the proof Πn. A proof transformation

rule belonging to a mix elimination system is also said to be a mix elimination rule. A

proof transformation following a mix elimination rule is said to be a mix elimination.

A mix elimination system E satisfies the strong normalization property if there is no

188 E. TAHHAN BITTAR

infinite sequence of proof transformations following mix elimination rules belonging to

E . We define in this section a symmetrical mix elimination system (denoted by ELKsp
)

satisfying the strong normalization property; one of the mix elimination rules of ELKsp is

given in the next example.

Example 3.1. If a proof Π given by:
.... Π1

Σ, (¬B)n `B,∆
Σ, (¬B)n+1 `∆

¬L

.... Π2

Σ′, B `(¬B)m,∆′

Σ′ `(¬B)m+1,∆′
¬R

Σ,Σ′ `∆,∆′
mix|¬B| ,

occurs as a subproof of a proof Π̂, then the proof Π can be replaced in the proof Π̂ by
the proof Π′ given by:

.... Π1

Σ, (¬B)n `B,∆
Σ, (¬B)n+1 `∆

.... Π2

Σ′, B `(¬B)m,∆′

Σ,Σ′, B `∆,∆′ mix|¬B|

.... Π1

Σ, (¬B)n `B,∆

.... Π2

Σ′, B `(¬B)m,∆′

Σ′ `(¬B)m+1,∆′

Σ,Σ′ `B,∆,∆′ mix|¬B| .

Σ,Σ′,Σ,Σ′ `∆,∆′,∆,∆′

Σ,Σ′ `∆,∆′ C
mix|B|

We observe that this proof transformation has the following labeled tree transformation

scheme:

J
J�
�
rr
rr rr

r ���@
@@

J
J�
�rr r

J
J�
�rr r-

Mn+1

Mn

r
L1 L1

L1 L1

x x

x

y

y

y

Mn+1 Mn+1

r

Symmetrical Ackermann Like Transformation

S

In this scheme the label Mn stands for a mix principal formula which has degree n, the

label L1 stands for an unary logical rule, the label S stands for a structural rule and

labels x and y stand for proof variables (i.e. variables which can be replaced by a proof).

This tree transformation can also be expressed as the term rewriting rule:

Mn+1 (L1(x), L1(y)) −→ S (Mn (Mn+1 (L1(x), y) ,Mn+1 (x, L1(y))))

where a term rewriting rule is a directed equation; which means that substitution in

equations are always made in the direction of the arrow. In fact, in order to establish

strong normalization properties of a mix elimination system, we could skip the interpre-

tation of these mix elimination systems by rewriting systems and give immediately an

STRONG NORMALIZATION PROOFS 189

interpretation, I : LKsp proofs −→ N+, of LKsp proofs such that if a proof u is obtained

from a proof t by a mix elimination then I(t) > I(u). Roughly speaking:

If t
mix elim.−−−−−→ u then I(t) > I(u) ;

such an interpretation is presented in section 4.5. Nevertheless we define in this section a

finite rewriting system (denoted by R′LKsp
) which interprets the symmetrical mix elim-

ination system ELKsp and such that termination (i.e. the strong normalization property)

of R′LKsp
can be machine checked.

3.3. Interpretation of LK and LKsp proofs. There are in the literature several proof-

term calculi which represent sequent calculi such that each proof can be recovered from

the term which represents it, see for instance, in [Gal91], [Pfe94], [Pin93] or [Tah92].

These proof-term calculi are useful in implementing sequent calculi in logical frameworks

and in logic programming (cf. [Pfe94], [Pin93]), but actually, when we want to deal with

termination properties it is sufficient to deal with proof name transformations as is done

in [CRS94]; furthermore it is only relevant to distinguish the inference rules according to

a classification by types of inferences which we introduce below:

Axiom inference rules, structural inference rules, unary or binary logical in-

ference rules and mix inference rule of degree k ∈ N+, where the degree of a

mix is the degree of its principal formula.

Thus we associate to each proof a ground term on the signature:

F := {α, S, L1, L2} ∪ {Mn | n ∈ N+}} ;

where the symbol α has arity zero, the symbols S and L1 have arity one, and L2 and each

Mn have arity two. Ground terms on F are terms built with the symbols of F without

any variable; they are defined recursively by:

Ground terms on F : t ::= α | S(t) | L1(t) | L2(t, t) | {Mn(t, t)}n∈N+ .

If V is a set of variables then the set of terms on F is defined by:

Terms on F : t ::= x ∈ V | α | S(t) | L1(t) | L2(t, t) | {Mn(t, t)}n∈N+ .

Denoting by |A| the degree of a formula A, by Π1, Π2 two LKsp-proof names, we

associate to each LKsp-proof name Π a ground term on F , said to be a type of Π in F ,

this is done through a mapping τ defined recursively by:

τ(Ax) = α

τ(W(Π1)) = S(τ(Π1))

τ(C(Π1)) = S(τ(Π1))

τ(¬L(Π1)) = L1(τ(Π1))

τ(¬R(Π1)) = L1(τ(Π1))

τ(∃L(Π1)) = L1(τ(Π1))

τ(∃R(Π1)) = L1(τ(Π1))

τ(∨R(Π1)) = L1(τ(Π1))

τ(∨L(Π1,Π2)) = L2(τ(Π1), τ(Π2))

τ(mix|A|(Π1,Π2)) = M|A|(τ(Π1), τ(Π2))

Convention: We assume that the type associated to a proof is the type of its name, so

if Π is an LKsp-proof and ν(Π) is the name of Π then: τ(Π) := τ(ν(Π)).

Now we associate to each LK-proof name Π a ground term on F , said to be the type

of Π in F , this is done through a recursively defined mapping τ ′. Moreover, we choose

to impose that the mapping τ ′ keeps the same interpretation as τ for the non-structural

190 E. TAHHAN BITTAR

inference rules (which are common to LK and LKsp) so that a convenient recursive

definition of τ ′ is:

τ ′(Ax) = α

τ ′(WL(Π1)) = S(τ ′(Π1))

τ ′(WR(Π1)) = S(τ ′(Π1))

τ ′(CL(Π1)) = S(τ ′(Π1))

τ ′(CR(Π1)) = S(τ ′(Π1))

τ ′(¬L(Π1)) = L1(τ ′(Π1))

τ ′(¬R(Π1)) = L1(τ ′(Π1))

τ ′(∃L(Π1)) = L1(τ ′(Π1))

τ ′(∃R(Π1)) = L1(τ ′(Π1))

τ ′(∨R(Π1)) = L1(τ ′(Π1))

τ ′(∨L(Π1,Π2)) = L2(τ ′(Π1), τ ′(Π2))

τ ′(mix|A|(Π1,Π2)) = M|A|(τ
′(Π1), τ ′(Π2))

Convention: We assume that the type associated to a proof is the type of its name, so

if Π is an LKsp-proof and ν(Π) is the name of Π then: τ ′(Π) := τ ′(ν(Π)).

3.4. Mix elimination and rewriting systems

Interpretation of mix elimination as rewrite rules. In the illustrative example 3.1 of

mix elimination rules, the subproof Π of the proof Π̂ has the interpretation:

τ(Π) = Mn+1 (L1(τ(Π1)), L1(τ(Π2))) ,

which is a subterm of τ(Π̂). Once the subproof Π is replaced by the subproof Π′ in the

proof Π̂ we obtain a proof the interpretation of which is given by replacing a subterm

τ(Π) of the term τ(Π̂) by the subterm:

τ(Π′) = S (Mn (Mn+1 (L1(τ(Π1)), τ(Π2)) ,Mn+1 (τ(Π1), L1(τ(Π2))))) .

This replacement is said to be a reduction of the term τ(Π̂) following the rewrite rule:

Mn+1 (L1(x), L1(y)) −→ S (Mn (Mn+1 (L1(x), y) ,Mn+1 (x, L1(y)))) .

So we say that the illustrative mix elimination rule interpretations in the algebra of terms

over F follows the above rewrite rule.

We shall define a set of mix eliminations ELKsp
and associate to them a set of rewrite

rules, or rewrite system, RLKsp
such that if Π̂′ is obtained from Π̂ by a mix elimination

then τ(Π̂′) is obtained from τ(Π̂) by a reduction following the associated rewrite rule.

Hence we say that the interpretation of the mix elimination system ELKsp
in the algebra F

follows the rewrite system RLKsp . Therefore, a sequence of proofs obtained by successive

mix eliminations, Π −→ Π2 −→ · · · −→ Πm, has an interpretation as a sequence of

ground terms, τ(Π) −→ τ(Π2) −→ · · · −→ τ(Πm), obtained by successive reductions

following rewrite rules associated to the mix eliminations. Such a sequence is said to be

a derivation of the ground term τ(Π). Indeed, in order to prove strong normalization of

the calculus LKsp it is enough to give a mix elimination system such that the associated

rewrite system RLKsp
terminates.

The system RLKsp . We define a mix elimination system denoted ELKsp , the interpre-

tation of which by τ satisfies the rewriting system of terms on F , denoted by RLKsp
and

defined by the following rules:

Mn(x, α) −→ S(α) ,

Mn(α, y) −→ S(α) ,

Mn (L1(x), y) −→ L1 (Mn (x, y)) ,

STRONG NORMALIZATION PROOFS 191

Mn (x, L1(y)) −→ L1 (Mn (x, y)) ,

Mn (S(x), y) −→ S (Mn (x, y)) ,

Mn (x, S(y)) −→ S (Mn (x, y)) ,

Mn (L2(x, y), z) −→ L2 (Mn(x, z),Mn(y, z)) ,

Mn (x, L2(y, z)) −→ L2 (Mn(x, y),Mn(x, z)) ,

Mn+1 (L1(x), L1(y)) −→ S (Mn (Mn+1 (L1(x), y) ,Mn+1 (x, L1(y)))) ,

Mn+1 (L1(x), L1(y)) −→ S (Mn (Mn+1 (x, L1(y)) ,Mn+1 (L1(x), y))) ,

Mn+1 (L2(x, y), L1(z)) −→ S (Mn (Mn+1 (x, L1(z)) ,Mn+1 (L2(x, y), z))) ,

and Mn+1 (L2(x, y), L1(z)) −→ S (Mn (Mn+1 (y, L1(z)) ,Mn+1 (L2(x, y), z))) .

We notice that there are derivations, of ground terms on F by the rewrite system

RLKsp
, which are not interpretations of successive mix eliminations in ELKsp

.

Since there are infinitely-many degrees, the system RLKsp
is itself infinite. To prove

its termination we can use each one of the two methods presented below which allows us

to reduce the problem to finite rewriting systems. One of these methods is based on a

compactness argument, and the other, called the internalizing method works by replacing

the infinitely many binary symbols Mn by a new unique (internal to the signature) ternary

symbol M(h, x, y) where h is a natural integer term, while x and y are proof terms.

Compactness method : the systems RkLKsp. The signature F is a union of finite signa-

tures Fk such that the restriction RkLKsp of RLKsp
to terms on Fk is finite and such that

if t is a ground term on F and σ is any derivation of t by the rewrite system RLKsp
, then

there is a natural number k such that t is a ground term on Fk and σ is a derivation of

t by the rewrite system RkLKsp
. The method goes as follows:

The degree of the principal formula of a mix is also called the degree of the mix

inference. We define the mix degree of a proof as the maximum of degrees of mix inferences

which appear in the proof. Each mix elimination of ELKsp
transforms a proof Π into a

proof Π′ such that the mix degree of Π′ is less than or equal to the mix degree of Π; thus if

Π is a proof of degree less than or equal to the natural number k ∈ N+ and if the sequence

of proofs, Π −→ Π2 −→ · · · −→ Πm, is obtained by successive mix eliminations, then the

sequence of respective interpretations, τ(Π) −→ τ(Π2) −→ · · · −→ τ(Πm), is obtained by

following the finite rewrite system RkLKsp
which is the restriction of the rewrite system

RkLKsp
to terms on the signature Fk defined by:

Fk := {α, S, L1, L2} ∪ {Mn | n ∈ {1 . . . , k}} .

Internalizing method : the system R′LKsp
. We consider a sorted signature with two

sorts, the natural number sort and the proof sort, this signature F ′ is defined by:

F ′ := {1, s, α, S, L1, L2,M} ;

such that ground terms on F ′ are defined by:

Natural Numbers Ground terms: n ::= 1 | s(n) ,

Proof Ground terms on F ′: t ::= α | S(t) | L1(t) | L2(t, t) |M(n, t, t) ;

192 E. TAHHAN BITTAR

and if Vπ is a set of proof variables and Vν is a set of natural number variables then the

proof terms on F ′ are defined by:

Natural Number terms: n ::= h ∈ Vν | 1 | s(n) ,

Proof terms on F ′: t ::= x ∈ Vπ | α | S(t) | L1(t) | L2(t, t) |M(n, t, t) .

We associate a proof ground term on F ′ to each ground term on F in two steps.

1. We map each non-null natural number to a natural number term by the application

]] · [[defined by:

]]1[[:= 1 and]]n+ 1[[:= s(]]n[[) .

2. We define recursively a mapping τ ′′ from ground terms on F to proof ground terms

on F ′ by:

τ ′′(α) := α ,

τ ′′(S(x)) := S(τ ′′(x)) ,

τ ′′(L1(x)) := L1(τ ′′(x)) ,

τ ′′(L2(x, y)) := L2(τ ′′(x), τ ′′(y)) ,

and τ ′′(Mn(x, y)) := M(]]n[[, τ ′′(x), τ ′′(y)) .

