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Energy consumption in a Chip MultiProcessor (CMP) is one of the most important costs. It is related to design aspects such
as thermal and power constrains. Besides efficient on-chip processing elements, a well-designed Processor Allocator (PA)
and a Network-on-Chip (NoC) are also important factors in the energy budget of novel CMPs. In this paper, the authors
propose an energy model for NoCs with 2D-mesh and 2D-torus topologies. All important NoC architectures are described
and discussed. Energy estimation is presented for PAs. The estimation is based on synthesis results for PAs targeting
FPGA. The PAs are driven by allocation algorithms that are studied as well. The proposed energy model is employed in
a simulation environment, where exhaustive experiments are performed. Simulation results show that a PA with an IFF
allocation algorithm for mesh systems and a torus-based NoC with express-virtual-channel flow control are very energy
efficient. Combination of these two solutions is a clear choice for modern CMPs.
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1. Introduction

The tiled Chip Multi-Processor (CMP) architecture, con-
sisting of many parallel Processing Elements (PEs) inte-
grated on one die, is the dominant trend in parallel pro-
cessing systems. Jobs created to run on these systems are
parallel programs containing many tasks that communica-
te with each other. Each of the tasks runs on a separate PE
(core). Therefore, the incoming job specifies the number
of PEs needed to execute the job. The selection of a subset
of PEs required for a given job is called a processor alloca-
tion problem (Chmaj et al., 2004; Rose et al., 2007; Zydek
and Selvaraj, 2009) and it is done by the Processor Allo-
cator (PA) (Zydek and Selvaraj, 2010). Efficient processor
allocation should be characterized by

• high utilization: processor allocation must provide
maximal resource utilization;

• low overhead: allocation techniques must be fast and
deliver low overhead;

• scalability: algorithms must support systems with

thousands of nodes without any bottleneck;

• recognition completeness: it means the ability to find
free subgrids for incoming jobs, if such a free subgrid
exists.

The jobs are allocated in such a manner that they do not
overlap with each other and, if allocated, they run until
completion.

The resource utilization parameter in a CMP sys-
tem can be improved by a better job scheduling process
(Krueger et al., 1994; Mohapatra et al., 1993). Job sche-
duling is done by a Job Scheduler (JS) that deals with the
selection of the job to be executed next. In this paper, the
authors focus on a PA and its energy consumption. The
FCFS (First Come First Served) strategy is assumed as a
job scheduling policy.

Besides a good processor allocation strategy, effi-
cient communication among PEs is also an important fac-
tor in high performance multi-core processors. Moreover,
technology scaling enables integration of billions of trans-
istors on a chip that keeps increasing the number of PEs
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in a CMP. With the increase in the number of cores, the
system performance begins to be affected by the on-chip
interconnect—currently common bus structures become
a limiting factor for performance, space and energy con-
sumption (Dally and Towles, 2001). In order to overcome
the disadvantages of bus structures, the idea of a shared-
medium approach with a Network-on-Chip (NoC) is pro-
posed.

Among several NoC topologies developed for CMPs,
low-dimensional networks like 2D-mesh (k-ary 2-mesh)
and 2D-torus (k-ary 2-cube) represent better performan-
ce (higher throughput and lower latency) in comparison
with high-dimensional networks (like, e.g., high dimen-
sional k-ary n-cubes and meshes) (Dally, 1990). The to-
pologies match also very closely with the physical lay-
out of the die (Jayasimha et al., 2006), which makes
them the basic topologies for current and future CMPs.
2D-torus and 2D-mesh networks have uniformly short wi-
res that allow high-speed communication and the use of
locality between nodes. Both topologies (especially torus)
contain many redundant paths between nodes and ensu-
re good load balance. The wrap-around channels in a to-
rus network may cause problems—they are long (require
repeaters) and slower than other channels. This problem
can be avoided by folding a 2D-torus (Zydek and Selva-
raj, 2009). In this paper, the k-ary 2-mesh and k-ary 2-
cube topologies of an NoC are considered.

For 2D-mesh and 2D-torus topologies, the number of
PEs requested by an incoming job is the size of the requ-
ested subgrid. There are two major approaches to proces-
sor allocation: contiguous and non-contiguous. In conti-
guous processor allocation, the processors allocated to a
job are physically adjacent and have the same topology
as the NoC. In the non-contiguous allocation strategy, the
job can be executed on multiple disjoint smaller subgrids
that allows dividing a job rather than waiting until a sin-
gle subgrid of the requested size becomes available. But it
can generate global traffic, which we would like to avoid
in the NoC. Thus, the authors have chosen to focus on the
contiguous strategy.

A lot of research has been done to increase the ef-
ficiency of processor allocation algorithms for 2D-mesh
topology (Chmaj et al., 2004; Yoo and Das, 2002; Zy-
dek and Selvaraj, 2010). Similarly, 2D-torus networks are
found in many works (Zydek and Selvaraj, 2011; Zydek
et al., 2010).

Zydek and Selvaraj (2009) presented the idea of har-
dware implementation of the JS and the PA, and their
integration on one die together with the processing ele-
ments. In another work (Zydek and Selvaraj, 2010), new
allocation algorithms for a 2D-mesh NoC were presented.
Additionally, the hardware implementation and synthesis
results of the PA for a mesh-based CMP were shown. A
torus topology can be found in a recent paper by Zydek
and Selvaraj (2011), where allocation techniques and the-

ir comparison to the mesh schemes are discussed. Finally,
in the research by Zydek et al. (2010), the synthesis re-
sults of the PA driven by the schemes for a torus network
are presented together with their mesh counterparts. In this
paper, we study the energy aspects of an NoC-based CMP
with an integrated PA. The novel NoC architectures are
reviewed, together with the most efficient PAs. In both ca-
ses, two-dimensional torus and mesh topologies are con-
sidered. An energy model is proposed for the NoC un-
der discussion. Energy consumption of PAs is estimated
using the synthesis results presented by Zydek and Selva-
raj (2010) as well as Zydek et al. (2010). The performance
of the CMP is evaluated using a simulation environment
developed by the authors that includes the energy model
analyzed in the paper.

The reminder of this paper is organized as follows:
Section 2 contains a short overview of the NoC-based
CMP and novel NoC architectures. Information about the
PA and processor allocation techniques is in a Section 3.
The energy model for NoCs and the energy characteristic
of PAs are described in Section 4. Experimental results are
presented in Section 5, while final remarks in Section 6.