Under the assumptions of the illustrative example 3.1 of mix elimination and denoting

by τ ′′ ◦ τ the composition of the mapping τ ′′ with the mapping τ and denoting for the

sake of readability: Π′′1 := τ ′′ ◦ τ(Π1) and Π′′2 := τ ′′ ◦ τ(Π2); the subproof Π of the proof

Π̂ has the interpretation:

τ ′′ ◦ τ(Π) = M (]]n+ 1[[, L1(Π′′1), L1(Π′′2)) ,

which is a subterm of τ ′′ ◦ τ(Π̂). Once the subproof Π is replaced by the subproof Π′ in

the proof Π̂ we obtain a proof Π̂′. The interpretation of Π̂′ by τ ′′ ◦ τ gives a term that is

the result of replacing the subterm τ ′′ ◦ τ(Π) of the term τ ′′ ◦ τ(Π̂) by the subterm:

τ ′′ ◦ τ(Π′) = S (M (]]n[[,M (]]n+ 1[[, L1(Π′′1),Π′′2) ,M (]]n+ 1[[,Π′′1 , L1(Π′′2)))) .

This replacement is a reduction of the term τ(Π̂) following the rewrite rule:

M (s(h), L1(x), L1(y)) −→ S (M (h,M (s(h), L1(x), y) ,M (s(h), x, L1(y)))) ;

where the symbol h is a natural number variable, and the symbols x and y are proof

variables. So we say that the illustrative mix elimination rule interpretations in the algebra

of terms F ′ follow the former rewrite rule.

Actually, the interpretation by τ ′′ ◦ τ of the mix elimination system ELKsp
follows the

rewriting system on proof terms on F ′ denoted by R′LKsp and defined by:

M(h, x, α) −→ S(α) ,

M(h, α, y) −→ S(α) ,

M (h, L1(x), y) −→ L1 (M (h, x, y)) ,

M (h, x, L1(y)) −→ L1 (M (h, x, y)) ,

M (h, S(x), y) −→ S (M (h, x, y)) ,

M (h, x, S(y)) −→ S (M (h, x, y)) ,

M (h, L2(x, y), z) −→ L2 (M(h, x, z),M(h, y, z)) ,

STRONG NORMALIZATION PROOFS 193

M (h, x, L2(y, z)) −→ L2 (M(h, x, y),M(h, x, z)) ,

M (s(h), L1(x), L1(y)) −→ S (M (h,M (s(h), L1(x), y) ,M (s(h), x, L1(y)))) ,

M (s(h), L1(x), L1(y)) −→ S (M (h,M (s(h), x, L1(y)) ,M (s(h), L1(x), y))) ,

M (s(h), L2(x, y), L1(z)) −→ S (M (h,M (s(h), x, L1(z)) ,M (s(h), L2(x, y), z))) ,

and M (s(h), L2(x, y), L1(z)) −→ S (M (h,M (s(h), y, L1(z)) ,M (s(h), L2(x, y), z))) ;

where the symbol h is a natural number variable, and the symbols x, y and z are proof

variables.

3.5. The symmetrical mix elimination system ELKsp
. In this section we propose a

mix elimination system ELKsp such that its interpretation in the algebra of terms on F
follows the rewriting system RLKsp

and hence its interpretation in the algebra of terms

on F ′ follows the rewriting system R′LKsp . This mix elimination system ELKsp is based

on a mix elimination system proposed in [Pab90] and is in the tradition of those studied

in [Gen38], [Gir87], [GLT89], [Tah92], [Gal93] and [CRS96]. We show in a later section

that the set of transformations given in this section is exhaustive, which means that each

mix inference with non-mix inference premises occurring in a proof matches at least one

left hand side of a mix elimination rule. We point out also in this section that a mix

inference can match more than one rule and the well known fact that a proof may have

several normal forms.

Active and passive premise inferences. Following Gentzen the left premise inference

in a proof interpreted by Mn(α, y), Mn(L(x), y) or Mn(L(x1, x2), y) is said to be an

active premise inference if the formula introduced by the axiom inference α or by the

logical inference L is eliminated by the mix inference interpreted by Mn; otherwise the

left premise inference is said to be a passive premise inference. Active and passive right

premise inferences are defined in the same way. For example in the proof:

.... Π1

Σ, (¬B)n `B,∆
Σ, (¬B)n,¬B `∆

¬L

.... Π2

Σ′, B `(¬B)m,∆′

Σ′ `(¬B)m+1,∆′
¬R

Σ,¬B,Σ′ `∆,∆′
mix|¬B| ,

the left premise inference ¬L is passive and the right premise inference ¬R is active.

In this section we decorate interpretations of axiom and logical inferences with as-

terisks indicating when mix premise inferences are active or passive. For instance, the

decorated interpretation in F of the above example is: Mn+1(L1(τ(Π1)), L∗1(τ(Π2))). We

remark that this decoration is external since we cannot infer the active or passive char-

acter of a mix inference premise from the proof name.

Remark 3.1. Since the introduced formulae of axiom inferences are atomic, any mix

inference occuring in a LKsp-proof does not have an active axiom inference premise and

an active logical inference premise.

Exhaustivity of the mix elimination system. As usual, the mix elimination rules be-

longing to ELKsp are classified as follows.

194 E. TAHHAN BITTAR

Immediate reductions - The mix inference can be substituted by non-mix inferences;

this is the case if each one of the mix premises are active axioms or one of the mix

premises is a passive axiom. The decorated interpretation of the replaced proof in

these cases matches either M1(α∗, α∗) or Mn(α, y) or Mn(x, α).

Commutative reductions - The mix inference can be permuted with one of the pre-

mise inferences; this is the case if: either one of the mix premises is a structural

inference, the decorated interpretation of the replaced proof in these cases matches

either Mn(S(x), y) or Mn(x, S(y)); or one of the mix premises is a passive logical

inference, the decorated interpretation of the replaced proof in these cases matches

either Mn(L1(x), y) or Mn(x, L1(y)) or Mn(L2(x1, x2), y) or Mn(x, L2(y1, y2)).

Symmetrical essential reductions - Both mix premises are logical active inferences.

The decorated interpretation of the replaced proof in these cases matches either

Mn(L∗1(x), L∗1(y)) or Mn(L∗2(x1, x2), L∗1(y)). We point out that the symmetrical

nature of the sequent calculus LKsp is implemented in the mix elimination system

ELKsp
by the fact that the performance of a mix elimination of a mix inference with

one active logical premise requires the other premise to also be active; whence the

symmetrical qualification of ELKsp .

Any non-mix free LKsp-proof can be reduced by a mix elimination rule belonging to

ELKsp ; this is a consequence of:

Fact 3.1. The mix elimination system ELKsp
is exhaustive.

Proof. Any mix inference employed in a proof, and such that neither of its premises

are mix inferences, matches at least one of the mix elimination rules belonging to ELKsp
;

indeed, either:

• both mix premises are active logical inferences and then we proceed by symmetrical

essential reduction,

• or one of the mix premises is a structural inference or a passive logical inference

and then we proceed by commutative reduction,

• or one of the mix premises is an axiom inference and then we proceed by immediate

reduction; indeed, if the previous two alternatives do not hold, then by remark 3.1

either both premises of the mix inference are active axiom inferences or at least one

of the premises is a passive axiom inference.

In the next subsections we give the mix eliminations which constitute ELKsp
and their

interpretations in F by rewriting rules belonging to RLKsp .

Immediate reductions

Active Axiom premise inferences - A proof the decorated name of which matches

the term M1(α∗, α∗) and given by:

A`A Ax .
A`A Ax .

A`A
mix|A| , is replaced by A`A Ax .

A`A W ;

where the weakening is a dummy weakening.

STRONG NORMALIZATION PROOFS 195

Cases Mn(α, y) and Mn(x, α) - A proof the decorated name of which matches the term

Mn(α, y) and given by:

A`A Ax

.... Π1

Σ`(C)m,∆

Σ, A`A,∆
mix|C| , is replaced by A`A Ax

Σ, A`A,∆ W ;

and a proof the decorated name of which matches the term Mn(x, α) and given by:

.... Π1

Σ, Cn `∆ A`A Ax

Σ, A`A,∆
mix|C| , is replaced by A`A Ax

Σ, A`A,∆ W .

Thus the interpretation of each immediate reduction follows one of the rewriting rules:

Mn(α, y) −→ S(α) or Mn(x, α) −→ S(α).

Commutative reductions

Weakening premise inference - A proof the decorated name of which matches the

term mix(W(x), y) and given by:

.... Π1

Σ, Ak `∆

Σ,Γ, Ak, Ak
′ `∆,Γ′

W
.... Π2

Σ′ `Am,∆′

Σ,Γ,Σ′ `∆,Γ′,∆′
mix|A| ,

is replaced by the proof:

.... Π1

Σ, Ak `∆

.... Π2

Σ′ `Am,∆′

Σ,Σ′ `∆,∆′
mix|A| ;

Σ,Γ,Σ′ `∆,Γ′,∆′
W

the interpretation of this reduction follows the rewriting rule: Mn(S(x), y) −→
S(Mn(x, y)). For proofs the decorated names of which match the term mix(x,W(y))

we define by symmetry a mix elimination rule the interpretation of which follows

the rewriting rule: Mn(x, S(y)) −→ S(Mn(x, y)).

Contraction premise inference - A proof the decorated name of which matches the

term mix(C(x), y) and given by:

.... Π1

Σ, (A1)k1 , . . . , (An)kn `(B1)l1 , . . . , (Bm)lm ,∆

Σ, (A1)δ(k1), . . . , (An)δ(kn) `(B1)δ(l1), . . . , (Bm)δ(lm),∆
C

.... Π2

Σ′ `(A1)j ,∆′

Σ, (A2)δ(k2), . . . , (An)δ(kn),Σ′ `(B1)δ(l1), . . . , (Bm)δ(lm),∆,∆′
mix|A1| ,

is replaced by the proof:

196 E. TAHHAN BITTAR

.... Π1

Σ, (A1)k1 , . . . , (An)kn `(B1)l1 , . . . , (Bm)lm ,∆

.... Π2

Σ′ `(A1)j ,∆′

Σ, (A2)k2 , . . . , (An)kn ,Σ′ `(B1)l1 , . . . , (Bm)lm ,∆,∆′
mix|A1| ;

Σ, (A2)δ(k2), . . . , (An)δ(kn),Σ′ `(B1)δ(l1), . . . , (Bm)δ(lm),∆,∆′
C

the interpretation of this reduction follows the rewriting rule: Mn(S(x), y) −→
S(Mn(x, y)). For proofs the decorated names of which match the term mix(C(x), y)

we define by symmetry a mix elimination rule the interpretation of which follows

the rewriting rule: Mn(x, S(y)) −→ S(Mn(x, y)).

Passive negation premise inference - A proof the decorated name of which matches

the term mix(¬L(x), y) and given by:
.... Π1

Σ, (C)k `B,∆
Σ, (C)k,¬B `∆

¬L
.... Π2

Σ′ `(C)m,∆′

Σ,¬B,Σ′ `∆,∆′
mix|C| ,

is replaced by the proof:
.... Π1

Σ, (C)k `B,∆

.... Π2

Σ′ `(C)m,∆′

Σ,Σ′ `B,∆,∆′
mix|C| ;

Σ,¬B,Σ′ `∆,∆′
¬L

the interpretation of this reduction follows the rewriting rule: Mn(L1(x), y) −→
L1(Mn(x, y)). For proofs whose decorated names match the term mix(¬R(x), y) we

define a mix elimination rule the interpretation of which follows the latter rewriting

rule too. For proofs the decorated names of which match the term mix(x,¬R(y))

or mix(x,¬L(y)) we define by symmetry mix elimination rules the interpretation of

which follow the rewriting rule: Mn(x, L1(y)) −→ L1(Mn(x, y)).

Passive disjunction premise inference - A proof the decorated name of which

matches the term mix(∨L(x1, x2), y) and given by:
.... Π1

Σ, (D)k, B `∆

.... Π2

Σ, (D)k, C `∆

Σ, (D)k, B ∨ C `∆
∨L

.... Π3

Σ′ `(D)m,∆′

Σ, B ∨ C,Σ′ `∆,∆′
mix|D| ,

is replaced by the proof:
.... Π1

Σ, (D)k, B `∆

.... Π3

Σ′ `(D)m,∆′

Σ, B,Σ′ `∆,∆′
mix|D|

.... Π2

Σ, (D)k, C `∆

.... Π3

Σ′ `(D)m,∆′

Σ, C,Σ′ `∆,∆′
mix|D| ;

Σ, B ∨ C,Σ′ `∆,∆′
∨L

the interpretation of this reduction follows the rewriting rule: Mn(L2(x, y), z) −→
L2(Mn(x, z),Mn(y, z)).

STRONG NORMALIZATION PROOFS 197

A proof the decorated name of which matches the term mix(∨R(x), y) and given

by:
.... Π1

Σ, Dk `B,∆
Σ, Dk `B ∨ C,∆

∨R
.... Π2

Σ′ `Dm,∆′

Σ,Σ′ `B ∨ C,∆,∆′
mix|D| ,

is replaced by the proof:
.... Π1

Σ, Dk `B,∆

.... Π2

Σ′ `Dm,∆′

Σ,Σ′ `B,∆,∆′
mix|D| ;

Σ,Σ′ `B ∨ C,∆,∆′
∨R

the interpretation of this reduction follows the rewriting rule: Mn(L1(x), y) −→
L1(Mn(x, y)). For proofs the decorated names of which match mix(x,∨L(y1, y2)) or

mix(x,∨R(y)) we define by symmetry mix elimination rules the interpretations of

which follow one of the rewriting rules:

Mn+1(x, L2(y, z)) −→ L2(Mn+1(x, y),Mn+1(x, z)) ,

or Mn+1(x, L1(y)) −→ L1(Mn+1(x, y)) .