2. NoC-based chip multiprocessor

CMP architectures with an NoC are currently the most
advanced multiprocessor architectures. They differ from
standard CMPs with few cores on the same die, where
regular buses are used as interconnects. They also dif-
fer from older multiprocessor systems, where PEs were
placed on one main board and connected by buses (or a
network) on the board, not on the chip. The structure of
the chip, as is in CMPs, has interconnects and processing
elements significantly closer than in off-chip networks.
This implies better latency and bandwidth performance,
but properties such as power, area and cost restrictions be-
come crucial. Also, the complexity of designing efficient
and scalable on-chip communication solutions increases
together with the number of PEs integrated on a single
die. To provide scalability and effective use of resources
available in ULSI technology, a tiled architecture is propo-
sed (Taylor et al., 2002), cf. Fig. 1. The PEs are connected
by an NoC that replaces the traditional on-chip buses. The
chip area is divided into square tiles. Each tile contains ne-
tworking elements (router, PE network interface, network
channel) and PEs (processor, cache memory, etc.). Each
tile is connected to a network Router (R) by a PE network
interface. Communication among tiles is done by sending
messages over the network using tiles’ network interfa-
ces (routers). In order to achieve high performance and
efficiency, two components of the processor management
system, i.e., the PA and the JS, are proposed to be im-
plemented in hardware and placed as a tile on the same
die as the PEs in the CMP (Zydek and Selvaraj, 2009),
cf. Fig. 1.
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Fig. 1. Tiled CMP (4×4 2D-mesh) with an integrated job sche-
duler and processor allocator.

The JS receives a request and places the job in the qu-
eue, which is controlled in a particular way (in this paper,
in an FCFS fashion). The scheduled job is moved to a PA,
which assigns the job to available PEs according to the
allocation algorithm. As decided by the PA, PEs are rese-
rved and operands are sent to PEs to process them. After
execution, PEs return the results and a “release” message
is sent to the PA, which updates the status of processors.
Operands and results are sent through I/O ports, which for
simplicity are not shown in Fig. 1. All data (control mes-
sages, operands and results) are sent by the implemented
NoC. The PA and the JS are implemented using the same
networking elements (R) like PEs that give communica-
tion possibility.

2.1. Network topology. Topology is one of the main
properties that characterizes the NoC. It describes the lay-
out and structure of the nodes and links on the chip (Dally
and Towles, 2004). The degree of a node decides on the
number of ports in the router. Thus, a node’s degree has
impact on the complexity (power, energy and area con-
sumption) of the router. The smaller the value of the de-
gree, the lesser the cost, while its homogeneity leads to
uniform routers. It implies a desire of a small and fixed
degree. The diameter of a network is the largest, mini-
mal hop count over all pairs of nodes in the network. The
diameter has direct impact on the latency of the network.
Lower latency gives shorter distances, which imply a need
for a smaller network diameter. Topology has significant
influence on flow control and routing algorithms. Simple
and regular topology (like, e.g., 2D-mesh and 2D-torus)
reduces the complexity of the routing algorithm. An opti-
mal topology is also characterized by its path diversity.
Multiple minimal paths among nodes reduce the impact
of defects in the manufacturing process. Path diversity al-
so allows balancing the load across channels and makes

the network more tolerant to faulty channels and nodes.
Whatever the topology, the network needs to be la-

id out in a die. Due to poor progress of “3D stacking”
that is still under research, a 2D die is considered. This
implies that, for networks of dimension higher than 2D,
topological adjacency does not lead to spatial adjacency.
Thus higher dimensional topologies have negative impact
on wire delay and wiring density. These are possible re-
asons for the necessity for long wires. However, imple-
mentation of long wires can affect the operating frequen-
cy and power consumption. Furthermore, tiles can have
more channels crossing at least one of their edges that
can force the channel width to be less than required by
the architecture. Besides on-chip embedding issues, low
dimensional networks represent also better performance
in comparison with their higher dimensional counterparts.
At the same bisection, low dimensional topologies provi-
de lower latency and higher throughput. Moreover, topo-
logies of many dimensions require more and longer wi-
res (Dally, 1990; Jayasimha et al., 2006; Dally and Tow-
les, 2004).

The 2D-mesh (k-ary 2-mesh) topology (Dally and
Towles, 2004; Duato et al., 2003) meets all properties de-
scribed above. It is also an obvious and natural choice for
a tiled architecture due to its close match with the physical
layout of the die. A k-ary 2-mesh consists of N = k2 no-
des arranged in a 2-dimensional mesh with k nodes along
the two dimensions. Every node in the middle of the mesh
is connected to four neighboring nodes, while the nodes
on the edges of the mesh are connected to two or three
neighbors, which makes the mesh network degree slightly
irregular (Fig. 2(a)). The nodes are addressed by a 2-digit
radix-k address {a1, a0}, where a1 and a0 represent the
node position in the first and second dimension, respecti-
vely.

The diameter of 2D-meshes is 2 · (k − 1) hops. The
bisection is 2N/k, which can offer wider channels and
higher channel bandwidth for given bisection density. 2D-
meshes are characterized by uniformly short wires that al-
low high speed operation without repeaters. Minimal pa-
ths between nodes from a logical point of view are also
physically minimal, allows exploiting local traffic. Path
diversity is good as it ensures better reliability and load
balance. One of the main drawbacks of the k-ary 2-mesh is
the lack of the same available bandwidth for every node—
the bandwidth available to nodes at corners and edges is
smaller while these nodes have a higher average distance
from other nodes.

The 2D-torus (k-ary 2-cube) topology (Dally and
Towles, 2004; Duato et al., 2003) is achieved by enriching
a 2D-mesh with additional channels that connect the exter-
nal nodes in each row and column (Fig. 2(b)). Similar to
the 2D-mesh, a k-ary 2-cube has regular physical arrange-
ments that make it well suited for an on-chip layout.

A k-ary 2-cube consists of as many as N =
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Fig. 2. 2D-mesh and 2D-torus networks: 3-ary 2-mesh (a), 3-ary
2-cube (b), folded 3-ary 2-cube (c).

k2 nodes arranged in a 2-dimensional torus with
k nodes along the two dimensions. Every node is
connected to four neighboring nodes—a torus ne-
twork is degree regular. Wraparound channels added in
2D-toruses double their bisection to 4N/k and decrease
their diameter to 2 · �k/2� hops. They also provide edge-
symmetry that helps to improve the load balance and re-
liability of the network. Wraparound channels are reasons
for asymmetric channel lengths in a direct physical map-
ping of the 2D-torus. The wraparound channel has to be
long enough to span the length of all k nodes. A long wra-
paround link can increase the propagation delay, which
brings negative impact on latency. Also, it can require re-
peaters and decrease the operating frequency of all links.
All these problems can be avoided by folding the torus
as shown in Fig. 2(c). The folding keeps the topology
untouched but eliminates the wraparound channels at the
expense of doubling the length of the other channels. Ho-
wever, such a doubled channel possesses an acceptable la-
tency characteristic and does not require repeaters.

2.2. Flow control. Flow control describes the alloca-
tion of NoC’s resources (channel bandwidth, buffer capa-
city and control state) for packets traversing the network.
The flow control policy decides if a packet should be drop-
ped, blocked in place, buffered or rerouted. A well desi-
gned flow control allocates these resources effectively in
order to get good bandwidth and low latency. There are
two approaches to flow control:

• Problem of resource allocation: resources have to be
assigned to each packet that traverses the network
(e.g., routing algorithm determines which resources
are allocated to packets).

• Problem of resolving contention: when an outgoing
channel is requested by packets arriving on different
inputs, the flow control mechanism has to allocate
this channel to one packet and do something else with
the others, e.g., block or drop.