Passive existential premise inference - A proof Π the decorated name of which

matches the term mix(∃L(x), y) and given by:
.... Π1

Σ, (C)k, B(y)`∆

Σ, (C)k,∃yB(y)`∆
∃L

.... Π2

Σ′ `(C)m,∆′

Σ,∃yB(y),Σ′ `∆,∆′
mix|C| ,

where by the equivalence of proofs up to bounded variable renaming (c.f. remark

2.1) we can assume without loss of generality that the variable y does not occur

in the proof Π2; and given a variable z which does not occur in Π then by the

capture-avoiding substitution lemma, Π(y ← z) is a proof, so we can replace the

proof Π by the proof:
.... Π1(y ← z)

Σ, (C)k, B(y ← z)`∆

.... Π2

Σ′ `(C)m,∆′

Σ,Σ′, B(y ← z)`∆,∆′
mix|C| ;

Σ,∃zB(y ← z),Σ′ `∆,∆′
∃L

the interpretation of this reduction follows the rewriting rule: Mn(L1(x), y) −→
L1(Mn(x, y)). For proofs whose decorated names match the term mix(∃R(x), y) we

define a mix elimination rule the interpretation of which follows the latter rewriting

rule too. For proofs the decorated names of which match the term mix(x,∃R(y))

or mix(x, ∃L(y)) we define by symmetry mix elimination rules the interpretation of

which follow the rewriting rule: Mn(x, L1(y)) −→ L1(Mn(x, y)).

198 E. TAHHAN BITTAR

Symmetrical essential reductions

Active negation premises - A proof the decorated name of which matches

mix(¬∗L(x),¬∗R(y)) and given by:

.... Π1

Σ, (¬B)n `B,∆
Σ, (¬B)n,¬B `∆

¬L

.... Π2

Σ′, B `(¬B)m,∆′

Σ′ `¬B, (¬B)m,∆′
¬R

Σ,Σ′ `∆,∆′
mix|¬B| ,

is replaced by the proof:

.

.

.

.
Π1

Σ, (¬B)n `B,∆
Σ, (¬B)n,¬B `∆

¬L

.

.

.

.
Π2

Σ′, B `(¬B)m,∆′

Σ,Σ′, B `∆,∆′
mix|¬B|

.

.

.

.
Π1

Σ, (¬B)n,`B,∆

.

.

.

.
Π2

Σ′, B `(¬B)m,∆′

Σ′ `¬B, (¬B)m,∆′
¬R

Σ,Σ′ `B,∆,∆′
mix|¬B| ;

Σ,Σ′,Σ,Σ′ `∆,∆′,∆,∆′
mix|B|

Σ,Σ′ `∆,∆′
C

the interpretation of this reduction follows the rewriting rule:

Mn+1(L1(x), L1(y)) −→ S(Mn(Mn+1(L1(x), y),Mn+1(x, L1(y)))) .

Active disjunction premises - A proof the decorated name of which matches the term

mix(∨∗L(x1, x2),∨∗R(y)) and given by:

.... Π1

Σ, (B ∨ C)n, B `∆

.... Π2

Σ, (B ∨ C)n, C `∆

Σ, (B ∨ C)n, B ∨ C `∆
∨L

.... Π3

Σ′ `B, (B ∨ C)m,∆′

Σ′ `B ∨ C, (B ∨ C)m,∆′
∨R

Σ,Σ′ `∆,∆′
mix|B∨C| ,

is replaced by the proof:

.

.

.

.
Π1

Σ, (B ∨ C)n,B `∆

.

.

.

.
Π3

Σ′ `B, (B ∨ C)m, ∆′

Σ′ `B ∨ C, (B ∨ C)m, ∆′

Σ, Σ′, B `∆, ∆′

.

.

.

.
Π1

Σ, (B ∨ C)n,B `∆

.

.

.

.
Π2

Σ, (B ∨ C)n,C `∆

Σ, (B ∨ C)n,B ∨ C `∆

.

.

.

.
Π3

Σ′ `(B ∨ C)m,B, ∆

Σ, Σ′ `B, ∆, ∆′
;

Σ, Σ′, Σ, Σ′ `∆, ∆′, ∆, ∆′
mix|B|

Σ, Σ′ `∆, ∆′
C

the interpretation of this reduction follows the rewriting rule:

Mn+1(L2(x, y), L1(z)) −→ S(Mn(Mn+1(x, L1(z)),Mn+1(L2(x, y), z))) .

Active existential premises - A proof the decorated name of which matches the term

mix(∃∗L(x),∃∗R(y)) and given by:

.... Π1

Σ, (∃xB)n, B(x← y)`∆

Σ, (∃xB)n,∃xB(x)`∆
∃L

.... Π2

Σ′ `B(x← t), (∃xB)m,∆′

Σ′ `∃xB, (∃xB)m,∆′
∃R

Σ,Σ′ `∆,∆′
mix|∃xB| ,

STRONG NORMALIZATION PROOFS 199

is replaced by the proof:

.

.

.

.
Π′

1
(x ← t)

Σ, (∃xB)n,B(x ← t)`∆

.

.

.

.
Π2

Σ′ `B(x ← t), (∃xB)m, ∆′

Σ′ ` ∃xB, (∃xB)m, ∆′

Σ, Σ′, B(x ← t)`∆, ∆′

.

.

.

.
Π1

Σ, (∃xB)n,B(x ← y)`B, ∆

Σ, (∃xB)n, ∃xB `∆

.

.

.

.
Π2

Σ′ `B(x ← t), (∃xB)m, ∆′

Σ, Σ′ `B(x ← t), ∆, ∆′
;

Σ, Σ′, Σ, Σ′ `∆, ∆′, ∆, ∆′
mix|B|

Σ, Σ′ `∆, ∆′
C

where Π′1 is a proof obtained by renaming the bounded variables in Π1 by new

variable names which do not occur in the proof Π; thus by the capture-avoiding

substitution lemma Π′1(x ← t) is a proof of the sequent Σ, (∃xB)n, B(x ← t)`∆

and has the same name as Π1. Therefore the interpretation of this reduction follows

the rewriting rule:

Mn+1(L1(x), L1(y)) −→ S(Mn(Mn+1(x, L1(y)),Mn+1(L1(x), y))) .

3.6. The symmetrical mix elimination ELK . A mix elimination system ELK for the

sequent calculus LK is obtained by a modification of the system ELKsp
following the

criteria given below:

Structural premise mix elimination rules of ELK are particular cases of the

structural mix elimination rules of ELKsp . Non-structural mix elimination

rules of ELK are obtained by replacing in the non-structural mix elimina-

tion rules of ELKsp
the use of parallel structural rules by several applications

of structural rules in ELK .

For example, the mix elimination rules in ELKsp
interpreted by the rewriting rules:

M(h, x, α) −→ S(α) ,

M (s(h), L2(x, y), L1(z)) −→ S (M (h,M (s(h), y, L1(z)) ,M (s(h), L2(x, y), z))) ;

have to be replaced by mix elimination rules in ELK interpreted by the infinite sets of
rewriting rules:

{M(h, x, α) −→ Sk(α)}k∈N ,

{M (s(h), L2(x, y), L1(z)) −→ Sk (M (h,M (s(h), y, L1(z)) ,M (s(h), L2(x, y), z)))}k∈N .

The mix elimination system ELK is interpreted by the infinite rewriting rule system
denoted by R′LK and given by the proof term rewriting rules over the signature F ′:

{M(h, x, α) −→ Sk(α)}k∈N ,

{M(h, α, y) −→ Sk(α)}k∈N ,
M (h, L1(x), y) −→ L1 (M (h, x, y)) ,

M (h, x, L1(y)) −→ L1 (M (h, x, y)) ,

{M (h, S(x), y) −→ Si (M (h, x, y))}i∈{0,1} ,

{M (h, x, S(y)) −→ Si (M (h, x, y))}i∈{0,1} ,

M (h, L2(x, y), z) −→ L2 (M(h, x, z),M(h, y, z)) ,

M (h, x, L2(y, z)) −→ L2 (M(h, x, y),M(h, x, z)) ,

{M (s(h), L1(x), L1(y)) −→ Sk (M (h,M (s(h), L1(x), y) ,M (s(h), x, L1(y))))}k∈N ,

200 E. TAHHAN BITTAR

{M (s(h), L1(x), L1(y)) −→ Sk (M (h,M (s(h), x, L1(y)) ,M (s(h), L1(x), y)))}k∈N ,

{M (s(h), L2(x, y), L1(z)) −→ Sk (M (h,M (s(h), x, L1(z)) ,M (s(h), L2(x, y), z)))}k∈N ,

{M (s(h), L2(x, y), L1(z)) −→ Sk (M (h,M (s(h), y, L1(z)) ,M (s(h), L2(x, y), z)))}k∈N .

3.7. Ambiguity of the mix elimination systems ELK and ELKsp
. The mix elimination

rules in the system ELKsp
are not exclusive. Indeed, up to symmetry we have the following

ambiguous patterns:

Mn(α, S(y))

Mn(α,L1(y)) Mn(α,L2(y, z))

Mn(S(x), L1(y)) Mn(S(x), L2(y, z))

Mn(L1(x), L1(y)) Mn(L1(x), L2(y, z))

If the interpretation of a proof matches one of the former ambiguous patterns then we

can replace this proof following either:

a left side mix elimination rule - this is the case if the left-hand side of the asso-

ciated rewriting rule is among the terms: Mn(α, y), Mn(S(x), y), Mn(L1(x), y) or

Mn(L2(x, y), z);

or a right side elimination rule - this is the case if the left-hand side of the associ-

ated rewriting rule is among the terms: Mn(x, α), Mn(x, S(y)), Mn(x, L1(y)) or

Mn(x, L2(y, z)).

We notice that the mix elimination system ELK is also ambiguous.

Moreover, this ambiguity is not removed by the mix elimination system ELKsp
, for

instance, a proof with the interpretation matching the term Mn(S(x), L1(y)) can be

reduced in two different ways:

Mn(S(x), L1(y)) −→ S(Mn(x, L1(y))) −→ L1(S(Mn(x, y))) ,

or Mn(S(x), L1(y)) −→ L1(Mn(S(x), y)) −→ S(L1(Mn(x, y))) ,

where the terms L1(S(Mn(x, y))) and S(L1(Mn(x, y))) are not equal up to successive mix

eliminations. Thus, the mix elimination system ELKsp
is not confluent (where, denoting

by R∗ the transitive closure of a binary relation R over proofs, the binary relation R
satisfies the confluence property if for any triplets of proofs Π, Π1 and Π2 such that

the relations ΠRΠ1 and ΠRΠ2 are satisfied there is a proof Π3 such that the relations

Π1R∗Π3 and Π2R∗Π3 are also satisfied).

An arbitrary way of avoiding the ambiguity of the mix elimination systems ELK and

ELKsp
is to give priority in the application of mix elimination rules to the left side mix

elimination rules over the right side mix elimination rules. Such restrictions are said

to be left-priority restrictions of the mix elimination systems ELK and ELKsp
, denoted

respectively by E lLK and E lLKsp
, and are defined by the criterion:

if a proof can be replaced following either a left side or a right side mix

elimination rule then the replacement must follow the left side mix elimination

rule.

In section 4 we show that E lLK and E lLKsp
are confluent and strongly normalizing.

STRONG NORMALIZATION PROOFS 201

4. Strong normalization proofs

4.1. Introduction. Let E be a mix elimination system for a K-calculus. A redex is a

proof which can be replaced following a mix elimination rule. If the subproof Π|p (at

position p) of a proof Π is a redex then Π|p is said to be the redex at position p of the

proof Π. A subproof of Π which is a redex is said to be a redex Π̂ of the proof Π; an

innermost redex Π̂ of a proof Π is a minimal redex (with respect to the subdeduction

order) of Π, thus any proper subproof of an innermost redex is mix free. A reduction

(respectively innermost reduction) of a redex Π̂ in a proof Π is the replacement in the

proof Π of the redex Π̂ (respectively innermost redex Π̂) following a mix elimination rule;

let us denote by Π′ the proof obtained once Π̂ has been replaced in Π, we say that the

proof Π is reduced by E to the proof Π′; this reduction relation is denoted ΠEΠ′. As

usual we denote by E∗ the reflexive and transitive closure of the relation E . A proof Π is

E-normal if it cannot be reduced by E .

Let E be a mix elimination system for a K-calculus. An E-derivation, respectively

innermost E-derivation, of a proof Π0 or sequence of E-reductions, respectively inner-

most E-reductions, is a sequence of K-proofs P =< Π0, . . . ,Πn, . . . > such that for each

pair of successive K-proofs Πi and Πi+1 of P the relation ΠiEΠi+1 holds. A proof Π

is strongly E-normalizing if all its E-derivations are finite. An E-normalization, respec-

tively innermost E-normalization, is a E-derivation, respectively innermost E-derivation,

< Π0, . . . ,Πn, . . . > such that Πn is an E-normal proof. A mix elimination system E is

confluent if for each triplet of K-proofs Π, Π′ and Π′′ such that ΠEΠ′ and ΠEΠ′′ there

is a K-proof Π′′′ such that Π′E∗Π′′′ and Π′′E∗Π′′′; so a confluent mix elimination system

satisfies the diagram:

Π
E−−−−−→ Π′

E

y
y E∗

Π′′
E∗−−−−−→ Π′′′

The mix elimination systems ELK and ELKsp
satisfy the cornerstone:

Theorem 4.1 (Gentzen’s Hauptsatz). [Gen35] Any LK-proof (respectively LKsp-

proof) is (innermost) normalizing by the mix elimination systems ELK (respectively

ELKsp).

Proof. It is enough to prove this assertion for an innermost redex:
.... Π0

Σ0, A
n `∆0

.... Π1

Σ1 `Am,∆1

Σ,Σ′ `Σ,∆′
mix|A| .

The proof is carried out by induction on the lexicographic order on (|A|, |Π0|, |Π1|) (given

by the degree of the mix formula A, the size of the proof Π0 and the size of the proof Π1).

The question of strong normalization of the original non-symmetrical mix elimination

system proposed in [Gen35] has been solved in [Dra88]; nevertheless the symmetrical mix

elimination systems ELK and ELKsp
turn out to be more suitable for strong normalization

proofs. We already gave in section 3 historical remarks on strong normalization proofs for

202 E. TAHHAN BITTAR

sequent calculi; we will give, below, further classification and further details about these

proofs and we will show how these techniques are applied in this work to prove strong

normalization of ELK and ELKsp .

Structural induction proofs - Using this technique one proves that if the immediate

subproofs of a proof Π are strongly normalizing then the proof Π itself is strongly

normalizing; it was used in [Dra88] to prove strong normalization of the origi-

nal non-symmetrical mix elimination system proposed in [Gen35] and by Coquand

in [Her95] to prove strong normalization of Herbelin’s sequent calculus LJT ; we

apply it in section 4.4 to prove strong normalization of ELK and ELKsp
. (We ex-

pect that such structural inductive proofs can be obtained by automated theorem

provers.)

Innermost normalization proofs - This technique uses the parallel moves lemma

property, see section 4.2, which is a sufficient condition to ensure that innermost

normalization stated in the Hauptsatz theorem implies strong normalization for or-

thogonal mix elimination systems, this is based on results in [O’D77], these results

were extended in [Gra92]; we used it in [Tah92] to prove strong normalization of

the propositional fragment of E lLK and we apply it in section 4.2 to prove a parallel

moves lemma and hence the strong normalization for the orthogonal restrictions

E lLK and E lLKsp
.

Recursive path ordering monotone interpretations proofs - This technique ap-

plies term rewriting recursive path ordering termination proofs developed in [Der82]

and [KL80], it was used, building on Okada’s lectures, in [CRS94] to prove the

strong normalization of fragments of the linear calculus and in [CRS96] to prove

strong normalization of ELK ; we apply it in section 4.3 to give a finite rewriting sys-

tem interpretation of ELKsp
and hence a totally machine checkable proof of strong

normalization of ELKsp .

Natural monotone interpretations proofs - Using this technique one defines mono-

tone homomorphisms from the algebra of proof names (ordered by the rewriting

system associated to mix elimination systems) to the algebra of subrecursive func-

tions in the Grzegorczyk hierarchy, for a study in subrecursive functions we refer

the reader to [Ros84]; it was used in [CRS96] to give subrecursive upper bounds

for the lengths of derivations in some fragments of the linear calculus; we apply it

in section 4.5 to give subrecursive upper bounds for the lengths of ELK and ELKsp

derivations.

4.2. Strong normalization of orthogonal restrictions. In this section we apply orthog-

onal rewriting systems techniques to constructor based orthogonal mix elimination sys-

tems; we refer the reader to [HL92] for a technical study and to [Klo92] and [DJ90] for

reviews on this subject.

Constructor orthogonal mix elimination systems. A proof Π extends a deduction D if

for each common node p of Π and D the inference which labels the node p in Π is equal

to the inference which labels the node p in D; informally, a proof Π extends a deduction

D if the deduction D is obtained by erasing subproofs of the proof Π.

STRONG NORMALIZATION PROOFS 203

The replaced deduction of a mix elimination rule is the deduction obtained by skipping

the subproofs which are copied in the replaced proof; i.e. The replaced deduction of a

mix elimination rule ρ is the maximal deduction (with respect to the subdeduction order)

which is extended by all proofs that can be replaced following the mix elimination rule ρ.

For instance, the replaced deduction of the mix elimination rule given in the illustrative

example 3.1 is the deduction:

Σ, (¬B)n `B,∆
Σ, (¬B)n+1 `∆

¬L
Σ′, B `(¬B)m,∆′

Σ′ `(¬B)m+1,∆′
¬R

Σ,Σ′ `∆,∆′
mix|¬B| .

A mix elimination is said to be a constructor mix elimination if the non-root nodes

of the replaced deduction are labeled by non-mix inferences. A mix elimination sys-

tem is said to be a constructor mix elimination system if it is constituted of construc-

tor mix elimination rules. By construction, E lLKsp
is a constructor mix elimination sys-

tem.

A mix elimination rule is left linear if the non-axiom hypotheses of the associated

replaced deduction are pairwise different; a mix elimination system is left linear if each

one of its mix elimination rules is left linear. Two deductions are unifiable if they admit

a common proof extension. A constructor mix elimination system is orthogonal if it is

left linear and there are no two mix elimination rules with the same priority and with

unifiable mix replaced deductions.

As a consequence of the left-priority we imposed on E lLK and E lLKsp
we have:

Fact 4.1. The mix elimination systems E lLK and E lLKsp
are constructor orthogonal

mix elimination systems.

Parallel moves lemma. Two sequences of natural numbers are comparable if one of

them is a prefix of the other. A sequence P of redexes of a proof Π, indexed by their

respective positions in the proof Π is said to be a sequence of parallel redexes of the

proof Π if their respective positions in Π are pairwise incomparable. Given two se-

quences of parallel redexes P and Q of a proof Π, we denote by P − Q the sequence

of parallel redexes in P , the positions of which are not positions of any redex in Q.

We remark that a sequence of innermost redexes of a proof Π, indexed by their re-

spective positions in the proof Π is also a sequence of parallel redexes of this proof. A

parallel reduction of a proof Π at a sequence of parallel redexes P is the replacement

of each redex in P following a mix elimination rule; this is denoted by (Π, P,Π′) or

Π
P−→ Π′.

Parallel reductions for constructor orthogonal mix elimination systems satisfy a ver-

sion of the following lemma proved by Rosen [Ros73] and extended by G. Huet in [Hue80]

to orthogonal rewriting systems.

Lemma 4.1 (Parallel moves lemma [Ros73,Hue80]). Let E be a constructor orthogo-

nal mix elimination system. For each pair of parallel reductions (Π0, Q,Π
′
0) and

(Π0, P,Π1) there is a pair of sequences of parallel redexes P ′ and Q′ such that the following

diagram is satisfied:

204 E. TAHHAN BITTAR

Π0
P−−−−−→ Π1

Q

y
y Q′

Π′0
P ′−−−−−→ Π′1 .

We refer the reader to [Hue80] for a proof of this lemma; the only additional delicate

point in the adaptation of Rosen and Huet’s proof to constructor orthogonal mix elim-

ination systems is the way of handling of capture-avoiding substitutions performed by

existential premises mix elimination rules. The confluence property is the particular case

of the parallel moves lemma when, under the same assumptions as in this lemma, the

sequences P and Q have both only one redex. Hence, we have the:

Corollary 4.1. The mix elimination systems E lLK and E lLKsp
are confluent.

In this work we need only to prove that constructor orthogonal mix elimination sys-

tems satisfy the following version of the parallel moves lemma.

Lemma 4.2. Let E be a constructor orthogonal mix elimination system. For each pair

of parallel reductions (Π0, Q,Π
′
0) and (Π0, P,Π1) such that Q is a sequence of innermost

redexes of Π0 there is a sequence of innermost redexes Q′; such that:

• the following diagram holds:

Π0
P−−−−−→ Π1

Q

y
y Q′

Π′0
P−Q−−−−−→ Π′1 ,

• and if P ⊆ Q then Q′ = Q− P .

Proof. The proof is obtained by induction on the lexicographic order on the pair of

cardinalities of the sequences Q and P denoted by (|Q|, |P |); the initial step is carried

out in the following lemma.

Lemma 4.3. Given E a constructor orthogonal mix elimination system, given a redex

Π and denoting by Π′ the proof obtained after reduction of the redex Π; if Π̂ is an in-

nermost redex of Π and if Π 6= Π̂ then there is a sequence of innermost redexes Q of the

proof Π′ and a redex Π′′ such that the following diagram holds:

Π
{Π}−−−−−→ Π′

{Π̂}

y
y Q

Π′′ −−−−−→
{Π′′}

Π′′′ .

Proof. We give a proof sketch for an exemplary case of a mix elimination rule
belonging to E lLKsp

. Given a redex Π:

STRONG NORMALIZATION PROOFS 205

.

.

.

.
Π̂1

Σ̂, (∃x̂B̂)n̂, B̂(x̂← ŷ)` ∆̂

Σ̂, (∃x̂B̂)n̂, ∃x̂B̂(x̂)` ∆̂
∃L

.

.

.

.
Π̂2

Σ̂′ ` B̂(x̂← t̂), (∃x̂B̂)m̂, ∆̂′

Σ̂′ `∃x̂B̂, (∃x̂B̂)m̂, ∆̂′
∃R

Σ̂, Σ̂′ ` ∆̂, ∆̂′
mix|∃x̂B̂|

.

.

.

.
D1

Σ, (∃xB)n, B(x← y)`∆

Σ, (∃B)n, ∃xB(x)`∆
∃L

.

.

.

.
Π2

Σ′ `B(x← t), (∃xB)m,∆′

Σ′ `∃xB, (∃xB)m,∆′
∃R

Σ,Σ′ `∆,∆′
mix|∃xB| ;

we denote by Π̂ the redex:
.... Π̂1

Σ̂, (∃x̂B̂)n̂, B̂(x̂← ŷ)` ∆̂

Σ̂, (∃x̂B̂)n̂,∃x̂B̂(x̂)` ∆̂
∃L

.... Π̂2

Σ̂′ ` B̂(x̂← t̂), (∃x̂B̂)m̂, ∆̂′

Σ̂′ `∃x̂B̂, (∃x̂B̂)m̂, ∆̂′
∃R

Σ̂, Σ̂′ ` ∆̂, ∆̂′
mix|∃x̂B̂| ;

and by Π1 the proof:
.... Π̂(x← t)

(Σ̂, Σ̂′ ` ∆̂, ∆̂′)(x← t)
.... D1(x← t)

Σ, (∃xB)n, B(x← t)`∆ .

We suppose that the bounded variables of Π1 and Π̂1 are renamed in such a way that the

substitutions Π1(x ← t) and Π̂1(x̂ ← t̂) are capture-avoiding; hence the variable x̂ does

not occur in the term t and therefore we have the equality:

Π̂1(x̂← t̂)(x← t) = Π̂1(x← t)(x̂← t̂(x← t)) .

The proof Π admits at least two possible reductions, either we reduce the redex Π and
obtain the proof Π′ given by:

.

.

.

.
Π̂(x ← t)

(Σ̂, Σ̂′ ` ∆̂, ∆̂′)(x ← t)
.
.
.
.
D1(x ← t)

Σ, (∃xB)n,B(x ← t)`∆

.

.

.

.
Π2

Σ′ `B(x ← t), (∃xB)m, ∆′

Σ′ ` ∃xB, (∃xB)m, ∆′

Σ, Σ′, B(x ← t)`∆, ∆′

.

.

.

.
Π̂

Σ̂, Σ̂′ ` ∆̂, ∆̂′
.
.
.
.
D1

Σ, (∃xB)n,B(x ← y)`∆

Σ, (∃xB)n, ∃xB `∆

.

.

.

.
Π2

Σ′ `B(x ← t), (∃xB)m, ∆′

Σ, Σ′ `B(x ← t), ∆, ∆′
;

Σ, Σ′, Σ, Σ′ `∆, ∆′, ∆, ∆′
mix|B|

Σ, Σ′ `∆, ∆′
C

or we obtain a proof Π′′ by replacing in the proof Π the redex Π̂ by its reduction Π̂′ given
by:

.

.

.

.
Π̂1(x̂ ← t̂)

Σ̂, (∃x̂B̂)n̂, B̂(x̂ ← t̂)` ∆̂

.

.

.

.
Π̂2

Σ̂′ ` B̂(x̂ ← t̂), (∃x̂B̂)m̂, ∆̂′

Σ̂′ ` ∃x̂B̂, (∃x̂B̂)m̂, ∆̂′

Σ̂, Σ̂′, B̂(x̂ ← t̂)` ∆̂, ∆̂′

.

.

.

.
Π̂1

Σ̂, (∃x̂B̂)n̂, B̂(x̂ ← ŷ)` B̂, ∆̂

Σ̂, (∃x̂B̂)n̂, ∃x̂B̂ ` ∆̂

.

.

.

.
Π̂2

Σ̂′ ` B̂(x̂ ← t̂), (∃x̂B̂)m̂, ∆̂′

Σ̂, Σ̂′ ` B̂(x̂ ← t̂), ∆̂, ∆̂′
.

Σ̂, Σ̂′, Σ̂, Σ̂′ ` ∆̂, ∆̂′, ∆̂, ∆̂′
mix|B̂|

Σ̂, Σ̂′ ` ∆̂, ∆̂′
C

If we reduce the redex Π′′ and on the other hand we reduce the innermost redexes Π̂

and Π̂(x← t) in the proof Π′, and since Π̂1(x̂← t̂)(x← t) = Π̂1(x← t)(x̂← t̂(x← t)),

206 E. TAHHAN BITTAR

we obtain the same proof denoted by Π′′′; so we have the diagram:

Π
{Π}−−−−−→ Π′

{Π̂}

y
y {Π̂,Π̂(x←t)}

Π′′ −−−−−→
{Π′′}

Π′′′.

O’Donnell’s lemma. Following O’Donnell [O’D77] the lemma 4.2 allows us to prove

(in lemma 4.5) that if a proof Π admits an infinite sequence of reductions then the proof

Π also admits an infinite sequence of innermost reductions.

Definition 4.1 (Derived sequence of parallel reductions). Let E be a constructor or-

thogonal mix elimination system. Let (Πi, Pi,Πi+1) be a finite or infinite sequence of

parallel reductions, let Q0 be a sequence of innermost parallel redexes of Π0; a derived

sequence of parallel reductions of (Πi, Pi,Πi+1) by Q0 is a sequence of parallel reductions

(Π′i, P
′
i ,Π

′
i+1), such that, for each natural number i, there is a sequence Qi+1 of innermost

parallel redexes of Πi+1, and such that we have the diagram:

Πi
Pi−−−−−→ Πi+1

Qi

y
y Qi+1

Π′i
P ′i−−−−−→ Π′i+1 .