Buffering data is more efficient than waiting to get
network resources, like in circuit switching (Dally and
Towles, 2004). It can be done in units of packets (store-
and-forward and cut-through flow control) or flits (worm-

hole, virtual-channel or express-virtual-channel flow con-
trol). Flits are fixed sized, smallest units of information
recognized by the flow control method, and grouped toge-
ther to create a variable-length packet. The usage of flits
significantly reduces the amount of storage in each node,
which saves crucial space on the chip (Zydek et al., 2008).

As can be deduced, in wormhole flow control (Dally
and Towles, 2004; Dally, 1992), a packet is divided into
a number of flits. A header flit (or flits) manages a route
and the other flits (body and tail flits) follow the header
in a pipeline fashion according to a path determined by
the header flit. If the head flit meets a channel which is
already busy, it is blocked together with the following flits
(blocked flits can block many nodes along the established
route). This blocking may occur because only the flits of
one packet can use a channel (like actually we would send
a packet through the channel), and only buffers are alloca-
ted on a flit-by-flit basis.

This disadvantage of wormhole flow control is elimi-
nated in virtual-channel flow control that logically separa-
tes channels which share the same physical channel. It le-
ads to the possibility of the existence of flits of many pac-
kets in the channel. Practically, Virtual Channels (VCs)
are flit buffers associated with a single physical channel.
By introducing VCs, packets are forwarded in the network
over them, which separates the allocation of buffers from
that of channels. A blocked packet blocks only the VC
of a physical channel, but the other VCs can still use the
physical channel (Fig. 3).

Fig. 3. Packet A is blocked behind B—wormhole flow control
(a), packet A can pass packet B—virtual channel flow
control (b).

The physical channel is blocked only when all its
VCs are blocked. However, the probability of such a si-
tuation is lower than that of blocking with a wormhole
technique. In this way, the utilization of physical channels
and network throughput is higher. The way of implemen-
ting VCs requires careful analysis. In high traffic rates un-
der uniform traffic, the increasing number of virtual chan-
nels per physical channel can raise performance, but, e.g.,
in the case of hotspot traffic, assigning deeper buffers to
a smaller number of virtual channels gives better results
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(Rezazad and Sarbazi-Azad, 2005).
Another, novel approach to flow control is the

express-virtual-channel (Kumar et al., 2007). The key idea
of the technique is to provide virtual express lanes in
the network, which allow bypassing intermediate routers
by skipping the router pipeline. It is realized by intro-
ducing express buffers that define Express Virtual Chan-
nels (EVCs). By implementing EVCs, packets can be vir-
tually bypassed through intermediate nodes. The virtu-
al bypassing in a router forwards EVC flits as soon as
they reach the router without any buffering and arbitra-
tion, which significantly reduces packet latency and router
energy consumption. Express-virtual-channel flow control
consists of two kinds of virtual channels at each port of
a router: 1-hop regular VCs and k-hop EVCs that car-
ry flits k-hops at a time. The flit is allowed to choose
either a VC or an EVC depending on their availabili-
ty and the path of the flit. When transmission is over a
k-hop EVC, the flit is allowed to bypass the router pipeli-
ne at the next intermediate k − 1 nodes.

In Fig. 4(b), 2-hop EVCs in 5-ary 2-mesh topology
are shown and compared with regular VCs solution. In the
VCs case (Fig. 4(a)) seven nodes are fully involved in the
transmission, while in the structure with EVCs (Fig. 4(b))
the number of fully involved nodes is reduced to five (for
two nodes the router pipeline is bypassed). EVCs are de-
signed statistically at each router, and they are prioritized
over normal virtual channels. Beside a lower latency (up
to 84%) and a better throughput (up to 23%), EVCs redu-
ce the router switching activity (a packet is going through
a number of routers), limit the number of buffers, and re-
duce contention, which makes this solution energy (up to
38%) and area efficient (Krishna et al., 2008).

Fig. 4. Regular structure and example of transmission (a), the
same transmission in a structure with express virtual
channels (b).

2.3. Routing. Routing is the procedure of selecting a
path from a source node to a destination node in a particu-
lar topology. Besides topology and flow control, a routing
algorithm is also an important factor in the performance

of the NoC. A good routing algorithm balances the load
in the network channels, routes paths as fast as possible
and is still able to work in the presence of faults. It should
also be easily implemented in hardware. There are three
main classifications of routing algorithms:

• Deterministic: always choose the same path between
a pair of nodes. The balance of the load is very poor
in this case, but they are commonly used due to easy
implementation.

• Oblivious: route packets without considering the ne-
twork’s state (deterministic algorithms are a subset
of oblivious).

• Adaptive: use information about the network’s state
(e.g., channel load information, length of queues for
resources, etc.) to make routing decisions.

If the path selected by a routing algorithm is the shor-
test path between the source and the destination, the algo-
rithm is said to be minimal. Using a minimal routing algo-
rithm, every traversed channel brings the packet closer to
the destination. In non-minimal routing, the chosen path
can be longer, which allows reacting to current network
conditions.

Another important property of routing algorithms is
freedom from deadlocks and livelocks. A deadlock occurs
when packets are waiting for each other in the cycle. A
livelock is caused by a packet which proceeds through the
network indefinitely and never arrives at its destination.
A livelock is possible only for adaptive and non-minimal
routing. If there is no limit of the maximum number of ti-
mes, a packet can choose a non-minimal path, and remain
in the network indefinitely. One approach to avoiding li-
velocks is to implement in the packet a field indicating its
progress. It can be the number of times a packet has been
routed through the non-minimal path. Once the specified
value of non-minimal progress reaches a threshold (often
called misroute value), only a minimal path can be chosen.
Another approach to livelock avoidance is age-based prio-
rity filed in the packet. When a conflict between packets
occurs, a packet with a higher priority (older) is privileged
(Dally and Towles, 2004).

Deadlocks can be avoided by eliminating cycles in
the resource dependence graph (Dally and Seitz, 1987).
We can do it by providing some restrictions on routing. An
example of such restriction is the well known determini-
stic algorithm—Dimension Order Routing (DOR), or the
xy algorithm (Dally and Towles, 2004). DOR sends every
packet from a source to a destination over exactly the same
path. A path diversity offered by topology is ignored. Si-
milarly, load balancing and reliability are very weak. The-
se issues were addressed by Valiant and Brebner (1981),
who proposed Valiant’s oblivious algorithm. In the Valiant
scheme, a packet sent from a source to a destination is first
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sent from the source to a randomly chosen intermediate
node and then from that node to the destination. It redu-
ces the load of any traffic pattern (spatial distribution of
messages in interconnection networks). However, the go-
od performance given by randomization provides decre-
ased locality. Better load balance can be also achieved by
randomizing the order of dimensions in which the packet
is traversed (Dally and Towles, 2004). At each node, either
for DOR or Valiant routings, an x-first or a y-first direction
is randomly chosen. Such enhanced algorithms are named
here DOR Load Balanced (DOR-LB) and Valiant Load
Balanced (Valiant-LB). DOR-LB provides a minimal, lo-
ad balanced oblivious routing and preserves the locality.