We notice that the existence of derived sequences of parallel reductions is guaranteed

by lemma 4.2.

Derived sequences of parallel reductions satisfy

Lemma 4.4 (O’Donnell [O’D77]). Under the assumptions of the last definition; if the

sequence of parallel reductions (Πi, Pi,Πi+1) is infinite then the derived sequence of par-

allel reductions (Π′i, P
′
i ,Π

′
i+1) of the sequence (Πi, Pi,Πi+1) by the sequence of innermost

redexes Q0 is infinite.

Proof. Notice first that since Q0 is a sequence of innermost parallel redexes (of Π0)

then, by lemma 4.2, each Qi is a sequence of innermost parallel node. Suppose that:

∀i ≥ k P ′i = ∅ ,

thus since the redexes of Qi are all innermost, by lemma 4.2, we have:

∀i ≥ k (Pi ⊆ Qi) ∧ (Qi+1 = Qi − Pi);

then, beyond k, the sequences Pi are pairwise disjoint and all included in Qk, but Qk is

finite.

Lemma 4.5 (O’Donnell’s lemma [O’D77]). Let E be a constructor orthogonal mix

elimination system, then a proof is strongly normalizing if and only if it is innermost

normalizing.

Proof. Let (Πi, Qi,Πi+1)i=0,...,n−1 be a sequence of innermost reductions such that

Πn is normal. If Π0 accepts an infinite sequence of reductions, σ0, then by lemma 4.4

STRONG NORMALIZATION PROOFS 207

the sequence σ1 derived from σ0 by Q0 is an infinite sequence of reductions of Π1. By

iterating this process we obtain an infinite sequence σn of reductions of Πn.

We remark that the proof of the former proposition is not constructive since it is

achieved using reductio ad absurdum; we refer the reader to [Tah94] for a constructive

proof of O’Donnell’s lemma.

As a corollary of Gentzen’s theorem and O’Donnell’s lemma we have:

Proposition 4.1. The mix elimination systems E lLK and E lLKsp
satisfy the strong

normalization property.

We remark that the conjunction of the lemma 4.2 and the strong normalization prop-

erty implies the confluence of E lLK and E lLKsp
.

Remark 4.1. In this section we used the fact that, for orthogonal rewriting sys-

tems, innermost normalization implies strong normalization. We could also formulate a

non-erasing orthogonal mix elimination system and use the fact that, for non-erasing or-

thogonal rewriting systems, weak normalization implies strong normalization. This latter

approach has been successfully used to prove that weak normalization implies strong nor-

malization for λ-typed calculi; we refer the reader to [Ned73], [Klo80], [Gro93], [KW94]

and [Hon96] for works in this direction.

4.3. Strong normalization proofs by recursive path orderings. In this section we de-

scribe and apply a recursive strong normalization criterion based on partial well-order

theory. We refer the reader to [Der82, KL80] for the initial studies on this subject or

to [MZ94] for a new formulation of this matter. Strong normalization proofs for sequent

calculi by recursive path orderings have been achieved in [CRS94, CRS96, DP96].

A partial order on a set S, denoted by (S,<), is a non reflexive transitive binary

relation on the set S; the reflexive closure of the partial order (S,<) is denoted (S,≤).

A finite or infinite sequence (s0, . . . , si, . . .) of elements of a partially ordered set (S,<)

is increasing if for each pair (si, si+1) of successive elements in σ the inequality si < si+1

holds. A partial order (S,<) on a set S is a partial well-order if every infinite sequence of

elements of the set S has an infinite increasing subsequence. A partial order (S,<2) is an

extension of a partial order (S,<1) if for each pair (t, u) of elements of S such that the

inequality t <1 u holds the inequality t <2 u holds too. Extensions of partial well-orders

satisfy:

Lemma 4.6 (Extension lemma). Every partial order extending a partial well-order is

a partial well-order.

Proof. Given a partial order (S,<2) extending a partial well-order (S,<1) and given

a sequence σ of elements in S then by the partial well-order property of (S,<1) there is an

infinite <1-increasing subsequence of σ which is also an infinite <2-increasing subsequence

of σ since (S,<2) extends (S,<1).

Given a partially ordered set (S,<), the lexicographic order induced by (S,<) on the

set of finite sequences of elements of S, denoted by (S∗, <lex), is defined by:

(s0, . . . , sm) <lex (t0, . . . , tn) ⇐⇒ ∃i0, ∀i < i0 si = ti and si0 < ti0 .

208 E. TAHHAN BITTAR

The lexicographic order (S∗, <lex) induced by (S,<) satisfies the well known properties:

Proposition 4.2. For a totally ordered set (S,<), the lexicographic order (S∗, <lex)

induced by (S,<) on the set of finite sequences of elements of S is also a total order.

If (S,<) is a well founded order then for each natural number n the restriction of the

lexicographic order to finite sequences of length less or equal to n denoted by (S≤n, <lex)

is also a well founded order.

A signature F is a union of disjoint sets Fn indexed by natural numbers; the arity

of elements in the set Fn is the natural number n, (we remark that each element of

the signature has a fixed arity); the elements of F whose arity is zero are said to be

constants. A signature is said to be with bounded arities if the set of arities of its elements

is bounded. Given a signature F and an enumerable set of variable symbols X , the set

of terms T (F ,X) over F and X is the smallest set including X and constants such that

the term u := d(t0, . . . , tm) belongs to T (F ,X) whenever d ∈ Fm+1 and each ti belongs

to T (F ,X). Each term ti is said to be the immediate subterm at coordinate i of the term

u and the letter d is said to be the head of the term u. A term without any occurrence

of variables is said to be a closed or ground term over F ; the set of ground terms over F
is denoted by T (F). Given a signature F and a set of variables X , the subterm order on

terms over F and X , denoted by (T (F ,X), /) is defined recursively by:

s / t = g(t0, . . . , tn) ⇐⇒ ∃j s / tj or ∃j s = tj .

A term s is a subterm of a term t if either s is equal to t or the inequality s/ t is satisfied.

Subterm orders satisfy:

Fact 4.2. Given a signature F and a set of variables X , the subterm order on terms

over F and X , denoted by (T (F ,X), /) is well founded.

The induction on terms using the well founded subterm order is said to be a structural

induction. The induction on n-tuples of terms using the lexicographic order on n-tuples of

terms induced by the structural order on terms is said to be the lexicographical structural

induction on n-tuples of terms.

A useful partial well-order for strong normalization theory of term rewriting system

is:

Definition 4.2 (Kruskal order). Let (F , <) be an ordered signature; the Kruskal

order induced by (F , <) on ground terms over F , denoted by (T (F), <K), is defined

recursively as follows:

s = f(s0, . . . , sm) <K t = g(t0, . . . , tn) ⇐⇒
∃j s ≤K tj ,

or f < g and ∃j0 < . . . < jm such that ∀i si ≤K tji ,

or f = g and ∀i si ≤K ti , and ∃i0 si0 <K ti0 .

This Kruskal order is a partial well-order:

Theorem 4.2 (Kruskal’s tree theorem [Kru60]). Let (F , <) be a partial well-ordered

signature; the Kruskal order (T (F), <K) induced by (F , <) on ground terms over F is a

partial well-order.

STRONG NORMALIZATION PROOFS 209

Finite versions of this theorem turn out not to be provable in arithmetic theory

and even in more powerful mathematical theories, for a presentation on this matter see

[Gal91]; Kruskal’s original proof is not constructive; for a constructive proof see [Wei94].

As a consequence of Kruskal’s tree theorem the Kruskal order on ground terms over

F admits a total well founded extension defined by Kamin and Levy:

Definition 4.3 (Lexicographic path order). Let (F , <) be an ordered signature; the

lexicographic path order induced by (F , <) on ground terms over F , denoted by (T (F),

<lpo), is defined recursively as follows:

s = f(s0, . . . , sm) <lpo t = g(t0, . . . , tn) ⇐⇒
∃j s ≤lpo tj ,
or f < g and ∀i si <lpo t ,
or f = g and ∃i0,∀i < i0 si = ti , si0 <lpo ti0 and ∀i > i0 si <lpo t .

Lexicographic path orderings satisfy:

Proposition 4.3 ([KL80]). Let (F , <) be a total ordered signature; the lexicographic

path order (T (F), <lpo) induced by (F , <) on ground terms over F is a total order.

Proof. We prove here the transitivity, the non-reflexivity and the totality of the

relation (T (F), <lpo).

Transitivity. We proceed by lexicographic structural induction on triplets of terms. A

triplet of terms (s, t, u) satisfies transitivity if the inequalities s <lpo t <lpo u imply the

inequality s <lpo u. Suppose that, for each triplet smaller in the lexicographical structural

induction order than a triplet (s, t, u), transitivity holds, we show that transitivity also

holds for (s, t, u). Suppose that s = f(s0, . . . , sm), t = g(t0, . . . , tn) and u = h(u0, . . . , up)

and that the inequalities s <lpo t <lpo u hold; we proceed by case analysis.

If there is an immediate subterm tj of t such that the inequality s ≤lpo tj holds, it

is easy to establish that the inequality tj <lpo u holds; so by inductive hypothesis the

inequality s <lpo u is satisfied.

If there is an immediate subterm uk of u such that the inequality t ≤lpo uk holds, then

s <lpo t ≤lpo uk and so by inductive hypothesis s <lpo uk; hence, by definition, s <lpo u.

If the two previous cases do not hold then necessarily the heads of the terms s, t

and u satisfy the inequalities f ≤ g ≤ h. It is easy to establish that for each immediate

subterm si of the term s we have the inequality si <lpo t, so by inductive hypothesis the

inequality si <lpo u holds.

– If the heads of the terms s and t satisfy the inequality f < g then the inequality

f < h also holds and since for each immediate subterm si of s the inequality

si <lpo u holds, then, by definition, the inequality s <lpo u is satisfied.

– If the heads of the terms t and u satisfy the inequality g < h we proceed as in the

former case.

– If the heads of the terms s, t and u satisfy the equalities f = g = h then we have

the following lexicographical inequalities:

(s0, . . . , sm) <lexlpo (t0, . . . , tn) <lexlpo (u0, . . . , up) ;

which imply by inductive hypothesis that (s0, . . . , sm) <lexlpo (u0, . . . , up), and since

210 E. TAHHAN BITTAR

for each immediate subterm si of the term s the inequality si <lpo u holds then, by

definition, the inequality s <lpo u is satisfied.

Non-reflexivity. We proceed by structural induction on terms. A term t satisfies non-

reflexivity if the inequality t <lpo t does not hold. We proceed by reductio ad absurdum;

suppose that each immediate subterm si of a term s is non-reflexive and that s <lpo s;

then we have to discard only the possibility of the existence of an immediate subterm si
of s such that the inequality s <lpo si holds; if this is the case and since by definition

si <lpo s then by transitivity the subterm si also would be non-reflexive.

We notice that this proof of non-reflexivity is not constructive, since it uses the re-

ductio ad absurdum reasoning; for a constructive proof of non-reflexivity, it is enough to

prove constructively that the relation (T (F), <lpo) is well founded, this is done later in

the proof of the corollary 4.2 for the particular case of signatures with bounded arities.

Totality. We proceed by lexicographic structural induction on pairs of terms. A pair

of terms (s, t) satisfies totality if either s = t or one of the inequalities s <lpo t or t <lpo s

hold. Suppose that for each pair smaller in the lexicographical structural induction order

than a pair (s, t) totality holds, we show that totality also holds for (s, t). Suppose that

s = f(s0, . . . , sm) and t = g(t0, . . . , tn) and s 6= t; we proceed by case analysis.

If for some immediate subterm tj of the term t the inequality s ≤lpo tj holds then by

transitivity the inequality s <lpo t also holds.

If for some immediate subterm si of the term s the inequality t ≤lpo si holds then by

transitivity the inequality t <lpo s also holds.

If the previous two cases do not hold then by inductive hypothesis we have, for each

immediate subterm tj of the term t, the inequality tj <lpo s holds and, for each immediate

subterm si of the term s, the inequality si <lpo t holds. Moreover:

– either the inequality f < g holds and then the inequality s <lpo t also holds;

– or the equality f = g holds and since the non-equality s 6= t holds there exists a

least coordinate i0 such that the respective immediate subterms si0 and ti0 of s

and t are different, then, by inductive hypothesis, either the inequality si0 <lpo ti0
holds and hence the inequality s <lpo t also holds or the inequality ti0 <lpo si0 and

hence t <lpo s also holds.

As claimed above the lexicographic path orders satisfy:

Lemma 4.7 (Extension lemma). Given an ordered signature (F , <); the lexicographic

path order (T (F), <lpo) on ground terms over F is an extension order of the Kruskal

order (T (F), <K) on ground terms over F .

Proof. We proceed by structural induction on terms. Given a term t we denote by

<K⊂t<lpo the property asserting that each term s satisfying the inequality s <K t also

satisfies the inequality s <lpo t. Given two terms s = f(s0, . . . , sm) and t = g(t0, . . . , tn),

suppose that for each immediate subterm tj of the ground term t the property <K⊂tj<lpo
is satisfied. We prove that the property <K⊂tj<lpo is also satisfied; for this suppose

that the inequality s <K t holds. We prove by cases that the inequality s <lpo t also

holds.

STRONG NORMALIZATION PROOFS 211

If there is some immediate subterm tj of the term t such that the inequality s <K
tj holds then, since by inductive hypothesis the property <K⊂tj<lpo is satisfied, the

inequality s <lpo tj also holds and so by transitivity the inequality s <lpo t holds.

If the heads of the terms s and t satisfy the inequality f < g and there is a subsequence

(tj0 , . . . , tjm) of immediate subterms of t such that for each coordinate i the immediate

subterms si and tji of the respective terms s and t satisfy the inequality si <K tji then

by inductive hypothesis the inequalities si <lpo tji <lpo t also hold and so by transitivity

the inequality si <lpo t holds; therefore by definition the inequality s <lpo t holds.