Another approach to create routing algorithms that
are deadlock free exploits VCs, which allows the de-
sign of highly adaptive algorithms. Actually, designing
deadlock-free, fully adaptive routing algorithms without
virtual channels is not possible (Dally and Towles, 2004).
Very popular are hybrid solutions, which combine split-
ting network resources (virtual channels) with restricting
the paths for packets. Algorithms such as 3P (Su and
Shin, 1993), mesh_route (Boura and Das, 1994) and PFNF
(Upadhyay et al., 1997) are highly adaptive and need on-
ly two VCs per physical channel to ensure deadlock fre-
edom.

2.4. NoC summary. In this paper, we investigate NoC
architectures for CMPs with the following parameters:

• topology: k-ary 2-mesh and k-ary 2-cube;

• flow control: virtual-channel and express-virtual-
channel;

• routing: DOR, Valiant, DOR-LB, Valiant-LB and ad-
aptive.

The adaptive routing technique considered in the pa-
per uses historical data of network resource usage in order
to route packets. It is a hybrid, deadlock avoidance tech-
nique. In order to avoid livelocks, the misroute value is
implemented.

3. Processor allocator

3.1. Preliminaries. The internal architecture of the PA
may vary with the implemented allocation algorithm that
leads also to different I/O structures. A detailed descrip-
tion of the PA structure that is considered in this paper
can be found in the work of Zydek and Selvaraj (2010).
The allocation technique used by a PA is the most impor-
tant part of the PA. We consider algorithms for 2D-torus
and 2D-mesh systems. The 2D-torus topology, denoted by
T (w, h), consists of w × h nodes arranged in a w × h 2D
grid. Each node in the torus refers to an on-chip processor.
The node in column c and row r is identified by address

〈c, r〉, where 0 ≤ c < w and 0 ≤ r < h. A node 〈c, r〉
is connected by a direct communication channel to its ne-
ighboring nodes 〈c± 1, r〉 and 〈c, r ± 1〉, where

• c = −1, c← w − 1;

• r = −1, r ← h− 1;

• c = w, c← 0;

• r = h, r ← 0.

Thus each node has four neighboring nodes.

2D subtorus. It is a subgrid T (p, q) in the torus T (w, h)
such that 1 ≤ p ≤ w and 1 ≤ q ≤ h. A job requesting a
subtorus p×q is denoted by J(p, q). A subtorus S is iden-
tified by its base (lower left node) and end (upper right
node), and is denoted as S[〈xb, yb〉〈xe, ye〉].

Busy subtorus. A busy subtorus β is a subtorus where
all of its nodes have been allocated to jobs. Similarly, a
subtorus is free when all of its nodes are free.

Busy array. A busy array of a torus T (w, h) is a bit map
B[w, h], in which element B[c, r] has a value 1 or 0 if
node 〈c, r〉 is busy or free, respectively.

Busy list. A busy list is a set of all busy subtoruses in the
system. Similarly, a free list is a set of all free subtoruses
in the system.

Base. It is a node that can be used as a base to allocate
an incoming job. A base block is a subtorus whose nodes
can be used as base for free subtoruses to allocate a job. A
set of disjoint base blocks is called the base set.

Coverage. The coverage of a busy subtorus β with re-
spect to a job J is denoted by ξβ,J and it is a set of pro-
cessors such that the use of any node in ξβ,J as the base
of a free subtorus for the allocation of J will cause the job
J to be overlapped with β. The coverage set with respect
to J is denoted by CJ , and it is the set of the coverages of
all busy subtoruses.

For the 2D-mesh topology M(w, h), the definitions
are equivalent. Additional terms used only in meshes inc-
lude the following:

Reject area. The reject area with respect to a job J , de-
noted by RJ , is a set of processors such that the use of any
node in RJ as the base of free submesh for the allocation
of J will cause the job J cross the boundary of the mesh.



Energy characteristic of a processor allocator and a network-on-chip 391

Fig. 5. Torus T (9, 9) and mesh M(9, 9), busy and free nodes, coverage areas, busy array, busy lists.

Sink. The sink of the reject area is the processor with
coordinates 〈w − p + 1, h− q + 1〉.

As an illustration of the above definitions, torus
T (9, 9) and mesh M(9, 9) with busy and free nodes, cove-
rage areas, busy array and busy lists with respect to J(2, 3)
are presented in Fig. 5. The busy nodes are marked black
while the free are marked white. The reject area is presen-
ted by the shaded region with doted edges. For the torus
T (9, 9), we get

• the coverages of busy submeshes
β1 = [〈7, 2〉〈1, 5〉],
β2 = [〈4, 3〉〈5, 4〉],
β3 = [〈2, 7〉〈5, 0〉]
are
ξβ1,J = [〈6, 0〉〈1, 5〉],
ξβ2,J = [〈3, 1〉〈5, 4〉],
ξβ3,J = [〈1, 5〉〈5, 0〉];
• the coverage set CJ = ξβ1,J ∪ ξβ2,J ∪ ξβ3,J ;

• the base set is [〈6, 6〉〈0, 8〉] ∪ [〈2, 1〉〈2, 4〉].
For the mesh M(9, 9),

• the coverages of busy submeshes
β1 = [〈0, 2〉〈1, 5〉],
β2 = [〈4, 3〉〈5, 4〉],
β3 = [〈2, 7〉〈5, 8〉],
β4 = [〈7, 2〉〈8, 5〉],
β5 = [〈2, 0〉〈5, 0〉]
are
ξβ1,J = [〈0, 0〉〈1, 5〉],
ξβ2,J = [〈3, 1〉〈5, 4〉],
ξβ3,J = [〈1, 5〉〈5, 8〉],

ξβ4,J = [〈6, 0〉〈8, 5〉],
ξβ5,J = [〈1, 0〉〈5, 0〉];
• the coverage set CJ = ξβ1,J ∪ξβ2,J ∪ξβ3,J ∪ξβ4,J ∪

ξβ5,J ;

• the base set is [〈0, 6〉〈0, 6〉] ∪ [〈6, 6〉〈7, 6〉] ∪
[〈2, 1〉〈2, 4〉];
• the reject area RJ = [〈0, 7〉〈8, 8〉] ∪ [〈8, 0〉〈8, 8〉];
• the sink has coordinates 〈8, 7〉.

For a given job J, CJ represents the set of processors
which cannot be the base of the free subtoruses (for me-
shes it is CJ ∪RJ ). Thus the base set for J is Z−CJ (for
a mesh it is Z − CJ − RJ ), where Z refers to the set of
all processors in the system. It is important to note that the
base set with respect to J(p, q) is different from that with
respect to J(q, p), when p 	= q.

It is assumed that jobs are always placed in the torus
network from left to right in the horizontal direction and
from bottom to top in the vertical direction. This is illu-
strated in Fig. 5 (torus case). For example, the base of the
job J1 is 〈7, 2〉 and its end is 〈1, 5〉. The beginning of J1

is on the right-hand side of the torus, but its end is on the
left-hand side of the network, while the job is placed in the
left-right fashion. Similarly to job J3, the base and the end
are 〈2, 7〉 and 〈5, 0〉, respectively. The beginning of J2 is
on the top of the system, but its end is on the bottom of the
torus, although the job is allocated in the bottom-up way.

The topological characteristic of 2D-torus topology
are described in Section 2.1. In the case of processor allo-
cation, 2D-toruses give a better flexibility and a possibility
of finding a free processor for the job. This can be noticed
in Fig. 5. For the requested allocation of the job J(2, 3),
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32 nodes are already allocated. It is important to notice
that in the torus T (9, 9) these 32 nodes are allocated to
three jobs J1 to J3, but in the mesh M(9, 9) it becomes fi-
ve jobs, J1 to J5. Because of wraparound channels in the
torus topology, pairs of jobs J1 with J4 and J3 with J5 in
the mesh can be treated in the torus as single jobs J1 and
J3, respectively. Moreover, the base set in the torus ne-
twork in Fig. 5 contains 16 nodes, while in the mesh there
are only 7.

3.2. Allocation algorithms for 2D-mesh.

3.2.1. Improved First Fit (IFF). The IFF algorithm
(Zydek and Selvaraj, 2010) is the approach with a bit
map representing the allocation status of processors in the
mesh. The bit map idea has also been used by Zhu (1992),
who presented the First Fit (FF) and the Best Fit (BF) tech-
niques. In the IFF, with respect to an incoming job J(p, q),
the busy array B (without considering the reject area RJ )
is examined to create a coverage array CT , which is a bit
map representing the coverage set. In order to form CT in
an efficient way, each coverage ξβ,J is divided into three
disjoint regions: job coverage, left coverage and bottom
coverage. Then, two scans are necessary:

• all rows from right to left (determining a job and left
coverages);

• all columns (left to right) from top to down (creating
a bottom coverage).

The first available node that does not belong to the cove-
rage set is returned and can serve as a base for the job
J . The IFF strategy is recognition complete by conside-
ring two job orientations: If allocation of J(p, q) fails and
p 	= q, then J(q, p) possibility is checked.

With IFF allocation, the achieved time complexity is
O(wh). Deallocation of processors in the systems with a
busy array reduces to clearing all the elements in bit map
B. This is done also in O(wh).

3.2.2. Improved Adaptive Scan (IAS). The IAS al-
gorithm (Zydek and Selvaraj, 2010) replaces a bit map
with a list with busy subgrids. A similar approach is al-
so proposed by Chmaj et al. (2004), Yoo and Das (2002)
as well as Ding and Bhuyan (1993). As in the IFF case,
the IAS is based on the fact that for any job J none of
the nodes inside CJ ∪ RJ can serve as the base. Thus
creating CJ and RJ is a first step in the algorithm. Be-
cause of the fact that the allocation status of processors
is maintained using a busy list, CJ is also in a list form
and it is constructed by scanning the busy list, and, for
each β in the list, ξβ,J is constructed. For a given β =
[〈xb, yb〉〈xe, ye〉], its coverage with respect to J(p, q) is
ξβ,J = [〈xc, yc〉〈xe, ye〉], where xc = max(0, xb− p+1)

and yc = max(0, yb − q + 1). RJ is found by calculating
the sink.

In order to find a node that is not in CJ ∪ RJ , the
IAS for the given job J(p, q) maintains a frame of size
p× q, which is identified by the lower left corner. The fra-
me slides through the mesh, starting from the lowest left
available node. When nodes in the currently examined fra-
me are not available, the frame slides over the mesh, node
by node, taking horizontal and vertical steps, respective-
ly. Each node belonging to CJ ∪ RJ is tested by going
through the whole coverage list. Membership to CJ ∪RJ

causes the algorithm to check another node, otherwise the
node can be a base for a given J . In much the same way
as for the IFF, if the allocation of J(p, q) fails and p 	= q,
then the possibility J(q, p) of is checked. The IAS is also
recognition complete.

With the IAS solution, the achieved complexity is
O(whB), where B is the length of the busy list. Dealloca-
tion of a job requires removing an element from the busy
list. This can be done in constant time by implementing
pointers from allocated jobs to corresponding elements in
the busy list. Thus, the time complexity of deallocation is
O(1).

3.2.3. Other allocation schemes for 2D-meshes. The
other important processor allocation algorithms based on
busy lists are ISBA (Chmaj et al., 2004; Zydek and Selva-
raj, 2010) and IQA (Zydek and Selvaraj, 2010). However,
as reported by Zydek and Selvaraj (2010), the algorithms
are hardly synthesizable and they are not considered in
this paper.

Another approach to the processor allocation pro-
blem is not keeping in memory information about sub-
grids that are busy, but maintaining a list with free sub-
grids (keep the list of processors that can be allocated for a
requested job). Such an approach is taken, e.g., in the FSL
and CFL algorithms (Zydek and Selvaraj, 2010; Abab-
neh, 2006). However, a synthesis of free list techniques is
even more difficult than that of busy list schemes (Zydek
and Selvaraj, 2010). Moreover, based on computer simu-
lations (Yoo and Das, 2002; Ababneh, 2006), they do not
perform better than other techniques. Thus, free list algo-
rithms are not considered in this paper.

3.3. Allocation algorithms for a 2D-torus.

3.3.1. Bit Map Allocation for Torus (BMAT). The
BMAT technique (Zydek and Selvaraj, 2011) is based on
the bit map approach used in the IFF algorithm. With re-
spect to an incoming job, the busy array B is scanned to
create a coverage array CT in the form of a bit map. The
methodology of creating a coverage array CT is similar to
the IFF scheme. However, due to the lack of the reject area
RJ in the torus networks, all nodes have to be considered.
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Also similarly to the IFF, each coverage ξβ,J is divided
into three regions: job coverage, left coverage and bottom
coverage. However, instead of two scans required by the
IFF, BMAT needs four passes through CT :

• all rows from right to left, two times each (determi-
ning a job and left coverages);

• all columns (left to right) from top to down, two ti-
mes each (creating a bottom coverage).

These additional two scans are due to wraparound chan-
nels in the torus and they are obligatory.

The BMAT technique is recognition complete by ma-
nipulating the job orientation. If for a given J(p, q) the
allocation fails and p 	= q, the scheme will change the
orientation of the job and then the J(q, p) possibility is
checked. When both attempts fail, the allocation of the
job fails.

The time complexity of BMAT for allocation and de-
allocation is O(wh).

3.3.2. Busy List Allocation for Torus (BLAT). The
BLAT algorithm (Zydek and Selvaraj, 2011) is based on
the busy list strategy and the approach presented in the
IAS scheme. For an incoming job J(p, q), BLAT scans
a busy list and creates a coverage set CJ , which is also
in a list form. Coverages ξβ,J depend on the addresses of
base 〈xb, yb〉 and end 〈xe, ye〉 of the busy subgrid β. For
the 2D-mesh topology (IAS technique), we had only one
possible case of addresses, where xb ≤ xe and yb ≤ ye .
In the 2D-torus topology (BLAT technique), we have four
possible cases:

• xb ≤ xe and yb ≤ ye,

• xb > xe and yb ≤ ye,

• xb ≤ xe and yb > ye,

• xb > xe and yb > ye.