If the heads of the terms s and t are equal, if for each coordinate i the immediate

subterms si and ti of the respective terms s and t satisfy the inequality si ≤K ti and

if i0 is the least coordinate such that si0 <K ti0 , then: (∗) the inequality si0 <lpo ti0
holds by inductive hypothesis, (∗∗) and by inductive hypothesis for each coordinate i

the immediate subterm si and ti of the respective terms s and t satisfy the inequality

si ≤lpo ti <lpo t and so by transitivity the inequality si <lpo t also holds; therefore by

definition s <lpo t.

As a consequence of Kruskal’s tree theorem, the extension lemma and Kamin-Levy’s

proposition we have:

Corollary 4.2. Given a total well founded ordered signature (F , <); then the lexi-

cographic path order <lpo on ground terms over F is also a total and well founded order.

For the sake of completeness (and constructivity) we give a proof of the last corollary

for the particular case of signatures with bounded arities. See also [Buch95] for a similar

proof.

Proof (for signatures with bounded arities). A term t is well founded if there is no

infinite <lpo-decreasing sequences starting with t, in this case the relation <lpo restricted

to terms <lpo-smaller than t is a well founded total order, we denote by δ(t) the order type

of this set ordered by <lpo. A term t is admissible if each one of its immediate subterms

is well founded. We associate to each admissible ground term t = g(t0, . . . , tn) a rank

defined by ρ(t) = (g, δ(t0), . . . , δ(ti)); we remark that since (F , <) is a well founded

signature with bounded arity, then the class of ranks of admissible terms is also well

founded.

We notice first that if each admissible term is well founded and since constants are ad-

missible then each term is well founded (a straightforward proof can be done by structural

induction); therefore we prove that each admissible term is well founded by induction on

the rank of admissible terms. Given an admissible term t = g(t0, . . . , tm), suppose that

each admissible term of rank less than the rank of the term t is well founded, we prove

that t is also well founded; for this it is enough to show that each term s satisfying the

inequality s <lpo t is well founded; moreover, we prove by structural induction that each

subterm s′ of s is well founded.

Suppose that s′ = f(s′0, . . . , s
′
m) is a subterm of s such that each immediate subterm s′i

of s′ is well founded (if s′ is a constant then we convene that s′ = f); since the inequality

s <lpo t holds the inequality s′ <lpo t also holds, therefore:

• either there is an immediate subterm tj of the term t such that the inequality

212 E. TAHHAN BITTAR

s′ <lpo tj holds. Since, by admissibility of the term t, the subterm tj of the term t

is well founded, so s′ is also well founded;

• or f < g and thus:

ρ(s′) = (f, δ(s′0), . . . , δ(s′m))

<lex (g, δ(t0), . . . , δ(tn)) ,

so by inductive hypothesis s′ is well founded;

• or f = g and for each coordinate i such that i < i0 the equality s′i = ti holds, the

inequality s′i0 <lpo ti0 holds and for each coordinate i such that i > i0 the inequality

s′i <lpo t holds, thus:

ρ(s′) = (f, δ(t0), . . . , δ(ti0−1), δ(s′i0), δ(s′i0+1), δ(s′m))

<lex (f, δ(t0), . . . , δ(ti0−1), δ(ti0), δ(ti0+1), δ(tn)) ,

so by inductive hypothesis s′ is well founded. (We notice that this case does not

happen if s′ is a constant.)

We state the analogous definitions of Kruskal and lexicographical path orderings for

many sorted signatures; Kruskal’s Tree Theorem and Kamin & Levy’s proposition also

hold in this case.

Given an order on ground terms (T (F), <) over a (many sorted) signature F , a rewrite

system R over ground terms is decreasing if any R-derivation is decreasing with respect

to (T (F), <). Roughly speaking:

if t
R−→ u then t > u .

Therefore, a decreasing rewrite system with respect to a well founded order over ground

terms is terminating. The termination of the rewriting systems RLKsp
, R′LKsp

, and

R′LK can be achieved by lexicographical path orderings. For instance, the rewriting

systems R′LKsp
, and R′LK are decreasing with respect to the total and well founded

lexicographical path ordering on ground terms over F ′ induced by the total order on the

signature F ′ defined by:

1 < s < α < S < L1 < L2 < M .

The termination of the rewriting systemR′LKsp
and for each integer k of the rewriting

system RkLKsp
is totally machine checkable. For instance, the rewriting laboratory ORME

[Les90] checked that each rule in R′LKsp
is decreasing with respect to the lexicographic

path ordering defined in the former paragraph. We remark that the termination of the

rewriting system R′LK interpreting the mix elimination system ELK for the sequent

calculus LK is not totally machine checkable since R′LK is infinite; nevertheless, the fact

that any given rule in R′LK is decreasing with respect to the lexicographic path ordering

defined previously is machine checkable.

In the next sections we give two direct proofs of termination; the first one uses the

structural induction approach and the second one uses monotone interpretations on the

natural numbers and gives recursive upper bounds for the length of derivations of a term.

STRONG NORMALIZATION PROOFS 213

4.4. Strong normalization proof by structural induction. In this section we use the

notation t
R′−→ u when a proof term t is rewritten to a term u by a rule belonging to

the rewrite system R′LKsp
. A finite or infinite sequence σ = (t0, . . . ti, ti+1, . . .) of proof

ground terms over F ′ is an R′-derivation of a proof ground term t0 if for each pair of

immediate terms (ti, ti+1) in the sequence σ the relation ti
R′−→ ti+1 is satisfied. The set of

all R′-derivations of a proof ground term t, denoted by ∆(t), is called the R′-derivations

tree of the proof ground term t. The length of a finite R′-derivation σ = (t0, . . . tn) is the

natural number n.

A proof ground term t is R′-strongly normalizing, (S.N.), if there is no infinite R′-
derivation of t. Note that the R′-derivations tree ∆(t) is finitely branching. By König’s

lemma this implies that if if a proof ground term t is S.N. then ∆(t) is finite; we denote

by δ(t) the least upper bound for the lengths of the derivations of a strongly normalizing

term t.

If two proof ground terms t1 and t2 are S.N. and n is a natural number ground term,

and denoting by |m| and |u| the respective sizes of a natural term m and of a proof term

u, the rank of the proof ground term t = M(n, t1, t2) is defined by:

if t = M(n, t1, t2) then ρt := (|n|, δ(t1), δ(t2), |t1|, |t2|) .

Proposition 4.4. If n is a natural number ground term and t1 and t2 are two

proof ground terms R′-strongly normalizing, then the ground term M(n, t1, t2) is also

R′-strongly normalizing; roughly speaking:

If t1 is S.N. and t2 is S.N. then M(n, t1, t2) is S.N.

Proof. Let t = M(n, t1, t2). It is enough to show that if t
R′−→ t′ then t′ is strongly

normalizing. We prove this by induction on the rank ρt of the term t.

Initial step - if ρt = (1, 1, 1, 1, 1) then the term t satisfies the equality t = M(1, α, α)

and has a unique reduction: M(1, α, α)
R′−→ S(α), and S(α) is S.N.

Inductive step - inductive hypothesis: the proposition holds for all terms u =

M(m,u1, u2) such that ρu <
lex ρt, where <lex is the lexicographical order on (N+)

5
.

Reduction of a subterm case - if:

t = M(n, t1, t2)
R′−→ t′ = M(n, t′1, t2) with t1

R′−→ t′1 ,

since t1 is S.N. then t′1 is S.N. and δ(t′1) < δ(t1); so:

ρt′ = (|n|, δ(t′1), δ(t2), |t′1|, |t2|)
<lex (|n|, δ(t1), δ(t2), |t1|, |t2|)

= ρt ,

thus by inductive hypothesis t′ is S.N.

Root reduction case - we consider three generic sub-cases:

Immediate reductions - if t = M(n, t1, α) and t = M(n, t1, α)
R′−→ S(α) =

t′; then t′ is S.N.;

214 E. TAHHAN BITTAR

Permutation reductions - If t = M(n,L1(u1), t2) and

t = M(n,L1(u1), t2)
R′−→ L1(M(n, u1, t2)) = t′ ,

it is enough to prove S.N. for u′ = M(n, u1, t2). Since δ(L(u1)) = δ(u1)

and |u1| < |L(u1)| we have:

ρu′ = (|n|, δ(u1), δ(t2), |u1|, |t2|)
<lex (|n|, δ(u1), δ(t2), |L1(u1)|, |t2|)

= ρt ,

and so by inductive hypothesis u′ = M(n, u1, t2) is S.N.

Essential reductions - If t = M(s(m), L1(u1), L1(u2)) with:

t = M(s(m), L1(u1), L1(u2))

R′−→ S(M(m,M(s(m), L1(u1), u2),M(s(m), u1, L1(u2)))

= t′ ,

and if we take the notations:

u′1 := M(s(m), L1(u1), u2) ,

u′2 := M(s(m), u1, L1(u2)) ,

u′ := M(m,u′1, u
′
2) ,

then t′ = S(u′) and t′ is S.N. if and only if u′ is S.N. but u′1 is S.N. since:

ρu′1 = (|s(m)|, δ(L1(u1)), δ(u2), |L1(u1)|, |u2|)
<lex (|s(m)|, δ(L1(u1)), δ(u2), |L1(u1)|, |L1(u2)|)

= (|s(m)|, δ(L1(u1)), δ(L1(u2)), |L1(u1)|, |L1(u2)|)
= ρt ,

and u′2 is S.N. by the same arguments; so u′ is also S.N. since:

ρu′ = (|m|, δ(u′1), δ(u′2), |u′1|, |u′2|)
<lex (|s(m)|, δ(L1(u1)), δ(L1(u2)), |L1(u1)|, |L1(u2)|)

= ρt .

We remark that the induction also works on a rank ρ̄ defined by:

if t = M(n, t1, t2) then ρ̄t := (|n|, δ(t1) + δ(t2), |t1|+ |t2|)

We notice that, since the R′LK-derivations tree of a term is not finite, the technique

used in the former proof does not work for the rewriting system R′LK which interprets

the mix elimination system ELK ; nevertheless, the ELK-derivations tree of an LK-proof

is finite, and using the same technique as in the former proof we can establish strong

normalization of LK-proofs by ELK-mix eliminations.

4.5. Strong normalization proofs by natural interpretations

Introduction. Weiermann has shown in [Wei93] Cichon’s claim which states that each

finite rewrite system whose termination is proved by a lexicographic path ordering induced

STRONG NORMALIZATION PROOFS 215

by an order over a finite signature yields a subrecursive (multiple recursive) function on

the depth of terms which bound the lengths of derivations of terms. A similar and earlier

result was achieved by Hofbauer in [Hof92]. These bounding functions are defined recur-

sively in the extended Grzegorczyk-hierarchy; we refer the reader to [Ros84] for a study

on subrecursive hierarchies. Weiermann’s result can be applied to bound the lengths of

R′LKsp -derivations since termination of the finite rewriting system R′LK on proof ground

terms over the finite signature F ′ can be proved by a lexicographic path ordering. Our

goal is to obtain directly subrecursive upper bounds using monotone algebraic interpre-

tation tools mainly studied by Zantema in [Zan92].

In this section we use the notation t
R′−→ u when a proof ground term t over the

signature F ′ is rewritten to a proof ground term u over the signature F ′ by a rule

belonging to the rewrite system R′LKsp
. The R′ reduction ordering is the transitive

closure of the relation
R′−→. We define a homomorphism from the algebra of proof terms

over the signature F ′ with the R′ reduction ordering to the algebra of totally defined

functions on natural numbers with the domination ordering. (We say that a function on

natural numbers f , of arity k, dominates another function on natural numbers g of the

same arity if for each k-tuple of natural numbers ~n, the inequality f(~n) > g(~n) holds).

Such homomorphism is said to be a monotone interpretation on the natural numbers

and a proof of existence of such homomorphism is said to be a termination proof by

(monotone) interpretation on natural numbers. In this section we prove termination for

the rewrite system R′ by a multiple recursive monotone interpretation.

Natural monotone interpretation for R′. We define in this section a monotone inter-

pretation on the natural numbers denoted by [[·]]. This interpretation is from the set of

terms over F ′ to the set of non-null natural numbers N+; therefore, if a proof ground

term t rewrites by a rule in R′ to a term u, (i.e. t
R′−→ u), then the inequality [[t]] > [[u]]

holds.

Definition 4.4 (strict monotonicity and expansiveness). A function f on natural

numbers of arity k is strictly monotone with respect to each argument if:

for each pair of k-tuples (~x, y1, ~z) and (~x, y2, ~z) , if y1 < y2 , then f(~x, y1, ~z) < f(~x, y2, ~z) .

A function f on natural numbers of arity k is expansive with respect to each argument if:

for each k-tuple (~x, y, ~z) , y < f(~x, y, ~z) .

We remark that since the interpretation of each non-constant function is strictly

monotone then if a term t rewrites to a term u by a rewrite rule l −→ r in R′ and if the

interpretation of l dominates the interpretation of r, (i.e. the inequality [[l]] > [[r]] holds),

then [[t]] > [[u]] holds. Hence, in order to prove the termination of the rewrite system

R′ it is enough to prove that for each rewrite rule l −→ r in R′ the interpretation of l

dominates the interpretation of r.

We interpret the non-mix symbols of F ′ following the criteria given below:

• The interpretation of natural number ground terms is [[1]] = 1, and [[s(h)]] = [[h]]+1.

216 E. TAHHAN BITTAR

• The interpretation of the constant α is a constant natural number, for example

[[α]] = 1.

• The interpretation of unary symbols S and L1 is a strictly monotone expansive

function from N+ to N+.

• The interpretation of the binary symbol L2 is a strictly monotone expansive function

with respect to each argument from N+ × N+ to N+.