For each case, coverages need to be determined in a
different way. For a given β = [〈xb, yb〉〈xe, ye〉], its cove-
rage with respect to J(p, q) is ξβ,J = [〈x1, y1〉〈x2, y2〉],
where x1 = xb−p+1, y1 = yb−q+1, x2 = xe, y2 = ye

and
if xb ≤ xe and yb ≤ ye then

if x1 < 0 then x1 = w + x1 and
if x1 ≤ xe + 1 then x1 = 0; x2 = w − 1;

if y1 < 0 then y1 = h + y1 and
if y1 ≤ ye + 1 then y1 = 0; y2 = h− 1;

else if xb > xe and yb ≤ ye then
if x1 ≤ xe + 1 then x1 = 0; x2 = w − 1;
if y1 < 0 then y1 = h + y1 and

if y1 ≤ ye + 1 then y1 = 0; y2 = h− 1;
else if xb ≤ xe and yb > ye then

if x1 < 0 then x1 = w + x1 and

if x1 ≤ xe + 1 then x1 = 0; x2 = w − 1;
if y1 < ye + 1 then y1 = 0; y2 = h− 1;

else if xb > xe and yb > ye then
if x1 ≤ 0 then x1 = 0; x2 = w − 1;
if y1 ≤ 0 then y1 = 0; y2 = h− 1.

When CJ is created, each node is tested for belon-
ging to CJ , which is done by inspecting the whole CJ for
every node in a torus. The node which is not in the CJ can
be a base for the given J , otherwise, the algorithm checks
another node. The BLAT scheme is recognition complete.

The time complexity for allocation in BLAT is
O(whB), where B is the size of the busy list—the number
of busy subtoruses. Deallocation is done in O(1).

3.3.3. Other allocation schemes for 2D-toruses.
Other processor allocation algorithms for k-ary 2-cubes
were proposed by Zydek and Selvaraj (2011). The rema-
ining techniques, namely, SAT and SBAT, use the busy
list to keep the status of nodes. However, investigations
conducted by Zydek and Selvaraj (2011) showed that the
performance of these algorithms is not so bright. More-
over, the results presented by Zydek et al. (2010) revealed
that the synthesis of the SAT and SBAT techniques not
possible. Thus in this paper only the BMAT and BLAT
allocation algorithms for a 2D-torus NoC are discussed.

4. Energy model

4.1. Energy of a network-on-chip. A model of power
consumption of network routers was proposed by Ye et al.
(2002). The bit energy in router (ERbit

) is defined as the
dynamic energy consumed while traversing one bit of data
through the router:

ERbit = ESbit + EBbit + EWbit , (1)

where ESbit is energy consumed by switch arbitration,
EBbit is buffering energy (buffer write and read energy)
and EWbit is energy consumed by interconnection wires
inside the switching fabric (energy required to traverse the
crossbar switch). Besides the energy consumed by the ro-
uter, we also have to consider the energy consumed on the
physical channels between tiles (ELbit). Thus, the average
energy consumed while sending one bit of data from a tile
to its neighboring tile can be calculated as

Ebit = ERbit + ELbit . (2)

Consequently, the average energy consumption while
sending one bit of data from tile ti to tile tj is

E
ti,tj

bit = ERbit(Nhops + 1) + ELbitNhops, (3)

where Nhops is the number of channels traversed by a pac-
ket between tile ti and tj .
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In Eqn. (3), ERbit and ELbit are constants for a given
design. Wolkotte et al. (2005a) presented a performance
analysis of wires. The estimated ELbit in [pJ/bit] for the
NoC is

ELbit = 0.39 + 0.12lwire, (4)

where lwire is the length of a physical channel in [mm].
The energy model is proposed for two topologies di-

scussed earlier: a k-ary 2-mesh and a k-ary 2-cube. In the
2D-mesh, the assumed length of the physical channel equ-
als length of the PE edge. That length reported by Vangal
et al. (2007) is 1.5 mm, so for the 2D-mesh we can assume
lwire = 1.5 mm. For the 2D-torus, a folded version is con-
sidered that doubles the length of channels in comparison
to 2D-mesh, thus for a k-ary 2-cube lwire = 3 mm. Finally,
the energy consumed on the physical channels between ti-
les in [pJ/bit] is E2D−mesh

Lbit
= 0.57 for k-ary 2-mesh and

E2D−torus
Lbit

= 0.75 for a k-ary 2-cube topology.
The research by Wolkotte et al. (2005a) is extended

in another work (Wolkotte et al., 2005b), where gate level
power simulation of a VC router is performed. The router
routes packets according to the DOR scheme. The amount
of energy required for a single bit to pass the router is
ERbit = 0.98 pJ/bit.

Kim et al. (2005) present implementation of a router
for routing algorithms based on VCs: DOR and a fully ad-
aptive hybrid algorithm. The presented results show that
the average energy per packet for both DOR and adaptive
algorithms under uniform and transpose traffic patterns is
similar. Thus, for both DOR and adaptive routing techni-
ques router energy ERbit = 0.98 pJ/bit.

For NoCs based on virtual-channel flow control,
ERbit can be expressed as (Kumar et al., 2007)

ERbit = ESbit + EBbit + EWbit + EV Cbit , (5)

where EVCbit is the energy consumed by VC arbitration.
In express-virtual-channel flow control, packet traveling
EVC is able to bypass the router pipeline of intermediate
nodes without buffering, VC and switch arbitration. Thus,
it saves EBbit , EVCbit and ESbit , which reduces ERbit .

The synthesis results presented by Kavaldjiev et al.
(2004) show that energy required to traverse the crossbar
switch EWbit is 24% of all energy consumed by the router.
Thus, the energy of bit traversing through EVC is 24% of
the energy of the bit traversing through regular VC:

EEVC
Rbit

= 0.24EVC
Rbit

= 0.23pJ/bit. (6)

Thus, finally, for all routing algorithms considered (DOR,
DOR-LB, Valiant, Valiant-LB and adaptive), the average
energy consumption while sending one bit of data from
tile ti to tile tj can be expressed as follows:

• for a k-ary 2-mesh:

E
ti,tj

bit = 0.98(NVC
hops+1)+0.23NEVC

hops +0.57Nhops,
(7)

• for a k-ary 2-cube:

E
ti,tj

bit = 0.98(NVC
hops+1)+0.23NEVC

hops +0.75Nhops,
(8)

where NVC
hops is the number of regular VCs traversed by

a packet between tiles ti and tj , NEVC
hops is the number

of EVCs traversed by a packet between tile ti and tj ,
and Nhops is the number of physical channels (number
of EVCs + number of VCs − 1) traversed by a packet
between tiles ti and tj .

4.2. Processor allocator: Energy estimation. A syn-
thesis of PAs based on allocation algorithms for 2D-
meshes and 2D-toruses is presented by Zydek and Selva-
raj (2010) as well as Zydek et al. (2010), respectively. The
synthesis of the PA is done for Altera’s Stratix III family
device EP3SL150F780C2. The presented results contain
such parameters as the maximum frequency fmax, logic
utilization, the number of registers used and the number
of combinational ALUTs needed. These parameters allow
estimating the total power used by the PA.

Since Stratix III is the target device, we have to deal
with Stratix-specific features in power estimation. Alte-
ra provides the PowerPlay Early Estimator (Altera Cor-
poration, 2009) based on a spreadsheet. The tool allows
users to specify switching activities, fmax, usages of va-
rious components and other related information to estima-
te the total power in early design stages. Because, as for
the NoC, we would like to get energy estimation for a PA,
the average power dissipation P from the spreadsheet is
converted into energy consumed in a cycle Ec (Cardarilli
et al., 2002), according to the formula

Ec = P
1

Fmax
[μJ], (9)

where Fmax is the average maximum frequency of fmax at
0 oC and 85 oC in [MHz], obtained as results of synthesis.

The final values are presented in Table 1. Positions
marked by the dash “–” mean that the synthesis for these
instances was not possible (Zydek and Selvaraj, 2010; Zy-
dek et al., 2010). The results show a significant advanta-
ge of busy array techniques, especially the IFF technique.
The busy list schemes use between two and five times mo-
re energy in comparison with bit map solutions, which
makes PAs driven by the IAS and BLAT not efficient. Ba-
sed on outcomes presented by Zydek and Selvaraj (2010)
as well as Zydek et al. (2010) and Table 1, the amount
of logic and dedicated registers used by these algorithms
has huge impact on the maximum frequency and energy
consumption.

5. Experimental energy results

5.1. Description of the simulation environment. The
proposed energy model for NoCs and PAs has been em-
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Table 1. Power P and energy consumed in a cycle Ec for PAs with the discussed allocation algorithms.
Scheme IFF IAS BMAT BLAT

Grid Size P [W] Ec [J] P [W] Ec [J] P [W] Ec [J] P [W] Ec [J]

2 × 2 0.6116136 2.7310275 0.6109082 11.299514 0.6116136 9.7351947 0.6114341 18.692574
3 × 2 0.6114821 2.8569259 0.6113026 17.268436 0.6118108 16.713859 0.6120258 26.890412
4 × 2 0.6116136 3.2569019 0.6115656 25.766404 0.6119423 21.696234 0.6126175 37.150849
3 × 3 0.6116136 4.751135 0.6118285 21.949006 0.6120738 30.74975 0.6129462 47.059212
4 × 3 0.6116136 5.277308 0.6124202 29.837771 0.6123367 37.892125 0.6140641 64.165524
4 × 4 0.6116793 8.6799964 0.6136038 34.774937 0.6127969 58.809687 0.6155766 86.945855
5 × 4 0.6117451 9.9228723 0.6148532 46.246951 0.6133229 74.207249 0.6176815 125.80072
5 × 5 0.6118108 14.274634 0.6168264 46.996295 0.6139804 102.1598 0.6210373 180.53409
6 × 5 0.6118108 15.829517 0.6186684 62.777108 0.6147695 126.10657 0.6238676 193.14787
6 × 6 0.6119423 23.113968 0.6213663 69.040705 0.6158875 161.22709 0.6278843 263.26387
7 × 6 0.612008 25.357698 0.6247235 84.88091 0.6168083 188.62639 0.6328913 349.66373
8 × 6 0.612008 31.272766 0.6284113 95.286013 0.6175976 219.00625 0.6379012 414.22157
8 × 7 0.6121395 35.797632 0.633814 100.6054 0.6192423 273.39617 0.6446295 477.50335
8 × 8 0.612271 42.981467 0.6383628 102.87878 0.6222693 317.48436 – –
10 × 8 0.6124025 56.914728 – – 0.6272728 415.41245 – –
10 × 9 0.6125997 65.55374 – – 0.6289852 435.28386 – –
10 × 10 0.6127312 86.482878 – – 0.6310932 551.17307 – –
15 × 10 0.6134544 128.74174 – – 0.6479754 766.83481 – –
16 × 10 0.6135859 136.20109 – – 0.6517388 835.56256 – –
20 × 10 0.6140462 173.21472 – – – – – –
20 × 15 0.6155587 296.65478 – – – – – –
20 × 20 0.6173345 414.31847 – – – – – –

ployed in an experimentation system developed by the au-
thors of the present paper. The system allows examining
the NoC-based CMP with an integrated PA. The testing
environment provides the possibility to test all NoC confi-
gurations considered as well as the PA driven by all allo-
cation techniques discussed in this work.

The PA takes jobs from the queue generated by the
system, job by job, and tries to find free PEs in order to
allocate the job. If such free PEs exist, the PEs are allo-
cated to the job (the job is sent to the PE). If there are
no free PEs, the PA waits until another job releases some
PEs—jobs are processed in the FCFS fashion.

An allocation process employs the NoC of the CMP.
In order to allocate PEs, the allocation message has to be
sent from a PA to each PE assigned to a job. It is assumed
that this message takes one flit, e.g., if a job requires six
PEs, six flits have to be sent from a PA to all PEs assi-
gned to the job. Similarly, if a job is done, a deallocation
message (that also takes one flit) has to be sent from each
involved PE to the PA. Thus, the PA is updated and just
released PEs can accommodate another job. The objecti-
ve of the experimentation system is to analyze a PA and
traffic generated by that PA, so only allocation and deallo-
cation messages are considered. In a real system, a lot of
different packets are sent between nodes, e.g., just after al-
location, messages with commands and operands have to
be sent to the PEs involved. Similarly, while processing,
PEs can exchange control messages and data with them-

selves. When processing is done, messages with results
have to be sent as well. However, all messages different
from the allocation and deallocation message are not con-
sidered.

5.2. Analysis of results. The CMP simulator was run
on an Intel Pentium 4 machine (2× 3 GHz processor) with
2 GB of RAM. Due to the energy and performance analy-
sis discussed in Section 4.2 and in the work of Zydek and
Selvaraj (2011), the final experiments were performed for
allocation techniques based on a bit map, i.e., the IFF and
BMAT algorithms. The rest of allocation schemes were
omitted because of their worse characteristics in compari-
son with busy array solutions.

The investigations were conducted for a mesh/torus
NoC with 100 nodes (10×10). In the experiments, a queue
of 1000 jobs for each tested instance was generated. The
size of the jobs in the queue was generated using random
numbers normally distributed between 1 and 4 for vertical
and horizontal size separately. The execution time of the
job was generated similarly between 1 and 500 [ms]. The
results of the experiments are shown in Table 2.

Jobs from the queue were allocated by the PA confi-
gured with the IFF or BMAT algorithms. For the IFF algo-
rithm, the free PEs allocated to a job are always adjacent
like in a mesh topology. However, such adjacent PEs can
also communicate with each other and a PA using torus
topology. Thus, for the PA driven by the IFF algorithm,
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Table 2. Energy consumption of the PA, the NoC and the whole CMP with the routing algorithms considered, based on the flow control
used.