• The interpretation of the symbol M is a strictly monotone expansive function with

respect to each argument from N+ × N+ × N+ to N+.

We take the following monotone interpretations on natural numbers for the non-mix

symbol:

[[α]] = 1 ,

[[S(x)]] = [[x]] + 1 ,

[[L1(x)]] = [[x]] + 1 ,

and [[L2(x, y)]] = [[x]] + [[y]] .

It is clear that these interpretations are strictly monotone and expansive with respect to

each argument.

Interpretation of the mix symbol M . We interpret the mix symbol M by a strictly

monotone and expansive function µ with respect to each argument from N+ × N+ × N+

to N+.

Since for each rewrite rule l −→ r in R′ we must have the dominance property

[[l]] > [[r]], the function µ must satisfy the inequalities:

µ(h, x, 1) > 1 + 1 ,

µ(h, 1, y) > 1 + 1 ,

µ (h, x+ 1, y) > µ (h, x, y) + 1 ,

µ (h, x, y + 1) > µ (h, x, y) + 1 ,

µ (h, x+ 1, y) > µ (h, x, y) + 1 ,

µ (h, x, y + 1) > µ (h, x, y) + 1 ,

µ (h, x+ y, z) > µ(h, x, z) + µ(h, y, z) ,

µ (h, x, y + z) > µ(h, x, y) + µ(h, x, z) ,

µ (h+ 1, x+ 1, y + 1) > µ (h, µ (h+ 1, x+ 1, y) , µ (h+ 1, x, y + 1)) + 1 ,

µ (h+ 1, x+ 1, y + 1) > µ (h, µ (h+ 1, x, y + 1) , µ (h+ 1, x+ 1, y)) + 1 ,

µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, x, z + 1) , µ (h+ 1, x+ y, z)) + 1 ,

and µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, y, z + 1) , µ (h+ 1, x+ y, z)) + 1 .

If we require the function µ to be symmetrical with respect to the second and third

arguments (i.e. µ(h, x, y) = µ(h, y, x)), then the former set of inequalities can be reduced

to the inequalities:

µ(h, x, 1) > 1 + 1 ,

µ (h, x+ 1, y) > µ (h, x, y) + 1 ,

STRONG NORMALIZATION PROOFS 217

µ (h, x+ y, z) > µ(h, x, z) + µ(h, y, z) ,

µ (h+ 1, x+ 1, y + 1) > µ (h, µ (h+ 1, x+ 1, y) , µ (h+ 1, x, y + 1)) + 1 ,

µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, x, z + 1) , µ (h+ 1, x+ y, z)) + 1 ,

and µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, y, z + 1) , µ (h+ 1, x+ y, z)) + 1 .

If we require the function µ to be also strictly monotone and expansive with respect

to each argument then, by lemma 4.8 stated below, the former set of inequalities can be

reduced to the inequalities:

µ(h, x, 1) > 1 + 1 , (1)

µ (h+ 1, x+ 1, y + 1) > µ (h, µ (h+ 1, x+ 1, y) , µ (h+ 1, x, y + 1)) + 1 , (2)

and µ (h, x+ y, z) > µ(h, x, z) + µ(h, y, z) . (3)

Remark 4.2. A monotone interpretation on natural numbers of the mix symbol M

for the rewriting system R′LK for LK-proofs should satisfy the following variant of the

inequalities (1) to (3):

µ(h, x, 1) > 1 + x ,

µ (h+ 1, x+ 1, y + 1) > µ (h, µ (h+ 1, x+ 1, y) , µ (h+ 1, x, y + 1)) + x ,

and µ (h, x+ y, z) > µ(h, x, z) + µ(h, y, z) .

Lemma 4.8. If a function µ from N+ ×N+ ×N+ is strictly monotone with respect to

each argument, symmetrical with respect to the second and third argument and satisfies

(1) to (3) then the following inequalities are satisfied:

µ (h, x+ 1, y) > µ (h, x, y) + 1 ,

µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, x, z + 1) , µ (h+ 1, x+ y, z)) + 1 ,

and µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, y, z + 1) , µ (h+ 1, x+ y, z)) + 1 .

Proof. By the inequalities (3) and (1) we have:

µ (h, x+ 1, y) > µ (h, x, y) + µ (h, 1, y)

> µ (h, x, y) + 1 .

We prove the inequality:

µ (h+ 1, x+ y, z + 1) > µ (h, µ (h+ 1, x, z + 1) , µ (h+ 1, x+ y, z)) + 1 ,

for y = 1 and for y = y′ + 1.

By inequality (2) and symmetry we have:

µ(h+ 1, x+ 1, z + 1) > µ(h, µ(h+ 1, x+ 1, z), µ(h+ 1, x, z + 1)) + 1

= µ(h, µ(h+ 1, x, z + 1), µ(h+ 1, x+ 1, z)) + 1 .

By inequality (2), symmetry and expansiveness we have:

µ(h+ 1, x+ y′ + 1, z + 1) > µ(h, µ(h+ 1, x+ y′ + 1, z), µ(h+ 1, x+ y′, z + 1)) + 1

= µ(h, µ(h+ 1, x+ y′, z + 1), µ(h+ 1, x+ y′ + 1, z)) + 1

> µ(h, µ(h+ 1, x, z + 1), µ(h+ 1, x+ y′ + 1, z)) + 1 .

218 E. TAHHAN BITTAR

Thus, in order to obtain a monotone interpretation it is sufficient to define a function

µ strictly monotone and expansive with respect to each argument, symmetrical with

respect to the second and third argument and such that it satisfies the inequalities (1)

to (3).

The function µ. We define the function µ by the following equalities:

µ(1, x, y) := 3x+y ,

µ(h, x, 1) := h · 3x+1 ,

µ(h, 1, y) := h · 31+y ,

and µ (h+ 1, x+ 1, y + 1) := 2 · µ (h, µ (h+ 1, x+ 1, y) , µ (h+ 1, x, y + 1)) .

We shall prove step by step that:

1. the function µ is well defined,

2. the function µ is symmetrical with respect to the second and third argument,

3. the function µ is expansive with respect to each argument,

4. the function µ is strictly monotone with respect to each argument,

5. the function µ satisfies the inequalities (1) to (3),

6. and the function µ satisfies the LK variant, stated in the remark 4.2, of the in-

equalities (1) to (3).

Since the first three equations defining the function µ are overlapping, we prove the:

Lemma 4.9. The function µ is well defined for each triplet in N+ × N+ × N+.

Proof. By induction on the lexicographic order on N+ × N+ × N+.

Initial step - The function µ is defined on the triplet (1, 1, 1) by µ(1, 1, 1) = 32.

Inductive step - If for each triplet (h′, x′, y′) such that (h′, x′, y′) < (h, x, y) the value

µ(h′, x′, y′) is well defined, then either:

• if h = 1, then µ(1, x, y) = 3x+y,

• if h > 1 and x = 1, then µ(h, 1, y) = h · 31+y,

• if h > 1 and y = 1, then µ(h, x, 1) = h · 3x+1,

• or if h > 1, x > 1 and y > 1, then µ(h, x, y) = 2 ·µ(h−1, µ(h, x, y−1), µ(h, x−
1, y)), which is well defined by lexicographic induction.

Lemma 4.10. The function µ is symmetrical with respect to the second and third

argument.

Proof. By induction on the lexicographic order on N+ × N+ × N+.

Initial step - The equation µ(1, 1, 1) = µ(1, 1, 1) holds.

Inductive step - If for each triplet (h′, x′, y′) such that the inequality (h′, x′, y′) <lex

(h, x, y) holds, the equation µ(h′, x′, y′) = µ(h′, y′, x′) holds, then either:

• if h = 1, then µ(1, x, y) = 3x+y = µ(1, y, x),

• if h > 1, x > 1 and y = 1, then the equation µ(h, x, 1) = µ(h, 1, x) holds by

definition,

• if h > 1, x = 1 and y > 1, we proceed as in the preceding case,

STRONG NORMALIZATION PROOFS 219

• or if h > 1, x > 1 and y > 1, then:

µ(h, x, y) = 2 · µ(h− 1, µ(h, x, y − 1), µ(h, x− 1, y))
I.H.
= 2 · µ(h− 1, µ(h, x− 1, y), µ(h, x, y − 1))
I.H.
= 2 · µ(h− 1, µ(h, y, x− 1), µ(h, y − 1, x))

= µ(h, y, x) .

Lemma 4.11. The function µ is expansive with respect to each argument.

Proof. By induction on the lexicographic order on N+ × N+ × N+.

Initial step - The inequality µ(1, 1, 1) = 32 > 1 holds.

Inductive step - If for each triplet (h′, x′, y′) such that the inequality (h′, x′, y′) <lex

(h, x, y) holds the inequality µ(h′, x′, y′) > max{h′, x′, y′} also holds, then either:

• if h = 1, then µ(1, x, y) = 3x+y > max{1, x, y},
• if h > 1 and y = 1, then µ(h, x, 1) = h · 3x+1 > max{h, x, 1},
• if h > 1 and x = 1, then µ(h, 1, y) = h · 31+y > max{h, 1, y},
• or if h > 1, x > 1 and y > 1, then by lexicographic induction:

µ(h, x, y) = 2 · µ(h− 1, µ(h, x, y − 1), µ(h, x− 1, y))
I.H.
> 2 ·max{h− 1, µ(h, x, y − 1), µ(h, x− 1, y)}
I.H.
> 2 ·max{h− 1,max{h, x, y − 1},max{h, x− 1, y}}
> max{h, x, y} .

We say that a natural number function µ on N+ × N+ × N+ is strictly monotone

up to a triplet (h, x, y) if the restriction of the function µ to the cube {(h′, x′, y′) ∈
N+ × N+ × N+ | h′ ≤ h, x′ ≤ x, y′ ≤ y} is strictly monotone.

Lemma 4.12. The function µ is strictly monotone with respect to each argument.

Proof. By induction on the lexicographic order on N+ × N+ × N+.

Initial step - The function µ is monotone up to (1, 1, 1).

Inductive step - If for each triplet (h′, x′, y′) such that (h′, x′, y′) < (h, x, y) strict

monotonicity of µ up to (h′, x′, y′) holds, then either:

• if h = 1, then µ(1, x, y) = 3x+y is monotone up to (1, x, y),

• if h > 1 and y = 1, then µ(h, x, 1) = h · 3x+1 is monotone up to (h, x, 1),

• if h > 1, x = 1 and y > 1, we proceed as in the preceding case,

• or if h > 1, x > 1 and y > 1, then by expansiveness:

µ(h, x, y) = 2 · µ(h− 1, µ(h, x, y − 1), µ(h, x− 1, y))

> max{µ(h, x, y − 1), µ(h, x− 1, y)} ;

and by expansiveness, by inductive hypothesis and lexicographic induction:

µ(h, x, y) = 2 · µ(h− 1, µ(h, x, y − 1), µ(h, x− 1, y))

>I.H 2 · µ(h− 1, x, µ(h, x− 1, y))

≥I.H 2 · µ(h− 1, x, y) .

220 E. TAHHAN BITTAR

Lemma 4.13. The function µ satisfies the inequalities (1) to (3).

Proof. By definition the function µ satisfies the inequalities 1 and 2, it remains to

prove the inequality µ(h, x+ y, z) > µ(h, x, z) + µ(h, y, z); we prove it by case analysis:

• if h = 1, then:

µ(1, x+ y, z) = 3x+y+z

> 3x+1 + 3y+z

= µ(1, x, z) + µ(1, y, z) ,

• if h > 1 and z = 1, then:

µ(h, x+ y, 1) = h · 3x+y+1

> h · 3x+z + h · 3y+1

= µ(h, x, 1) + µ(h, y, 1) ,

• if h > 1 and z > 1, then by expansiveness:

µ(h, x+ y + 1, z) = 2 · µ(h, µ(h− 1, x+ y + 1, z − 1), µ(h, x+ y, z))

> µ(h, x, z) + µ(h, y + 1, z) .

By expansivity of the function µ and lemma 4.13, it is easy to prove that the function

µ satisfies the LK variant, stated in remark 4.2, of the inequalities (1) to (3).

Upper bounds for the lengths of derivations. We discuss in this section the accuracy of

bounding functions of the lengths of derivations and of the size of normal proofs obtained

from the monotone interpretation on natural numbers defined above.

A function λ from N+ × N+ to N+, on the depth of proofs and the mix degree of

proofs, is said to be a derivations lengths bounding function if each derivation of a proof

of depth d and mix degree n has a length bounded by λ(d, n). A function σ from N+×N+

to N+, on the depth of proofs and the mix degree of proofs, is said to be a normal forms

sizes bounding function if each normal form of a proof of depth d and mix degree n has

a size bounded by σ(d, n).

We consider a function κ from N+ × N+ to N+ obtained by the diagonalisation of

the function µ with respect to the second and third variable; i.e.: κ(n,m) := µ(n,m,m).

For each non-null natural number n we define the first section of the function κ by:

κn(m) := κ(n,m). We use exponential notation for the iteration of composition, i.e.:

gk+1 := g ◦ gk.

A useful lemma to bound the length of derivations is:

Lemma 4.14 ([Hof92]). Given a finite rewrite system R on a finite signature F and

an interpretation I of elements of F such that the interpretation I prove termination of

R. Given Φ : N −→ N a strictly monotonic function such that for each f ∈ F and for

every k ∈ N the inequality I(f)(k, . . . , k) ≤ Φ(k), then for every term t the inequality

I(t) ≤ Φdepth(t)(1).

We choose an interpretation of proof types decreasing with mix eliminations; so, the

lengths of the derivations starting with a proof Π are bounded by the interpretation

STRONG NORMALIZATION PROOFS 221

[[τ ′′ ◦τ(Π)]]; but, if the depth of Π is d and the mix degree of Π is n, it is easy to establish,

by lemma 4.14, the inequality [[τ ′′ ◦ τ(Π)]] < κdn(1). Therefore:

Lemma 4.15. Given a proof Π, the depth of which is d and the mix degree of which

is n, the length of the derivations starting with the proof Π is bounded by κdn(1).

For each non-null natural number n the function κn is primitive recursive; so, for a

fixed natural number n the lengths of derivations of proofs of mix degree less than or equal

to n is bounded by a primitive recursive function on the depth of proofs. But we claim that

the function κ dominates the Ackerman function and hence κ is not primitive recursive.

We recall first the definitions of the Kalmar-exponential function and the Ackerman

function:

Definition 4.5. The Kalmar-exponential function is defined by:

exp(m, 0, p) := p ,

and exp(m,n+ 1, p) := mexp(m,n,p) .

The Ackerman function is defined by:

Ack(0, y) := y + 1 ,

Ack(x+ 1, 0) := Ack(x, 1) ,

and Ack(x+ 1, y + 1) := Ack(x,Ack(x+ 1, y)) .

The function κ is not primitive recursive since it satisfies:

Lemma 4.16. The function κ satisfies the property:

∀n ∈ N+, ∀m ∈ N+, κ(n+ 2,m+ 2) ≥ Ack(n,m) + 2 .

Proof. We establish first the inequality (∗): κ(n + 1,m + 1) > κ(n, κ(n + 1,m)).

Indeed, by symmetry and monotonicity of µ we have:

κ(n+ 1,m+ 1) = µ(n+ 1,m+ 1,m+ 1)

= 2µ(n, µ(n+ 1,m+ 1,m), µ(n+ 1,m,m+ 1))

= 2µ(n, µ(n+ 1,m+ 1,m), µ(n+ 1,m+ 1,m))

> 2µ(n, µ(n+ 1,m,m), µ(n+ 1,m,m))

= 2κ(n, κ(n+ 1,m)) .

We prove the lemma by lexicographical induction on pairs of natural number.

Initial step - By expansivity the inequality κ(2, 2) ≥ 3 holds, and Ack(0, 0) = 1.

Inductive step - We proceed by cases. By expansivity of µ, the inequality κ(2,m+2) ≥
m+ 3 holds, and Ack(0,m) = m+ 1.

By the inequality (∗), expansivity and monotonicity of µ, and inductive hypothesis

we have:

κ((n+ 1) + 2, 2) > κ(n+ 2, κ((n+ 1) + 2, 1))

≥ κ(n+ 2, 2 + 1)

222 E. TAHHAN BITTAR

I.H.
≥ Ack(n, 1) + 2

= Ack(n+ 1, 0) + 2 .

By the inequality (∗) and inductive hypothesis we have:

κ((n+ 1) + 2, (m+ 1) + 2) > κ(n+ 2, κ((n+ 1) + 2,m+ 2))
I.H.
≥ κ(n+ 2, Ack(n+ 1,m) + 2)
I.H.
≥ Ack(n,Ack(n+ 1,m)) + 2

= Ack(n+ 1,m+ 1) + 2 .

We notice that, since each mix elimination step increases the size of a proof at most

by a factor 2, and since the length of derivations is bounded by κdn(1), hence the size of

normal forms is bounded by 2κ
d
n(1)+d+1; nevertheless, Schütte proved in [Sch51]

Proposition 4.5. Each proof, the depth of which is d and the mix degree of which

is n, admits a normal proof, the size of which is bounded by the Kalmar-exponential

exp(2, n, d).

We refer the reader to [Per82], [Gir87] and [Gal93] for proofs of similar results. Fol-

lowing [Gen38], [Gir87] and [Gal93], we give hereafter an extension of the mix elimination

system ELKsp
and an algorithm to obtain normal forms of proofs.

We add to the system ELKsp
commutative mix elimination rules interpreted

by the following term rewriting rules:

{Mn(Mk(x, y), z) −→ S(Mk(Mn(x, z),Mn(y, z)))}k<n∈N ;

we denote this system by EpLKsp
, since it permutes some mix elimination in-

ferences. The fast reduction algorithm is defined as follows:

At each step, using EpLKsp
mix elimination rules, replace a minimal

subproof containing a mix inference of maximal degree.

In [Gir87], it is provable in primitive recursive arithmetic, that the fast reduction algo-

rithm yields normal forms, the depth of which are a Kalmar-exponential function of the

depth and mix degree of the original proofs.

5. Conclusion. The use of parallel structural rules and symmetrical mix elimination

systems allowed us to give simple proofs of strong normalization for sequent calculi. We

give hereafter the main goals achieved in this work.

• We adapt Huet’s Parallel moves lemma and O’Donnell’s lemma from orthogonal

rewriting systems theory to orthogonal mix elimination systems.

• We expose classical proofs of the well foundedness of lexicographical path orderings

(via Kruskal’s Tree Theorem); and we give a direct proof, by transfinite induction, of

the well foundedness of lexicographical path orderings (for the case of well founded

total signatures with bounded arities). This well foundedness proof technique by

transfinite induction can also be applied to other recursive path orderings. We apply

STRONG NORMALIZATION PROOFS 223

lexicographical path ordering criteria to prove and machine check the termination

of a finite rewriting system interpreting mix elimination systems.

• We gave a direct proof (via König’s lemma) of strong normalization of mix elimi-

nation systems, by structural induction on the ranks of proofs we defined.

• We prove strong normalization of mix elimination systems by monotone interpre-

tations on natural numbers, this proof is constructive and finitary. These interpre-

tations are not primitive recursive; thus there remains the question:

Open Question: Is the strong normalization of the mix elimination

system ELKsp
provable in primitive recursive arithmetic?

References

[Buch95] W. Buchholz, Proof-theoretic analysis of termination proofs, Annals of Pure and
Applied Logic 75, 57–65, (1995).

[CRS94] E. A. Cichon, M. Rusinowitch and S. Selhab, Cut elimination in sequent calculus
and rewriting, Rapport CRIN 94-R-038, (1994).

[CRS96] E. A. Cichon, M. Rusinowitch and S. Selhab, Cut elimination and rewriting:
termination proofs, Submitted.

[Der82] N. Dershowitz, Orderings for term rewriting systems, Theoretical Computer Sci-
ence, Vol. 17 (5), 279-301, (1982).

[DJ90] N. Dershowitz and J. P. Jouannaud, Rewrite Systems, in: Handbook of Theoreti-
cal Computer Science, J. Van Leeween (ed.), Vol. B, 243–320, Elsevier, Amsterdam,
(1990).

[DJS95] V. Danos, J.-B. Joinet and H. Schellinx, A new deconstructive logic: Linear Logic,
Preprint 936, Department of Mathematics, Utrecht University, (1995).

[DP96] R. Dyckhoff and L. Pinto, Cut-elimination in a permutation-free sequent calculus
for intuitionistic logic, Submitted, (August-1996).

[Dra88] A. G. Dragalin, Mathematical intuitionism, introduction to proof theory, Vol. 67 of
Translations of Mathematical Monographs, 185–199, American Mathematical Soci-
ety, (1988), (translation of an article that appeared in 1978).

[Hon96] Hongwei Xi, On Weak and Strong Normalisations, Research report 96–189, Dept.
of Mathematical Sciences Carnegie Mellon University, (1996).

[Gal91] J. Gallier, What’s so Special about Kruskal’s Theorem and the Ordinal Γ0 ?, A
Survey of Some Results in Proof Theory, Annals of Pure and Applied Logic, Vol. 53,
199–260, (1991).

[Gal93] J. Gallier, Constructive logics part I: a tutorial on proof systems and typed λ-calculi,
Theoretical Computer Science, Vol. 110, 249–339, (1993).

[Gen35] G. Gentzen, Investigations into logical deduction, in: Gentzen Collected Works, E.
Szabo (ed.), North Holland, (1969).

[Gen38] G. Gentzen, New version of the consistency proof of elementary number theory, in:
Gentzen Collected Works, E. Szabo (ed.), North Holland, (1969).

[Gir87] J. Y. Girard, Proof theory and logical complexity, Bibliopolis, (1987).
[GLT89] J. Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Vol. 7 of Cambridge

Tracts in Theoretical Computer Science, Cambridge university press, (1989).

224 E. TAHHAN BITTAR

[Gra92] B. Gramlich, Relating innermost, weak, uniform and modular termination of term
rewriting systems, in: International Conf. on Logic Programming and Automated
Reasoning, St. Petersburg, A. Voronkov (ed.), Vol. 624, Lecture Notes in Artificial
Intelligence, 285–296, Springer, (1992).

[Gro93] Ph. de Groote, The conservation theorem revisited, in: International Conf. on
Typed Lambda Calculi and applications, Vol. 664, Lecture Notes in Artificial In-
telligence, 163–178, Springer, (1993).

[Her95] H. Herbelin, Séquents qu’on calcule, Thèse de doctorat, Université Paris VII,
(1995).

[HL92] G. Huet and J.-J. Lévy. Computations In Orthogonal Rewrites Systems I, in: Com-
putational Logic: Essays in Honour of Alan Robinson, J. Lassez and G. Plotkin
(eds.), chapter 11, 395–414, MIT Press, Cambridge, Massachussets. (1992).

[Hof92] D. Hofbauer, Termination Proofs by Multiset Path Orderings Imply Primitive Re-
cursive Derivation Lengths, Theoretical Computer Science, Vol. 105 (1), 129–140,
(1992).

[Hue80] G. Huet, Confluent reductions: Abstract properties and applications to term rewrit-
ing systems, J. Assoc. Comput. Mach. Vol. 27 (4), 797–821, (1980).

[Joi93] J. B. Joinet, Etude de la normalisation du calcul des séquents classique à travers la
logique linéaire, Thèse de doctorat, Université Paris VII, (1993).

[KW94] A. J. Kfoury and J. B. Wells, New notions of reduction and non-semantic proofs
of β-strong normalization in typed λ-calculi, Technical Report 94–014, Computer
Science Department, Boston University, (1994).

[KL80] S. Kamin and J. J. Lévy, Two generalizations of the recursive path ordering, un-
published note, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, (1980).

[Klo80] J. W. Klop, Combinatory reduction systems, PH.D. thesis, CWI, Amsterdamm
Mathematical Center Tracts No. 127.

[Klo92] J. W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science,
S. Abramsky, D. Gabbay, and T. Maibaum (eds.), Vol. 2, chapter 1, 2–117, Clarendon
Press, Oxford, (1992).

[Kru60] J. B. Kruskal, Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture,
Trans. Amer. Society, Vol. 95 210–225, (1960).

[Les90] P. Lescanne, Implementation of completion by transition rules + control: ORME,
in: Proc. 2nd International Workshop on Algebraic and Logic Programming, Nancy,
Vol. 463, Lectures Notes in Computer Science, 262–269, Springer, (1990).

[MZ94] A. Middeldorp and H. Zantema, Simple Termination Revisited, in: Proc. of the
12th International Conference on Automated Deduction, CADE’94, Nancy, Lecture
Notes in Artificial Intelligence 814, pp. 451–465, (1994).

[Ned73] R. P. Nederpelt, Strong Normalization for a typed lambda calculus with lambda
structured types, Ph.D. thesis, Tecnische Hogeschool Eindhoven, (1973).

[O’D77] M. J. O’Donnell, Computing in systems described by equations, Lecture Notes in
Computer Science, Vol. 58. Springer, Berlin, (1977).

[Pab90] J.-F. Pabion, Cours de logique, D.E.A. Université Claude-Bernard, Lyon-1, (1990).
[Par92] M. Parigot, λµ-calculus: an algorithmic interpretation of classical natural deduc-

tion, Lecture Notes in Computer Science, Vol. 624, 190–201, Springer, (1992).
[Per82] L. C. P. D. Pereira, On the estimation of the length of normal derivations, Philo-

sophical Studies 4, Akademilitteratur, Stockholm (1982).
[Pfe94] F. Pfenning, A Structural proof of cut elimination and its representation in a logical

STRONG NORMALIZATION PROOFS 225

framework, report CMU-CS-94-218, Carnegie Mellon University, (1994).
[Pin93] L. Pinto, Cut formulae and logic programming, in: Extensions of Logic Program-

ming, R. Dyckhoff (ed.), Lecture Notes in Artificial Intelligence, Vol. 798, 282–300,
Springer, (1994).

[Pra65] D. Prawitz, Natural deduction, a proof-theoretical study, Almquist & Wiskell, Stock-
holm (1965).

[Ros84] H. E. Rose, Subrecursion: functions and hierarchies, Clarendon Press, Oxford,
(1984).

[Ros73] B.K. Rosen, Tree-manipulating systems and Church-Rosser theorems, Journal of the
ACM, Vol. 20, 160–187, (1973).

[Sch51] K. Schütte, Beweistheoretische Erfassung der Unendlichen Induktion in der Zahlen-
theorie, Matematische Annalen, Vol. 122, 369–380, (1951).

[Tah92] E. Tahhan Bittar, Gentzen cut elimination for propositional sequent calcu-
lus by rewriting derivations, preprint Laboratoire de Logique, d’Algorithmique et
d’Informatique de Clermont 1, No. 16, (1992).

[Tah94] E. Tahhan Bittar, Bornes recursives pour la terminaison d’algorithmes, thèse de
doctorat, Université Lyon1, (1994).

[Wei93] A. Weiermann, Termination proofs for term rewriting systems by lexicographic path
orderings imply multiply recursive derivation lengths, Theoretical Computer Science,
Vol. 139(1&2), 355–362, (1995)

[Wei94] A. Weiermann, Complexity Bounds for Some Finite Forms of Kruskal’s Theorem,
Journal of Symbolic Computation, Vol. 18 (5), 489–495, (1994).

[Zan92] H. Zantema, Termination of Term Rewriting by Interpretation, technical report,
Utrecht University, RUU-CS-92-14, (April-1992).