PA Energy [µJ] NoC Energy [µJ] Total CMP Energy [µJ]
EVC’s Length BMAT IFF BMAT IFF-Mesh IFF-Torus BMAT IFF-Mesh IFF-Torus

DOR
0 1633.1258 256.8541 4.223335 6.280482 4.25179 1637.349141 263.13463 261.105938
1 1633.1258 256.8541 3.794839 5.059122 3.821422 1636.920645 261.91327 260.67557
2 1633.1258 256.8541 3.730471 4.82637 3.759502 1636.856277 261.680518 260.61365
3 1633.1258 256.8541 3.856711 4.825938 3.88747 1636.982517 261.680086 260.741618

Valiant
0 1633.1258 256.8541 7.53419 10.122796 7.584019 1640.660002 266.976944 264.438167
1 1633.1258 256.8541 6.72101 8.301033 6.725983 1639.846818 265.155181 263.580132
2 1633.1258 256.8541 6.748088 8.064732 6.755974 1639.873894 264.91888 263.610122
3 1633.1258 256.8541 7.031965 8.182994 6.400887 1640.157772 265.037142 263.255034

DOR-LB
0 1633.1258 256.8541 4.223335 6.280482 4.25179 1637.349141 263.13463 261.105938
1 1633.1258 256.8541 3.794839 5.059122 3.821422 1636.920645 261.91327 260.67557
2 1633.1258 256.8541 3.730471 4.82637 3.759502 1636.856277 261.680518 260.61365
3 1633.1258 256.8541 3.856711 4.825938 3.88747 1636.982517 261.680086 260.741618

Valiant-LB
0 1633.1258 256.8541 7.453812 9.961001 7.677578 1640.579619 266.815149 264.531725
1 1633.1258 256.8541 6.699823 8.299948 6.704807 1639.825629 265.154096 263.558954
2 1633.1258 256.8541 6.764379 8.072758 6.667442 1639.890185 264.926905 263.52159
3 1633.1258 256.8541 7.083686 8.269919 7.025202 1640.209492 265.124067 263.87935

Adaptive
0 1633.1258 256.8541 6.530851 8.600572 6.567831 1639.656657 265.4547198 263.421979
1 1633.1258 256.8541 6.028247 7.147596 6.060985 1639.154054 264.0017438 262.915133
2 1633.1258 256.8541 5.910089 6.852687 5.914527 1639.035895 263.706835 262.768674
3 1633.1258 256.8541 6.111203 6.765978 6.126948 1639.237009 263.6201262 262.981096

we consider two cases:

• IFF-Mesh, where the PEs are adjacent like in the
mesh communicate with each other using a mesh-
based NoC,

• IFF-Torus, where the PEs are adjacent like in the
mesh communicate with each other using a torus-
based NoC.

The BMAT technique finds free PEs for the requested
job based on a torus topology, and thus the neighboring
PEs allocated to a job can be adjacent using wraparound
channels. In order to exchange messages, the PEs could
use a mesh-based NoC. However, in such a case we could
destroy the locality of the PEs allocated to one job. Addi-
tionally, jobs allocated to PEs using wraparound channels
would not be contiguous if a mesh-based NoC were used.
Thus, we consider only torus-based NoCs as the commu-
nication medium for a PA with BMAT.

In the experiments, the jobs were allocated to PEs
using an NoC with virtual-channel or express-virtual-
channel flow control. In Table 2, the flow control used
is marked in the column “EVC’s length”. For virtual-
channel flow control, the length of EVCs is 0. In the
express-virtual-channel approach, the EVC length is a pa-
rameter (in the experiments it varies from 1 to 3).

The routing techniques considered are DOR, Valiant,
DOR-LB, Valiant-LB and adaptive. The results presented
in Table 2 are for the adaptive algorithm, where two mi-
sroutes are allowed.

NoCs with each described flow control and routing
scheme were tested for the same queue with jobs. The pre-
sented energy results are calculated according to the for-
mulas (7) and (8), and based on the results of the synthesis
presented in Table 1. During calculations it was assumed
that the width of one flit is 32 bits, which is the most po-
pular width used in research.

As can be noticed, the PA with the BMAT allocation
strategy consumes significantly (six times) more energy
than with the IFF scheme. It is the price for wraparound
channel recognition offered by BMAT. Among the NoCs
considered in the experiment, the NoC with the DOR ro-
uting technique achieves the lowest energy usage. It is not
surprising because the DOR is the easiest possible algo-
rithm and it routes packets through minimal paths. The
Valiant algorithm requires a high amount of energy to ro-
ute the traffic. Even the most advanced adaptive routing
algorithm achieves better energy performance. The largest
amount of energy is consumed in a mesh-based NoC (IFF-
Mesh case in Table 2). The lack of wraparound channels
in a mesh topology makes longer routes, which increases
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the number of routers involved in transmission together
with energy needed to send a message.

The experiments reveal enormous advantages of the
IFF-based PA with a torus-based NoC. The IFF-Torus ap-
proach was characterized by a very good energy perfor-
mance. Moreover, the torus topology of the NoC ensures
better traffic balance than the mesh. This solution, in con-
nection with the DOR-LB routing technique, yields very
good energy and load balance characteristics. The BMAT-
based PA demonstrates very high energy consumption,
which makes this solution less attractive.

Implementation of EVCs for all routing techniques
considered decreases the amount of energy used. Espe-
cially for a mesh-based NoC, savings offered by express-
virtual-channel flow control are significant. The best re-
sults are achieved in the case where the number of VC
buffers used is reduced by employing more express buf-
fers. Thus, if more express buffers are used, the energy
saving gained is higher. The length of EVCs also has im-
pact on the amount of energy saved and its choice has
to be made individually for each system. In the descri-
bed experiments, the optimal length of EVCs is 2—one
express channel bypasses virtually two nodes.

6. Conclusions

In this paper, we investigated the energy characteristic of
two components of novel CMPs: the processor allocator
and the network-on-chip. We explored the most impor-
tant NoC architectures and processor allocation algori-
thms for k-ary 2-meshes and k-ary 2-cubes topologies. To
perform the energy analysis, we proposed an energy mo-
del for NoCs based on virtual-channel and express-virtual-
channel flow control. Energy estimation for a PA was do-
ne based on results of hardware synthesis of the PA. The
proposed energy model of the NoC-based CMP was im-
plemented in an experimentation environment, where the
intensive simulations of the CMP were conducted.

The presented energy results reveal a huge advanta-
ge of the PA driven by bit map algorithms, especially by
the IFF algorithm for mesh systems. However, as an effi-
cient NoC solution, the torus network proved to be very
energy efficient. This led to the idea of implementing the
PA driven by the IFF with the torus topology of the NoC
(IFF-Torus). This solution turned to be the best one. The
IFF-based PA and the torus-based NoC driven by DOR-
LB routing with express-virtual-channel flow control deli-
ver very good energy characteristics and ensure good load
balance. If higher reliability and load balance are needed,
the adaptive routing technique with carefully chosen para-
meters can also be a very good solution.
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